Spectral Quark Functions and Quark-Hadron Duality

E. Ruiz Arriola
Departamento de Fisica Atomica, Molecular y Nuclear (Granada) in collaboration with
W. Broniowski (Krakow)

Florence ,March 13,2018

- ERA, in Proc. of the Workshop on Lepton Scattering, Hadrons, and QCD, Adelaide, 2001
- ERA $+W B$, Spectral quark model and low-energy hadron phenomenology, hep-ph/0301202, Phys. Rev. D67 (2003) 074021

1. "Partonic quasi-distributions of the pion in chiral quark models" arXiv:1711.09355 [hep-ph]
2. "Partonic quasidistributions of the proton and pion from transverse-momentum distributions" Phys. Rev. D 97, no. 3, 034031 (2018)
3. "Nonperturbative partonic quasidistributions of the pion from chiral quark models" Phys. Lett. B 773, 385 (2017)
4. "Transversity relations, chiral and holographic models, and pion wave functions from lattice QCD" PoS LC 2010, 041 (2010)
5. "Gravitational, Electromagnetic, and Transition Form Factors of the Pion" arXiv:0910.0869 [hep-ph]
6. "Application of chiral quarks to high-energy processes and lattice QCD" arXiv:0908.4165 [hep-ph]
7. "Photon interactions and chiral dynamics" arXiv:0907.3374 [hep-ph]
8. "From chiral quark models to high-energy processes" Acta Phys. Polon. B 40, 2165 (2009)
9. "Gravitational and higher-order form factors of the pion in chiral quark models" Phys. Rev. D 78, 094011 (2008)
.0. "Pion electromagnetic form factor, perturbative QCD, and large-N(c) Regge models" Phys. Rev. D 78, 034031 (2008)
10. "Generalized parton distributions of the pion" AIP Conf. Proc. 1030, 286 (2008)
11. "Generalized parton distributions of the pion in chiral quark models and their QCD evolution" Phys. Rev. D 77, 034023 (2008)
12. "Pion-photon Transition Distribution Amplitudes in the Spectral Quark Model" Phys. Lett. B 649, 49 (2007)
13. "Confined Chiral Solitons in the Spectral Quark Model" Phys. Rev. D 76, 014008 (2007)
14. "Photon distribution amplitudes and light-cone wave functions in chiral quark models" Phys. Rev. D 74, 054023 (2006)
15. "Application of chiral quark models to high-energy processes" hep-ph/0410041
16. "Kwiecinski evolution of unintegrated parton distributions" hep-ph/0407295
17. "Low-energy chiral Lagrangian in curved space-time from the spectral quark model"
Phys. Rev. D 70, 034031 (2004)
18. "Solution of the Kwiecinski evolution equations for unintegrated parton distributions using the Mellin transform" Phys. Rev. D 70, 034012 (2004)
19. "Impact parameter dependence of the diagonal GPD of the pion from chiral quark models" hep-ph/0310048
20. "The Spectral quark model and light cone phenomenology" hep-ph/0310044
21. "Impact parameter dependence of the generalized parton distribution of the pion in chiral quark models" Phys. Lett. B 574, 57 (2003)

Chiral Quark Model

Determining the Quark content of hadrons requires quark degrees of freedom
Prototype: Nambu-Jona-Lasinio
One-loop (leading- N_{c})

The momentum running around the loop is cut, $k<\Lambda$ This is not what we are going to do!

What is the scale of the Chiral Quark Model ?
Constituents of hadrons in a quark model are quarks. They carry 100 \% of the momentum in the hadron by relativistic invariance.
In QCD the momentum carried by the (valence) quarks at $Q^{2}=4 \mathrm{GeV}^{2}$ is about 40%.

$$
\frac{\int d x x q(x, Q)}{\int d x x q\left(x, Q_{0}\right)}=\left(\frac{\alpha(Q)}{\alpha\left(Q_{0}\right)}\right)^{\gamma_{1}^{(0)} /\left(2 \beta_{0}\right)}
$$

If we evolve to lower scales we get at LO this corresponds to $Q_{0}=322 \pm 45 \mathrm{MeV}$.

Requirements

(a) Give finite values for hadronic observables
(b) Satisfy the Ward-Takahashi identities, thus reproducing all necessary symmetry requirements
(c) Satisfy the anomaly conditions

All
(d) Comply to the QCD factorization property, in the sense tha屯imultaneously the expansion of a correlator at a large Q is a pure - far twist-expansion, involving only the inverse powers of Q^{2}, from without the $\log Q^{2}$ corrections

trivial!

(e) Have the usual dispersion relations

The spectral representation

A novel approach, the spectral regularization of the chiral quark model, is based on the Lehmann representation

$$
S(p)=\int_{C} d \omega \frac{\rho(\omega)}{p-\omega}
$$

$\rho(\omega)$ - the spectral function NOT necessarily real or positive, C - a suitable contour in the complex ω plane Example: free theory has $\rho(\omega)=\delta(\omega-m)$, Perturbative QCD yields at LO (Haeri, 1988)

$$
\rho(\omega)=\delta(\omega-m)+\operatorname{sign}(\omega) \frac{\alpha_{S} C_{F}}{4 \pi} \frac{1-\xi}{\omega} \theta\left(\omega^{2}-m^{2}\right)
$$

Quark condensate

p

1

$$
\langle\bar{q} q\rangle \equiv-i N_{c} \int \frac{d^{4} p}{(2 \pi)^{4}} \operatorname{Tr} S(p)=-4 i N_{c} \int d \omega \rho(\omega) \int \frac{d^{4} p}{(2 \pi)^{4}} \frac{\omega}{p^{2}-\omega^{2}}
$$

The integral over p is quadratically divergent, which requires the use of an auxiliary regularization, removed at the end

$$
\langle\bar{q} q\rangle=-\frac{N_{c}}{4 \pi^{2}} \int d \omega \omega \rho(\omega)\left[2 \Lambda^{2}+\omega^{2} \log \left(\frac{\omega^{2}}{4 \Lambda^{2}}\right)+\omega^{2}+\mathcal{O}(1 / \Lambda)\right]
$$

The finiteness of the result at $\Lambda \rightarrow \infty$ requires the conditions

$$
\int d \omega \omega \rho(\omega)=0, \quad \int d \omega \omega^{3} \rho(\omega)=0
$$

The Spectra conditions
and thus

$$
\langle\bar{q} q\rangle=-\frac{N_{c}}{4 \pi^{2}} \int d \omega \log \left(\omega^{2}\right) \omega^{3} \rho(\omega)
$$

The spectral condition allowed us to rewrite $\log \left(\omega^{2} / \Lambda^{2}\right)$ as $\log \left(\omega^{2}\right)$, hence no scale dependence is present

Vacuum energy density

The energy-momentum tensor for a purely quark model is defined as

$$
\theta^{\mu \nu}(x)=\bar{q}(x) \frac{i}{2}\left\{\gamma^{\mu} \partial^{\nu}+\gamma^{\nu} \partial^{\mu}\right\} q(x)-g^{\mu \nu} \mathcal{L}(x) .
$$

At the one-quark-loop level

$$
\begin{align*}
& \left\langle\theta^{\mu \nu}\right\rangle=-i N_{c} N_{f} \int d \omega \rho(\omega) \int \frac{d^{4} p}{(2 \pi)^{4}} \times \\
& \operatorname{Tr} \frac{1}{p-\omega}\left[\frac{1}{2}\left(\gamma^{\mu} p^{\nu}+\gamma^{\nu} p^{\mu}\right)-g^{\mu \nu}(p p-\omega)\right] \\
& =-4 i N_{c} N_{f} \int d \omega \rho(\omega) \int \frac{d^{4} p}{(2 \pi)^{4}} \frac{p^{\mu} p^{\nu}-g^{\mu \nu}\left(p^{2}-\omega^{2}\right)}{p^{2}-\omega^{2}} \\
& =B g^{\mu \nu}+\left\langle\theta^{\mu \nu}\right\rangle_{0}, \tag{1}
\end{align*}
$$

$$
\begin{equation*}
B=-i N_{c} N_{f} \int d \omega \rho(\omega) \int \frac{d^{4} p}{(2 \pi)^{4}} \frac{\omega^{2}}{p^{2}-\omega^{2}} \tag{2}
\end{equation*}
$$

where in the subtraction of the free part we have used the

$$
\begin{equation*}
\int d \omega \rho(\omega)=1 \tag{3}
\end{equation*}
$$

The integral over p is quadratically divergent. B finite implies

$$
\int d \omega \omega^{2} \rho(\omega)=0, \quad \int d \omega \omega^{4} \rho(\omega)=0
$$

Hence

$$
\begin{equation*}
B=-\frac{N_{c} N_{f}}{16 \pi^{2}} \int d \omega \omega^{4} \log \omega^{2} \tag{4}
\end{equation*}
$$

Thus $\rho(\omega)$ cannot be positive !

According to QCD sum rules

$$
B=-\frac{9}{32}\left\langle\frac{\alpha}{\pi} G^{2}\right\rangle=-\left(224_{-70}^{+35} \mathrm{MeV}\right)^{4}
$$

The negative sign of B enforces

$$
\rho_{4}^{\prime}>0
$$

Spectral moments

Postulate

$$
\begin{aligned}
\rho_{0} & \equiv \int d \omega \rho(w)=1 \\
\rho_{n} & \equiv \int d \omega \omega^{n} \rho(\omega)=0, \quad \text { for } n=1,2,3, \ldots
\end{aligned}
$$

Observables are given by the inverse moments

$$
\rho_{-k} \equiv \int d \omega \omega^{-k} \rho(\omega), \quad \text { for } k=1,2,3, \ldots
$$

Such

a $\rho(\omega)$
exists!
as well as by the "log moments",

$$
\rho_{n}^{\prime} \equiv \int d \omega \log \left(\omega^{2}\right) \omega^{n} \rho(\omega), \quad \text { for } n=2,3,4, \ldots
$$

Gauge technique and the vertex functions

CVC and PCAC imply the Ward-Takahashi identities (WTI)
The gauge technique consists of writing a solution for the unamputated vector and axial vertices

$$
\begin{aligned}
\Lambda_{V}^{\mu, a}\left(p^{\prime}, p\right) & =\int d \omega \rho(\omega) \frac{i}{p^{\prime}-\omega} \gamma^{\mu} \frac{\lambda_{a}}{2} \frac{i}{p p-\omega} \\
\Lambda_{A}^{\mu, a}\left(p^{\prime}, p\right) & =\int d \omega \rho(\omega) \frac{i}{p^{\prime}-\omega}\left(\gamma^{\mu}-\frac{2 \omega q^{\mu}}{q^{2}}\right) \gamma_{5} \frac{\lambda_{a}}{2} \frac{i}{p p-\omega}
\end{aligned}
$$

Similar for more vertices, one $\rho(\omega)$ for each quark line

$\underline{e^{+}} e^{-} \rightarrow$ hadrons

At large s we find

$$
\sigma\left(e^{+} e^{-} \rightarrow \text { hadrons }\right)=\frac{4 \pi \alpha_{Q E D}^{2}}{3 s}\left(\sum_{i=u, d, \ldots} e_{i}^{2}\right) \int d \omega \rho(\omega)
$$

This is the proper asymptotic QCD result if

$$
\int d \omega \rho(\omega)=1
$$

Pion properties

Finiteness of f_{π} requires the condition $\rho_{2}=0$. Then

$$
f_{\pi}^{2}=-\frac{N_{c}}{4 \pi^{2}} \int d \omega \log \left(\omega^{2}\right) \omega^{2} \rho(\omega) \equiv-\frac{N_{c}}{4 \pi^{2}} \rho_{2}^{\prime}
$$

The electromagnetic form factor

$$
F_{\pi}^{e m}\left(q^{2}\right)=\frac{4 N_{c}}{f_{\pi}^{2}} \int d w \rho(\omega) \omega^{2} I\left(q^{2}, \omega\right)
$$

At low-momenta

$$
F_{\pi}^{e m}\left(q^{2}\right)=1+\frac{1}{4 \pi^{2} f_{\pi}^{2}}\left(\frac{q^{2} \rho_{0}}{6}+\frac{q^{4} \rho_{-2}}{60}+\frac{q^{6} \rho_{-4}}{240}+\ldots\right)
$$

The mean squared radius reads (regardless of details of the $\rho(\omega)$) $\left\langle r_{\pi}^{2}\right\rangle=\frac{N_{c}}{4 \pi^{2} f_{\pi}^{2}}$

At large momenta

$$
F_{\pi}^{e m}\left(q^{2}\right) \sim \frac{N_{c}}{4 \pi^{2} f_{\pi}^{2}} \int d \omega \rho(\omega)\left\{\frac{2 \omega^{4}}{q^{2}}\left[\log \left(-q^{2} / \omega^{2}\right)+1\right]+\ldots\right\}
$$

With help of the spectral conditions for $n=2,4,6, \ldots$ we get

$$
F_{\pi}^{e m}\left(q^{2}\right) \sim-\frac{N_{c}}{4 \pi^{2} f_{\pi}^{2}}\left[\frac{2 \rho_{4}^{\prime}}{q^{2}}+\frac{2 \rho_{6}^{\prime}}{q^{4}}+\frac{4 \rho_{8}^{\prime}}{q^{6}}+\ldots\right]
$$

All
spectral conditions needed!

Pure twist expansion, no logs !

Parton Distribution Functions of the Pion

The hadronic tensor for inclusive electroproduction on the pion reads

$$
\begin{align*}
& W_{\mu \nu}(p, q)=\frac{1}{2 \pi} \operatorname{Im} T_{\mu \nu}(p, q) \\
& =W_{1}\left(q^{2}, p \cdot q\right)\left(-g_{\mu \nu}+\frac{q_{\mu} q_{\nu}}{q^{2}}\right) \tag{5}\\
& +\frac{W_{2}\left(q^{2}, p \cdot q\right)}{m_{P}^{2}}\left(p_{\mu}-\frac{p \cdot q}{q^{2}} q_{\mu}\right)\left(p_{\nu}-\frac{p \cdot q}{q^{2}} q_{\nu}\right)
\end{align*}
$$

where the forward virtual Compton scattering amplitude on the pion is defined as (closed quark lines)

$$
\begin{equation*}
T_{\mu \nu}(p, q)=i \int d^{4} x e^{i q \cdot x}\langle\pi(p)| T\left\{J_{\mu}^{\mathrm{em}}(x) J_{\nu}^{\mathrm{em}}(0)\right\}|\pi(p)\rangle \tag{6}
\end{equation*}
$$

and take the Bjorken limit $-q^{2}=Q^{2} \rightarrow \infty$ with $x=Q^{2} / 2 p q$ fixed.
We take π^{+}for definiteness and get

Davidson
\& ERA in NJL

$$
u_{\pi}(x)=\bar{d}_{\pi}(1-x)=\theta(x) \theta(1-x),
$$

independently of $\rho(\omega)$. One recovers the Bjorken scaling (without log's), the Callan-Gross relation (quarks are spin 1/2), the proper support (relativity), the correct normalization (gauge invariance), and the momentum sum rule.
Another derivation from Quark-Pion scattering amplitude (open quark lines) yields exactly the same result
Non trivial consistency condition

QCD evolution of PDF

The QCD evolution of the constant PDF has been treated in detail by Davidson \& ERA at LO and NLO. In particular, the non-singlet contribution to the energy-momentum tensor evolves as

$$
\frac{\int d x x q(x, Q)}{\int d x x q\left(x, Q_{0}\right)}=\left(\frac{\alpha(Q)}{\alpha\left(Q_{0}\right)}\right)^{\gamma_{1}^{(0)} /\left(2 \beta_{0}\right)}
$$

In has been found that at $Q^{2}=4 \mathrm{GeV}^{2}$ the valence quarks carry $47 \pm 0.02 \%$ of the total momentum fraction in the pion. Downward LO evolution yields that at the scale

$$
Q_{0}=313_{-10}^{+20} \mathrm{MeV}
$$

the quarks carry 100% of the momentum. The agreement of the evolved PDF with the SMRS data analysis is impressive DGLAP evolution

NLO DGLAP evolution does not change significantly.

Odd-parity processes

$\pi^{0} \rightarrow \gamma \gamma$

$$
F_{\pi \gamma \gamma}(0,0,0)=\frac{1}{4 \pi^{2} f_{\pi}} \int d \omega \rho(\omega)=\frac{1}{4 \pi^{2} f_{\pi}}
$$

which coincides with the QCD result. Not true when the loop momentum is cut!
$\gamma \rightarrow \pi^{+} \pi^{0} \pi^{-}$

$$
F(0,0,0)=\frac{1}{4 \pi^{2} f_{\pi}^{3}} \int d \omega \rho(\omega)=\frac{1}{4 \pi^{2} f_{\pi}^{3}}
$$

which is the correct result

Pion-photon transition form factor

For two off-shell photons with momenta q_{1} and q_{2} one defines the asymmetry, A, and the total virtuality, Q^{2} :

$$
\begin{aligned}
A & =\frac{q_{1}^{2}-q_{2}^{2}}{q_{1}^{2}+q_{2}^{2}}, \quad-1 \leq A \leq 1 \\
Q^{2} & =-\left(q_{1}^{2}+q_{2}^{2}\right)
\end{aligned}
$$

At the soft pion point we find the expansion,

$$
F_{\pi \gamma \gamma}\left(Q^{2}, A\right)=-\frac{1}{2 \pi^{2} f_{\pi}} \int_{0}^{1} d x\left[\frac{2 \rho_{2}^{\prime}}{Q^{2}\left(1-A^{2}(2 x-1)^{2}\right)}+\ldots\right]
$$

We can confront this with the standard twist decomposition of the pion transition form factor,

Brodsky-

$$
F_{\gamma \gamma \pi}\left(Q^{2}, A\right)=J^{(2)}(A) \frac{1}{Q^{2}}+J^{(4)}(A) \frac{1}{Q^{4}}+\ldots
$$

Lepage,
Praszałowicz-
Rostworowski,
which yields

$$
\begin{aligned}
J^{(2)}(A) & =\frac{4 f_{\pi}}{N_{c}} \int_{0}^{1} d x \frac{\varphi\left(x ; Q_{0}\right)}{1-(2 x-1)^{2} A^{2}} \\
J^{(4)}(A) & =\frac{8 f_{\pi} \Delta^{2}}{N_{c}} \int_{0}^{1} d x \frac{\varphi_{\pi}^{(4)}(x)\left[1+(2 x-1)^{2} A^{2}\right]}{\left[1-(2 x-1)^{2} A^{2}\right]^{2}}
\end{aligned}
$$

with The leading-twist pion distribution amplitude at $Q_{0} \sim 320 \mathrm{MeV}$

$$
\varphi\left(x ; Q_{0}\right)=1
$$

This serves as the initial condition for the QCD evolution and $\Delta^{2}=-8 B /\left(3 f_{\pi}^{2}\right)$.Numerically,

$$
\Delta^{2}=(0.78 \pm 0.61) \mathrm{GeV}^{2}
$$

An estimate made in a non-local quark model of A. E. Dorokhov et al. provides $\Delta^{2}=0.29 \mathrm{GeV}^{2}$.
The form of the expansion shows that the all twist distribution amplitudes for the pion are, at the model working scale Q_{0}, constant

$$
\varphi_{\pi}^{(n)}(x)=\theta(x) \theta(1-x) \quad \text { for } \quad n=2,4,6, \ldots
$$

QCD evolution of PDA

All results of the effective, low-energy model, refer to a soft energy scale, Q_{0}. In order to compare to experimental results, obtained at large scales, Q, the QCD evolution must be performed. Initial condition:

$$
\varphi\left(x ; Q_{0}\right)=\theta(x) \theta(1-x) .
$$

The evolved distribution amplitude reads

$$
\begin{aligned}
\varphi(x ; Q) & =6 x(1-x) \sum_{n=0}^{\infty} C_{n}^{3 / 2}(2 x-1) a_{n}(Q) \\
a_{n}(Q) & =\frac{2}{3} \frac{2 n+3}{(n+1)(n+2)}\left(\frac{\alpha\left(Q^{2}\right)}{\alpha\left(Q_{0}^{2}\right)}\right)^{\gamma_{n}^{(0)} /\left(2 \beta_{0}\right)}
\end{aligned}
$$

where $C_{n}^{3 / 2}$ are the Gegenbauer polynomials, $\gamma_{n}^{(0)}$ are appropriate anomalous dimensions, and $\beta_{0}=9$.
Results extracted from the experimental data of CLEO provide
$a_{2}(2.4 \mathrm{GeV})=0.12 \pm 0.03$, which we use to fix

$$
\alpha(Q=2.4 \mathrm{GeV}) / \alpha\left(Q_{0}\right)=0.15 \pm 0.06
$$

At LO this corresponds to $Q_{0}=322 \pm 45 \mathrm{MeV}$
Now we can predict

$$
\begin{aligned}
& a_{4}(2.4 \mathrm{GeV})=0.06 \pm 0.02(\exp :-0.14 \pm 0.03 \mp 0.09) \\
& a_{6}(2.4 \mathrm{GeV})=0.02 \pm 0.01
\end{aligned}
$$

Encouraging, with leading-twist and LO QCD evolution!

k_{\perp}-unintegrated parton distribution can be shown to be equal to

$$
u_{\pi}\left(x, k_{\perp}\right)=\frac{N_{c}}{4 \pi^{3} f_{\pi}^{2}} \int d \omega \rho(\omega) \frac{\omega^{2}}{k_{\perp}^{2}+\omega^{2}} \theta(x) \theta(1-x)
$$

hence at Q_{0} one has an interesting relation

$$
q\left(x, k_{\perp}\right)=\bar{q}\left(1-x, k_{\perp}\right)=\Psi\left(x, k_{\perp}\right)
$$

At $k_{\perp}=0$ we have

$$
q\left(x, 0_{\perp}\right)=\frac{N_{c}}{4 \pi^{3} f_{\pi}^{2}}
$$

Finally, via integrating with respect to k_{\perp} the following identity between the PDF and the PDA is obtained at the scale Q_{0} :

$$
q(x)=\varphi(x)
$$

The first moment of the PDF is responsible for the The momentum sum rule, We find, $\int_{0}^{1} d x x q(x)=\int_{0}^{1} d x x \bar{q}(x)=\frac{1}{2}$, is satisfied. Actually, this quarks
property is a simple consequence of the crossing property $\bar{q}(x)=q(1-x)$ and the normalization condition.

Further results/predictions

Gasser-Leutwyler coefficients: Leading- N_{c} quark model values Magnetic permeability of the vacuum, χ

$$
\begin{aligned}
\langle 0| \bar{q}(0) \sigma_{\alpha \beta} q(0)\left|\gamma^{(\lambda)}(q)\right\rangle & =i e_{q} \chi\langle\bar{q} q\rangle\left(q_{\beta} \varepsilon_{\alpha}^{(\lambda)}-q_{\alpha} \varepsilon_{\beta}^{(\lambda)}\right) \\
\chi & =\frac{N_{c}}{4 \pi^{2}} \rho_{1}^{\prime} /\langle\bar{q} q\rangle
\end{aligned}
$$

First
log-moment

Tensor susceptibility of the vacuum

$$
\Pi=i\langle 0| \int d^{4} z T\left\{\bar{q}(z) \sigma^{\mu \nu} q(z), \bar{q}(0) \sigma_{\mu \nu} q(0)\right\}|0\rangle=-12 f_{\pi}^{2}
$$

Broniowski,
Polyakov
\& Goeke '98

Résumé

Spectral condition	Physical significance
zeroth moment	normalization
$\rho_{0}=1$	proper normalization of the quark propagator preservation of anomalies proper normalization of the pion distribution amplitude proper normalization of the pion structure function reproduction of the large- N_{c} quark-model values of the Gasser-Leutwyler coefficients
positive moments	finiteness/pure twist $\rho_{1}=0$
finiteness of the quark condensate, $\langle\bar{q} q\rangle$ $\rho_{2}=0$	vanishing quark mass at asymptotic Euclidean momenta, finiteness of the vacuum energy density, B
$\rho_{3}=0$	finiteness of the pion decay constant, f_{π}
$\rho_{4}=0$	finiteness of the quark condensate, $\langle\bar{q} q\rangle$
$\rho_{n}=0, n=2,4 \ldots$	absence of logs in the twist expansion of vector amplitudes
$\rho_{n}=0, n=5,7 \ldots$	finiteness of nonlocal quark condensates, $\left\langle\bar{q}\left(\partial^{2}\right)^{(n-3) / 2} q\right\rangle$ absence of logs the twist expansion of the scalar pion form facto

negative moments values of observables

$\rho_{-2}>0$	positive quark wave-function normalization at vanishing momentur
$\rho_{-1} / \rho_{-2}>0$	positive value of the quark mass at vanishing momentum, $M(0)>$
ρ_{-n}	low-momentum expansion of correlators
log-moments	values of observables
ρ_{1}^{\prime}	magnetic permeability of the vacuum
$\rho_{2}^{\prime}<0$	$f_{\pi}^{2}=-N_{c} /\left(4 \pi^{2}\right) \rho_{2}^{\prime}$
$\rho_{3}^{\prime}>0$	negative value of the quark condensate, $\langle\bar{q} q\rangle=-N_{c} /\left(4 \pi^{2}\right) \rho_{3}^{\prime}$
$\rho_{4}^{\prime}>0$	negative value of the vacuum energy density, $B=-N_{c} /\left(4 \pi^{2}\right) \rho_{4}^{\prime}$
$\rho_{5}^{\prime}<0$	positive value of the squared vacuum virtuality of the quark,
$\lambda_{q}^{2}=-\rho_{5}^{\prime} / \rho_{3}^{\prime}$	

Meson dominance model

Explicit example of $\rho(\omega)$! Vector-meson dominance (VMD) of the pion form factor is assumed (works up to $t \sim 2 \mathrm{GeV}^{2}$)

$$
\begin{aligned}
F_{V}(t) & =\frac{M_{V}^{2}}{M_{V}^{2}+t} \equiv-\frac{4 N_{c}}{(4 \pi)^{2} f_{\pi}^{2}} \int d \omega \rho(\omega) \\
& \times \int_{0}^{1} d x \log \left[\omega^{2}+x(1-x) t\right]
\end{aligned}
$$

with $M_{V}=m_{\rho}$. Given this, we get the part of $\rho(\omega)$ responsible for the even moments

$$
\rho_{V}(\omega)=\frac{1}{2 \pi i} \frac{3 \pi^{2} M_{V}^{3} f_{\pi}^{2}}{4 N_{c}} \frac{1}{\omega} \frac{1}{\left(M_{V}^{2} / 4-\omega^{2}\right)^{5 / 2}} .
$$

The function $\rho_{V}(\omega)$ has a single pole at the origin and branch cuts starting at $\pm M_{V} / 2$.

The condition $\rho_{0}=1$ gives $M_{V}^{2}=24 \pi^{2} f_{\pi}^{2} / N_{c}$ (matching quark models to VMD) The positive even moments fulfill the spectral conditions

$$
\rho_{2 n}=0, \quad n=1,2,3 \ldots
$$

The log-moments and negative even moments are finite

For the case of the scalar spectral function (controlling odd moments) we proceed heuristically, by proposing its form in analogy to ρ_{V}

$$
\rho_{S}(\omega)=\frac{1}{2 \pi i} \frac{-48 \pi^{2}\langle\bar{q} q\rangle}{N_{c} M_{S}^{4}\left(1-4 \omega^{2} / M_{S}^{2}\right)^{5 / 2}}
$$

M_{S} is a scale parameter. The analytic structure similar to $\rho_{V}(\omega)$, except for the absence of the pole at $\omega=0$. Odd positive moments vanish!

The quark propagator (from meson properties

$$
\begin{aligned}
S(p) & =A(p) p+B(p)=Z(p) \frac{p p+M(p)}{p^{2}-M^{2}(p)} \\
A\left(p^{2}\right) & \equiv \int_{C} d \omega \frac{\rho_{V}(\omega)}{p^{2}-\omega^{2}}=\frac{1}{p^{2}}\left[1-\frac{1}{\left(1-4 p^{2} / M_{V}^{2}\right)^{5 / 2}}\right] \\
B\left(p^{2}\right) & \equiv \int_{C} d \omega \frac{\omega \rho_{S}(\omega)}{p^{2}-\omega^{2}}=\frac{48 \pi^{2}\langle\bar{q} q\rangle}{M_{S}^{4} N_{C}\left(1-4 p^{2} / M_{S}^{2}\right)^{5 / 2}}
\end{aligned}
$$

No poles in the whole complex plane! Only branch cuts starting at $p^{2}=M_{V, S}^{2} / 4$. The absence of poles is sometimes called "the analytic confinement"

Poles would lead to cuts in form f.

data:
Bowman, Heller,
\& Williams '02
$M\left(Q^{2}\right)$ decreases as $1 / Q^{3}$ at large Euclidean momenta, which is favored by the recent lattice calculations. The fit results in

$$
\begin{aligned}
M_{S} & =970 \pm 21 \mathrm{MeV} \\
M(0) & =303 \pm 24 \mathrm{MeV}
\end{aligned}
$$

with $\chi^{2} / \mathrm{DOF}=0.72$. The corresponding value of $\langle\bar{q} q\rangle$ is

$$
\langle\bar{q} q\rangle=-\left(243.0_{-0.8}^{+0.1} \mathrm{MeV}\right)^{3}
$$

Effective action and consistency conditions

The vacuum to vacuum transition amplitude in the presence of external bosonic (s, p, v, a) and fermionic $(\eta, \bar{\eta})$ fields of a chiral quark model Lagrangian can be written as a path integral as
$Z[s, p, v, a, \eta, \bar{\eta}]=\langle 0| \mathrm{T} \exp \left\{i \int d^{4} x\left[\bar{q}\left(\ngtr+\phi \gamma_{5}-\left(s+i \gamma_{5} p\right)\right) q+\bar{\eta} q+\bar{q} \eta\right]\right\}|0\rangle$
The consistency of the calculation requires the following trivial identity for the generating functional

$$
\langle\bar{q}(x) q(x)\rangle=\left.i \frac{1}{Z} \frac{\delta Z}{\delta s(x)}\right|_{0}=\left.\lim _{x^{\prime} \rightarrow x}(-i)^{2} \frac{1}{Z} \frac{\delta^{2} Z}{\delta \eta(x) \bar{\eta}\left(x^{\prime}\right)}\right|_{0}
$$

where $\left.\right|_{0}$ means external sources set to zero.

$$
Z[\eta, \bar{\eta}, s, p, \ldots]=\int D U e^{-i\langle\eta, S[U, s, p, v, a] \eta\rangle} e^{i \Gamma[U, s, p, v, a]}
$$

where the propagator and effective actions are given by

$$
\left\langle x^{\prime}\right| S[U, s, p, v, a]_{a a^{\prime}}|x\rangle=\int d \omega \rho(\omega)\langle x|(\mathbf{D})_{a a^{\prime}}^{-1}\left|x^{\prime}\right\rangle
$$

and

$$
\Gamma[U, s, p, v, a]=-\mathrm{i} N_{c} \int d \omega \rho(\omega) \operatorname{Tr} \log (i \mathbf{D}),
$$

respectively and the Dirac operator is given by

$$
i \mathbf{D}=i \not \partial-\omega U^{5}-\hat{m}_{0}+\left(\psi+\phi \lambda \gamma_{5}-s-i \gamma^{5} p\right)
$$

With $U^{5}=U^{\gamma_{5}}$, and $U=u^{2}=e^{i \sqrt{2} \Phi / f}$.

Gasser-Leutwyler-Donoghue coefficients

$$
\begin{align*}
L_{3} & =-2 L_{2}=-4 L_{1}=-\frac{N_{c}}{(4 \pi)^{2}} \frac{\rho_{0}}{6} \tag{7}\\
L_{4} & =L_{6}=0 \\
L_{5} & =6 L_{13}=-\frac{N_{c}}{(4 \pi)^{2}} \frac{\rho_{1}^{\prime}}{2 B_{0}} \\
L_{8} & =\frac{N_{c}}{(4 \pi)^{2}}\left[\frac{\rho_{2}^{\prime}}{4 B_{0}^{2}}-\frac{\rho_{1}^{\prime}}{4 B_{0}}-\frac{\rho_{0}}{24}\right] \\
L_{9} & =-2 L_{10}=\frac{N_{c}}{(4 \pi)^{2}} \frac{\rho_{0}}{3} \\
L_{12} & =-2 L_{11}=-\frac{N_{c}}{(4 \pi)^{2}} \frac{\rho_{0}}{6}
\end{align*}
$$

Dual relations

The quark model cannot be better than the large N_{c} expansion.
Compare to the single resonance approximation

$$
\begin{align*}
2 L_{1}^{\mathrm{SRA}} & =L_{2}^{\mathrm{SRA}}=\frac{1}{4} L_{9}^{\mathrm{SRA}}=-\frac{1}{3} L_{10}^{\mathrm{SRA}}=\frac{f^{2}}{8 M_{V}^{2}}, \tag{8}\\
L_{5}^{\mathrm{SRA}} & =\frac{8}{3} L_{8}^{\mathrm{SRA}}=\frac{f^{2}}{4 M_{S}^{2}}, \tag{9}\\
L_{3}^{\mathrm{SRA}} & =-3 L_{2}^{\mathrm{SRA}}+\frac{1}{2} L_{5}^{\mathrm{SRA}}, \tag{10}\\
2 L_{13}^{\mathrm{SRA}} & =3 L_{11}^{\mathrm{SRA}}+L_{12}^{\mathrm{SRA}}=\frac{f^{2}}{4 M_{f_{0}}^{2}} \tag{11}\\
L_{12}^{\mathrm{SRA}} & =-\frac{f^{2}}{2 M_{f_{2}}^{2}}, \tag{12}\\
& \rho_{1}^{\prime \mathrm{SRA}}=\frac{8 \pi^{2}\langle\bar{q} q\rangle}{N_{c} M_{S}^{2}}, \tag{13}
\end{align*}
$$

$$
\begin{equation*}
{\rho_{2}^{\prime}}^{\mathrm{SRA}}=-\frac{4 \pi^{2} f^{2}}{N_{c}}=-\frac{M_{V}^{2}}{6}, \tag{14}
\end{equation*}
$$

Assuming that L_{8} and L_{10} are consistent with WSR one gets

$$
2 L_{1}=L_{2}=-\frac{1}{2} L_{3}=\frac{1}{2} L_{5}=\frac{2}{3} L_{8}=\frac{1}{4} L_{9}=-\frac{1}{3} L_{10}=\frac{N_{c}}{192 \pi^{2}}
$$

This also implies the set of mass dual relations,

$$
\begin{equation*}
M_{A}=M_{P}=\sqrt{2} M_{V}=\sqrt{2} M_{S}=4 \pi \sqrt{3 / N_{c}} f_{\pi} . \tag{15}
\end{equation*}
$$

Other predictions

Pion transition form factor:

$$
\begin{aligned}
& F_{\pi \gamma \gamma}\left(Q^{2}, A\right)=\frac{2 f_{\pi}}{A N_{c}} \frac{1}{Q^{2}} \log \left[\frac{2 M_{V}^{2}+(1+A) Q^{2}}{2 M_{V}^{2}+(1-A) Q^{2}}\right] \\
+ & \frac{16 f_{\pi} M_{V}^{2}}{N_{c}\left[4 M_{V}^{4}+4 Q^{2} M_{V}^{2}+\left(1-A^{2}\right) Q^{4}\right]}
\end{aligned}
$$

Pion light-cone wave function and PDF:

$$
\Psi\left(x, k_{\perp}\right)=q\left(x, k_{\perp}\right)=\frac{3 M_{V}^{3}}{16 \pi\left(k_{\perp}^{2}+M_{V}^{2} / 4\right)^{5 / 2}} \theta(x) \theta(1-x)
$$

The average transverse momentum squared is equal to

$$
\left\langle k_{\perp}^{2}\right\rangle \equiv \int d^{2} k_{\perp} k_{\perp}^{2} \Psi\left(x, k_{\perp}\right)=\frac{M_{V}^{2}}{2}
$$

which numerically gives $\left\langle k_{\perp}^{2}\right\rangle=(544 \mathrm{MeV})^{2}$ (at Q_{0}). The estimates from QCD sum rules yield smaller values: one gets $(316 \mathrm{MeV})^{2}$ or $(333 \pm 40 \mathrm{MeV})^{2}$

Quark propagator in the coordinate representation:
$A(z)=\frac{48+24 M_{V} \sqrt{-z^{2}}-6 M_{V}^{2} z^{2}+M_{V}^{3}\left(-z^{2}\right)^{3 / 2}}{96 \pi^{2} z^{4}} \exp \left(-M_{V} \sqrt{-z^{2}} / 2\right)$
$B(z)=\langle\bar{q} q\rangle /\left(4 N_{c}\right) \exp \left(-M_{S} \sqrt{-z^{2}} / 2\right)$

Nonlocal quark condensate:

$$
Q(z)=\exp \left(-M_{S} \sqrt{-z^{2}} / 2\right)
$$

Magnetic permeability of the vacuum: (at Q_{0}):

$$
\chi=\frac{2}{M_{S}^{2}}
$$

After evolution $\chi(1 \mathrm{GeV})=3.3 \mathrm{GeV}^{2}$ in agreement with other estimates
c.f.

Ball, Braun \& Kivel '03

Summary

(a) Assumptions: generalized spectral representation, one quark loop (large N_{c}), gauge technique (WTI), spectral conditions (finiteness)
(b) Symmetries, anomalies, normalization, pure twist expansion, preserved
(c) Dynamics encoded in moments, the approach itself is non-dynamical
(d) Specific relations follow, since all observables are expressed in moments of the spectral function
(e) The method is technically very simple (computations are short) and predictive (lots of applications)
(f) What does not work (at the moment): second Weinberg sum rule (modify vertices?, freedom)
(g) Applicable to high-energy processes. Very reasonable results follow after evolution
(h) Interesting particular realization of the spectral method: the meson-dominance model
(i) Analytic confinement in the sense of the absence of poles in the quark propagator
(j) Surprisingly good $M\left(Q^{2}\right)$ vs. lattice results, $Z\left(Q^{2}\right)$ could be better
(k) Specific predictions of the VMD model for unintegrated PDF, non-local quark condensate, ...

Baryons = Quarks + "Spectral" Diquarks Glueballs = "Spectral Gluons"

BACKUP SLIDES

In the perturbative phase with no spontaneous symmetry breaking, where $\rho(\omega)=\rho(-\omega)=\delta(\omega)$, we have $\langle\bar{q} q\rangle=0$.
With the accepted value of

$$
\langle\bar{q} q\rangle=\simeq-(243 \mathrm{MeV})^{3}
$$

we infer the value of the third log-moment. The negative sign of the quark condensate shows that

$$
\int d \omega \log \left(\omega^{2}\right) \omega^{3} \rho(\omega)>0
$$

The vector and axial-vector currents of QCD are:

$$
J_{V}^{\mu, a}(x)=\bar{q}(x) \gamma^{\mu} \frac{\lambda_{a}}{2} q(x), \quad J_{A}^{\mu, a}(x)=\bar{q}(x) \gamma^{\mu} \gamma_{5} \frac{\lambda_{a}}{2} q(x)
$$

CVC and PCAC:

$$
\partial_{\mu} J_{V}^{\mu, a}(x)=0, \quad \partial_{\mu} J_{A}^{\mu, a}(x)=\bar{q}(x) \hat{M}_{0} i \gamma_{5} \frac{\lambda_{a}}{2} q(x)
$$

A number of results are then obtained essentially for free:

- Pions arise as Goldstone bosons, with standard current-algebra properti£@r free!
- At high energies parton-model features, such as the spin- $1 / 2$ nature of hadronic constituents, are recovered
The vector and axial unamputated vertex functions:

$$
\begin{gathered}
\Lambda_{V, A}^{\mu, a}\left(p^{\prime}, p\right)=\int d^{4} x d^{4} x^{\prime}\langle 0| T\left\{J_{V, A}^{\mu, a}(0) q\left(x^{\prime}\right) \bar{q}(x)\right\}|0\rangle e^{i p^{\prime} \cdot x^{\prime}-i p \cdot x} \\
\left(p^{\prime}-p\right)_{\mu} \Lambda_{V}^{\mu, a}\left(p^{\prime}, p\right)=S\left(p^{\prime}\right) \frac{\lambda_{a}}{2}-\frac{\lambda_{a}}{2} S(p) \\
\left(p^{\prime}-p\right)_{\mu} \Lambda_{A}^{\mu, a}\left(p^{\prime}, p\right)=S\left(p^{\prime}\right) \frac{\lambda_{a}}{2} \gamma_{5}+\gamma_{5} \frac{\lambda_{a}}{2} S(p)
\end{gathered}
$$

"Transverse ambiguity"

The above ansätze fulfil the WTI's. They are determined up to transverse pieces.
This ambiguity appears in all effective models. Current conservation fixes only the longitudinal pieces. Example:

$$
j_{\mu}=\bar{\psi}\left(f_{1} \gamma_{\mu}+i f_{2} \sigma_{\mu \nu} q^{\nu}\right) \psi
$$

The condition $q^{\mu} j_{\mu}=0$ does not constrain the f_{2}-term, since $\sigma_{\mu \nu} q^{\nu} q^{\mu}=0$ from antisymmetry.

Vertices with two currents

Vertices with two currents, axial or vector, are constructed similarly. The vacuum polarization is

$$
\begin{aligned}
& i \Pi_{V V}^{\mu a, \nu b}(q)=\delta^{a b}\left(g^{\mu \nu}-\frac{q^{\mu} q^{\nu}}{q^{2}}\right) \bar{\Pi}_{V V}(q)=\int d^{4} x e^{-i q \cdot x}\langle 0| T\left\{J_{V}^{\mu a}(x) J_{V}^{\nu b}(0)\right\}|0\rangle \\
&=-N_{c} \int d \omega \rho(\omega) \int \frac{d^{4} p}{(2 \pi)^{4}} \operatorname{Tr}\left[\frac{i}{\not p-\not q-\omega} \gamma_{\mu} \frac{\lambda_{a}}{2} \not{ }^{p p-\omega}\right. \\
&\left.\gamma_{\nu} \frac{\lambda_{b}}{2}\right]
\end{aligned}
$$

$$
\begin{aligned}
\bar{\Pi}_{V V}(q) & =\cdots \\
I\left(q^{2}, \omega\right) & =-\frac{1}{(4 \pi)^{2}} \int_{0}^{1} d x \log \left[\omega^{2}+x(1-x) q^{2}\right]
\end{aligned}
$$

Dispersion relation

The twice-subtracted dispersion relation holds:

$$
\bar{\Pi}_{V}\left(q^{2}\right)=\frac{q^{4}}{\pi} \int_{0}^{\infty} \frac{d t}{t^{2}} \frac{\operatorname{Im} \bar{\Pi}_{V}(t)}{t-q^{2}-i 0^{+}}
$$

This is in contrast to quark models formulated in the Euclidean space, where the usual dispersion relations do not hold
The pion decay constant, defined as

$$
\langle 0| J_{A}^{\mu a}(x)\left|\pi_{b}(q)\right\rangle=i f_{\pi} q_{\mu} \delta_{a, b} e^{i q \cdot x}
$$

can be computed from the axial-axial correlation function. The result is

Vacuum energy density

$$
\begin{aligned}
\left\langle\theta^{\mu \nu}\right\rangle= & -i N_{c} N_{f} \int d \omega \rho(\omega) \int \frac{d^{4} p}{(2 \pi)^{4}} \times \\
& \operatorname{Tr} \frac{1}{\not p-\omega}\left[\frac{1}{2}\left(\gamma^{\mu} p^{\nu}+\gamma^{\nu} p^{\mu}\right)-g^{\mu \nu}(\not p-\omega)\right]=B g^{\mu \nu}+\left\langle\theta^{\mu \nu}\right\rangle_{0}
\end{aligned}
$$

where $\left\langle\theta^{\mu \nu}\right\rangle_{0}$ is the energy-momentum tensor for the free theory, evaluated with $\rho(\omega)=\delta(\omega)$, and B (bag constant) is the vacuum energy density:

$$
B=-i N_{c} N_{f} \int d \omega \rho(\omega) \int \frac{d^{4} p}{(2 \pi)^{4}} \frac{\omega^{2}}{p^{2}-\omega^{2}}
$$

The conditions that have to be fulfilled for B to be finite are

$$
\rho_{2}=0, \quad \rho_{4}=0
$$

Then

$$
B=-\frac{N_{c} N_{f}}{16 \pi^{2}} \rho_{4}^{\prime} \equiv-\frac{3 N_{c}}{16 \pi^{2}} \int d \omega \log \left(\omega^{2}\right) \omega^{4} \rho(\omega)
$$

for $N_{f}=3$.
The even conditions (here quadratic and quartic) imply that $\rho(\omega)$ cannot be positive definite; otherwise the even moments could not vanish!

Pion-quark coupling

Near the pion pole $\left(q^{2}=0\right)$ we get

$$
\Lambda_{A}^{\mu, a}(p+q, p) \rightarrow-\frac{q^{\mu}}{q^{2}} \Lambda_{\pi}^{a}(p+q, p)
$$

where

$$
\Lambda_{\pi}^{a}(p+q, p)=\int d \omega \rho(\omega) \frac{i}{p+\not q-\omega} \frac{\omega}{f_{\pi}} \gamma_{5} \lambda_{a} \frac{i}{p p-\omega}
$$

We recognize in our formulation the Goldberger-Treiman relation for quarks:

$$
g_{\pi}(\omega)=\frac{\omega}{f_{\pi}}
$$

