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OUTLINE

• QCD in a magnetic background: why it is interesting and main features

• Heavy-quark potential in a magnetic background

• Above Tc: gauge invariant electric and magnetic screening masses



Electroweak interactions in general induce small corrections to strong interaction

dynamics, but exceptions are expected in the presence of strong e.m. backgrounds,

a situations which is relevant to many contexts:

• Large magnetic fields (B ∼ 1010 Tesla) are expected in a class of neutron stars

known as magnetars (Duncan-Thompson, 1992).

• Large magnetic fields (B ∼ 1016 Tesla,
√

|e|B ∼ 1.5 GeV), may have been

produced at the cosmological electroweak phase transition (Vachaspati, 1991).

•

in non-central heavy ion collisions, largest

magnetic fields ever created in a laboratory

(B up to 1015 Tesla at LHC) with a possible rich

associated phenomenology: chiral magnetic

effect (Vilenkin, 1980; Kharzeev, Fukushima, McLerran and

Warringa, 2008).



E.m. fields affect quarks directly and gluons only at the 1-loop level.

However non-perturbative effects can be non-trivial in the gluon sector as well.

Various model computations predict a rich phenomenology:

• Effects on the QCD vacuum structure:

– chiral symmetry breaking? Quite natural (Magnetic catalysis of χSB)

– confinement? Less obvious (see later)

• Effects on the QCD phase diagram: Tc(µ)? New phases?

• Equation of state: is strongly interacting matter paramagnetic or diamagnetic?

LQCD is the ideal tool for a non-perturbative investigation of such issues. QCD+QED

studies of the e.m. properties of hadrons go back to the early days of LQCD

- G. Martinelli, G. Parisi, R. Petronzio and F. Rapuano, Phys. Lett. B 116, 434 (1982).

- C. Bernard, T. Draper, K. Olynyk and M. Rushton, Phys. Rev. Lett. 49, 1076 (1982).

A magnetic background does not pose any technical problem (such as a sign problem)

to lattice QCD simulations.



An e.m. background field aµ modifies the covariant derivative as follows:

Dµ = ∂µ + i gAa
µT

a → ∂µ + i gAa
µT

a + i qaµ

in the lattice formulation:

Dµψ → 1

2a

(

Uµ(n)uµ(n)ψ(n+ µ̂)− U †
µ(n− µ̂)u∗µ(n− µ̂)ψ(n− µ̂)

)

Uµ ∈ SU(3) uµ ≃ exp(i q aµ(n)) ∈ U(1)

• F (em)
ij 6= 0 =⇒ non-zero magnetic field (no sign problem)

• F (em)
0i 6= 0 =⇒ non-zero imaginary electric field (sign problem for real e. f.)

• Uniform background field are quantized in the presence of periodic boundary

conditions



Some properties of QCD in a strong magnetic field from the lattice

The magnetic field has strong effects also on

QCD thermodynamics and leads to a decrease

of the pseudo-critical temperature

G. S. Bali et al., arXiv:1111.4956

The thermal QCD medium becomes strongly

paramagnetic right above Tc. On the left:

magnetic susceptibility

C. Bonati et al., arXiv:1307.8063, arXiv:1310.8656;

L. Levkova and C. DeTar, arXiv:1309.1142;

G. S. Bali et al., arXiv:1406.0269 100 150 200 250 300 350 400
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The magnetic field has also shown to strongly

influence the interaction between heavy quarks,

introducing an anisotropy in the potential.

C. Bonati, MD, M. Mariti, M. Mesiti, F. Negro, A. Rucci,

F. Sanfilippo, arXiv:1403.6094, arXiv:1607.08160
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at B = 0 the standard Cornell potential

described data for all lattice spacings

V (r) = −α
r
+ σr + V0 ,

0.3 0.45 0.6 0.75 0.9 1.05 1.2

r [fm]

-400

-200

0

200

400

600

800

V
(r

) 
[M

eV
]

a = 0.2173fm
a = 0.1535 fm
a = 0.1249 fm
a = 0.0989 fm

0 0.01 0.02 0.03 0.04 0.05

a
2 

[fm
2
]

340

360

380

400

420

440

460

480

σ1/
2 
 [

M
eV

]

0 0.01 0.02 0.03 0.04 0.05

a
2 

[fm
2
]

0.4

0.45

0.5

0.55

0.6

0.65

0.7

α

0 0.01 0.02 0.03 0.04 0.05

a
2 

[fm
2
]

0.46

0.48

0.5

0.52

0.54

0.56

r 0 
 [

fm
]

Continuum extrapolated results for σ, α and for the Sommer

parameter r0

r20
dV

dr

∣

∣

∣

∣

r0

= 1.65

α 0.395(22)
√
σ 448(20) MeV

r0 0.489(20) fm



The potential is Cornell like along each

direction

V (r, θ) = −α(θ, B)

r
+σ(θ, B)r+V0(θ, B)

At fixed r, the potential is an increasing

function of the angle and reaches a maximum

for orthogonal directions
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After continuum extrapolation, most of the

effect seems related to an anisotropy in the

string tension.

σ grows with B in the orthogonal direction

The longitudinal string tension decreases

and could even vanish for eB ∼ 4 GeV2,

but one would need a ≪ 0.1ḟm to actually

check it.
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Is the deformation of the static quark-antiquark potential

associated with a corresponding deformation of the color flux tube?

In principle, two different phenomena may happen:

• The flux tube for longitudinal separation is less intense than that for transverse

separation;

• The flux tube for transverse separation loses cilindrical symmetry and becomes

anisotropic



Lattice determinations of color flux tubes make use of correlation between Wilson

loops and plaquette operators.

Connected correlators allow the determination of the field strength itself

[Di Giacomo, Maggiore, Olejnik, 1990] [Cea, Cosmai, Cuteri, Papa, 2017]

Echromo
l = lim

a→0

1

a2g

[ 〈Tr(WLUPL
†)〉

〈Tr(W )〉 − 〈Tr(W )Tr(UP )〉
〈Tr(W )〉

]

W is the open Wilson loop operator

UP is the open plaquette operator

L is the adjoint parallel transport

A smearing procedure is adopted (1 HYP for

temporal links, several APE for spatial links) as

a noise reduction technique
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Dependence on the smearing step is non-trivial, however ...



... the dependence almost completely disappears as we consider the ratio of B 6= 0

to B = 0 quantities
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following analysis (PRELIMINARY) mostly based on such ratios

Signals of both kinds of anisotropy already visible:

- field strength for QQ̄ separation parallel/orthogonal to B is suppresses/enhanced

- for separation orthogonal to B, field strength keeps larger when moving along B
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These are the flux tube profiles for eB ∼ 3 GeV2 compared to B = 0 at a fixed

number of smearing steps NAPE = 80
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These are the same data (for eB = 3 GeV2) normalized to those at B = 0. It is not

just the overall normalization of the flux tube which changes, but also the flux tube

profile:

- it clearly shrinks for QQ̄ separation parallel to B

- it is more or less stable for orthogonal separation, with a tendency to shrink/widen

in directions orthogonal/parallel to B.



Finite T results

At finite T , the quark-antiquark potential is

measured from Polyakov loop correlators

〈TrP (~x) TrP †(~y)〉 ∼ exp

(

−Fq̄q(r, T )

T

)

✝P(x) P (y)

Results at T ∼ 100 MeV on a Nt = 20 lattice

Although a small anisotropy is still visible,

the main effect of B seems to suppress the

potential in all directions

The string tension tends to disappear
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A fit to the Cornell potential works in a limited

range of distances and permits to obtain a

determination of σ, which shows a steady

decrease in all directions.

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

|e|B [GeV
2
]

0

100

200

300

400

500

600

σ1/
2 
 [

M
eV

]

T =   99.8 MeV (XY)
T =   99.8 MeV (Z)
T = 124.7 MeV (XY)
T = 124.7 MeV (Z)
T = 142.5 MeV (XY)
T = 142.5 MeV (Z)

The decrease of Tc as a function of B seems related to a change in the confining

properties of the medium.



Above Tc

Deep in the deconfined phase, heavy quark interactions are related to the screening

properties of the Quark-Gluon plasma.

It is known that, contrary to electro-magnetic plasmas, interactions mediated by magnetostatic

gluon are dominant at large distances.

Nevertheless, it is possible to separate the electric and magnetic channels and define

two different gauge invariant screening masses:

(Braaten-Nieto, 1994; Arnold-Yaffe, 1995)

CM+ =+
1

2
Re
[

CLL + CLL†

]

− |〈TrL〉|2 = 〈TrReL(0)TrReL(r)〉

CE− =− 1

2
Re
[

CLL − CLL†

]

= 〈TrImL(0)TrImL(r)〉 .
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Electric and magnetic screening masses show a sizable dependence on the magnetic

background
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Such masses show a clear (increasing) dependence on B: the magnetic background

field enhances the color screening properties of the QGP

md
E/M

T
= adE/M

[

1 + cd1;E/M

|e|B
T 2

atan

(

cd2;E/M

cd1;E/M

|e|B
T 2

)]

,

from C. Bonati, MD, M. Mariti, M. Mesiti, F. Negro, A. Rucci, F. Sanfilippo, 1703.00842



Discussion and Conclusions

Modifications of the static quark potential at T = 0 have consequences on quarkonia

spectra which might be relevant to the early stages of heavy ion collisions
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Screening lengths decrease as a function of B:

does B have any influence on heavy quarkonia suppression in the QGP? Not clear,

provided B survives thermalization, one should also know how the quarkonia wave

function is modified by B

A direct determination of quarkonia spectral functions in the presence of B would be

the most direct way to check


