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Michele Viviani (INFN - Pisa), Emanuele Pace (INFN -RM2), Jorge
Nogueira and Cedric Mezrag (INFN - Rome)

(INFN) Solving the Homogeneous Bethe-Salpeter Equation in Minkowski space 1 / 25



Some results....

dFSV PRD 94, 071901(R) (2016): two-fermion bound systems
EPJC 77, 764 (2017): Light-cone singularities and structure

FVS PRD 89, 016010 (2014): bound states and LF momentum distributions for
two scalars

FVS PRD 85, 036009 (2012): general formalism for bound and scattering states

FVS EPJC 75, 398 (2015): scattering lengths for two scalars

Gutierrez et al PLB 759, 131 (2016): spectra of excited states and LF momentum
distributions
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Motivations and tools
M: To achieve a fully covariant and, necessarily, non perturbative description of bound

systems, with spin degrees of freedom, in Minkowski space, suitable for
phenomenological studies. The non perturbative framework established by the
Bethe-Salpeter equation (BSE) is our choice

M: To determine relevant dynamical quantities, e.g. (unpolarized and polarized)
light-cone momentum distributions, from the BS amplitude. To this end, the
spin-transverse momentum correlations must be described in Minkowski space.

T: Pivotal role of the Nakanishi Integral Representation (NIR) of the BS amplitude

T: The fermionic nature of the constituents is suitably managed within the
Light-front (LF) framework, making more simple the needed analytical integrations

T: Standard LAPACK routines for the numerical evaluation of the generalized
eigenvalue problem, we formally obtain from BSE

F Desirable coherent efforts with the Dyson-Schwinger Eq. community for
implementing a Minkowskian playground where non perturbative phenomenological
studies of the continuous QCD can be carried on

F Lattice calculations, the recognized non perturbative approach to QCD are performed
in the Euclidean space
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A snapshot on the BSE
The 4-point Green’s Function (φi ≡ scalar fields for simplicity),

G(x1, x2; y1, y2) =< 0 |T{φ1(x1)φ2(x2)φ+
1 (y1)φ+

2 (y2)} | 0 > ,

fulfills an integral equation G = G0 + G0 I G

✁
= +G I G

I ≡ interaction kernel, given by the infinite sum of irreducible Feynman graphs. E.g.

✂
= + +I

✄
+ + + . . .

Each irr. diagram generates an infinite set of contributions by iterations

(INFN) Solving the Homogeneous Bethe-Salpeter Equation in Minkowski space 5 / 25



Analyzing
G(x1, x2; y1, y2) =< 0 |T{φ1(x1)φ2(x2)φ+

1 (y1)φ+
2 (y2)} | 0 >

close to the bound state(s) pole
⇒ BS Equation

Namely, the integral equation determining the BS amplitude, φ(k; pB , β), for a bound
system is a homogeneous one

φ(k; pB , β) = G0(k; pB , β)

∫
d4k ′ I(k, k ′; pB) φ(k ′; pB , β)

I=

First conclusion: a non perturbative framework, as offered by an integral equation, is
necessary for describing a bound state.

Second conclusion: the BS amplitudes get contribution by the infinite set of Fock states,
since we have interacting fields! .
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Feynman parametric integrals

In the sixties, Nakanishi (PR 130, 1230 (1963)) proposed an integral representation of
N-leg transition amplitudes, based on the parametric formula for the Feynman diagrams.

✌
fN

n n’

1 N

In a scalar theory, a generic contribution to the transition amplitude with N external legs
is given by

fG(p1, p2, ..., pN) ∝
k∏

r=1

∫
d4qr

1

(`21 −m2
1)(`22 −m2

2) . . . (`2n −m2
n)

where one has n propagators and k loops (≡ number of integration variables).
The label G → (n, k)

N.B. the dependence upon {n, k} is in the denominator
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Nakanishi Perturbative-theory Integral Rep.(PTIR) - I

Nakanishi proposal for a compact and elegant expression of the full
N-leg amplitude fN(s) =

∑
G fG(s)

Introducing the identity

1
.

=
∏
h

∫ 1

0

dzhδ

(
zh −

ηh
β

)∫ ∞
0

dγ δ

(
γ −

∑
l

αlm
2
l

β

)
with β =

∑
ηi (~α) and integrating by parts n − 2k − 1 times

fG(s) ∝
∏
h

∫ 1

0

dzh

∫ ∞
0

dγ
δ(1−

∑
h zh) φ̃G(z , γ)

(γ −
∑

h zhsh)

φ̃G(z , γ) ≡ proper weight function
s ≡ {sh} scalars from the ext. momenta

The dependence upon the details of the diagram, (n, k), moves from the denominator
→ the numerator!!
The SAME formal expression for the denominator of ANY diagram G appears
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Nakanishi PTIR - II
The full N-leg transition amplitude is the sum of infinite diagrams G(n, k) and it can be
formally written as

fN(s) =
∑
G

fG(s) ∝
∏
h

∫ 1

0

dzh

∫ ∞
0

dγ
δ(1−

∑
h zh) φN(z , γ)

(γ −
∑

h zhsh)

where
φN(z , γ) =

∑
G

φ̃G(z , γ)

Application: 3-leg transition amplitude → vertex function for a scalar theory (N.B. for
fermions → spinor indexes)

☛
p1

−p2

−p3

Γ

f3(s) =

∫ 1

0

dz

∫ ∞
0

dγ
φ3(z , γ)

γ − p2

4
− k2 − zk · p − iε

with p = p1+p2 and k = (p1−p2)/2

The expression holds at any order in

perturbation-theory !

Natural choice as a trial function for obtaining actual solution of BSE
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A vertex function with one leg on mass-shell is related to the BS amplitude.
Schematically

BSA = G1 ⊗ G2 ⊗ f3

with G1 and G2 the propagators of the constituent of the composite system.

The BSE for the celebrated Wick-Cutkosky model, i.e. two massive scalars interacting
through a massless scalar can be exactly solved by using an integral representation like
the one introduced by Nakanishi.

F The generalization to massive exchange was validate numerically by

Kusaka et al, PRD 56 (1997) by exploiting the uniqueness of the weight-function

Carbonell and Karmanov EPJA 27 (2006) 1, and ii) FSV PRD 89 (2014) 016010,
by properly integrating both sides of the BSE exploiting Light-front variables,
without resorting to the uniqueness theorem. Indeed, a successful cross-check was
accomplished by using the uniqueness and LF variables by FSV.

A further generalization was achieved by solving the scattering BSE in the
zero-energy limit → scattering-state BS amplitude) (FSV, PRD 85 (2012) 036009)
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Projecting BSE onto the LF hyper-plane x+ = 0

NIR contains a great freedom to be exploited, once the weight function is taken as
an unknown quantity.

Even by adopting NIR, BSE still remains a highly singular integral equation

But NIR makes explicit the analytic structure of the BS amplitude.

Within the Light-front (LF) framework the valence component is obtained by
integrating on k− the BS amplitude) (for simplicity, a two-scalar system)

BS Amplitude

Val. w.f. = ψn=2(ξ, k⊥) =
p+

√
2
ξ (1− ξ)

∫
dk−

2π

︷ ︸︸ ︷
Φb(k, p) =

=
1√
2
ξ (1− ξ)

∫ ∞
0

dγ′
gb(γ′, 1− 2ξ;κ2)

[γ′ + k2
⊥ + κ2 + (2ξ − 1)2 M2

4
− iε]2︸ ︷︷ ︸

NIR
This is the path for obtaining a more tractable integral equation, exactly equivalent to

the original BSE !!
N.B. The valence w.f. ψn=2(ξ, k⊥) is a generalized Stieltjes transform of the Nakanishi
weight funct. gb(γ′, 1− 2ξ;κ2) (Carbonell, Frederico, Karmanov PLB 769 (2017), 418)
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LF projection of the homogeneous BSE

Φ(k, p) = G0(k, p)
∫
d4k ′ KBS(k, k ′, p) Φ(k ′, p)

NIR+LF
=⇒∫ ∞

0

dγ′
gb(γ′, z ;κ2)

[γ′ + γ + z2m2 + (1− z2)κ2 − iε]2
=

=

∫ ∞
0

dγ′
∫ 1

−1

dz ′ V LF
b (α; γ, z ; γ′, z ′) gb(γ′, z ′;κ2).

with V LF
b (α; γ, z ; γ′, z ′) determined by the irreducible kernel I(k, k ′, p) ! α ≡ g 2/16π

for the scalar case.

Ladder approx. for two-scalar and two fermion systems, neither self-energy nor vertex
corrections: Carbonell & Karmanov EPJA 27 (2006) 1, EPJA 46 (2010) 387, FSV PRD
89 (2014) 016010, dPFSV PRD 94 (2016) 071901, EPJC 77 (2017) 764
Cross-ladder kernel: Carbonell & Karmanov EPJA 27 (2006) 11), Nogueira et al PRD
95 (2017) 056012

Very good agreement for both eigenvalues (the coupling constants at given binding
energies) and eigenvectors, i.e. the Nakanishi weights, among different groups

Wide phenomenology: (i) Scattering lengths in FVS EPJC 75 (2015) 398, (ii) spectra of
excited states and LF momentum distributions in Gutierrez et al PLB 759 (2016) 131.
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Spin dof and BSE

Two cases:
F two fermions interacting, in ladder approx. through i) scalar, ii) pseudoscalar, and iii)
vector (Feynman gauge) exchanges
F F a fermion-scalar system, with scalar and vector exchanges: preliminary results

BSE for fermions

Φ(k, p) = g 2 S(p/2 + k)

∫
d4k ′ F 2(k − k ′) iK(k, k ′) Γ1 Φ(k ′, p) Γ̄2 S(k − p/2)

with

S(q) = i
/q + m

q2 −m2 + iε
, iK =

1

(k − k ′)2 + iε
, F (k − k ′) =

(µ2 − Λ2)

[(k − k ′)2 − Λ2 + iε]

Γ1 = Γ2 = 1 (scalar), γ5 (pseudo), γµ (vector)

For the two-fermion case a form factor F (k − k ′) has been inserted at each interaction
vertex, as in Carbonell & Karmanov EPJA 46 (2010) 387.
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First step: the covariant decomposition of the BS amplitude:

Φ(k, p) = S1 φ1(k, p) + S2 φ2(k, p) + S3 φ3(k, p) + S4 φ4(k, p)

φi ≡ unknown scalar functions, with well-defined symmetry under the exchange 1→ 2,
from the symmetry of both Φ(k, p) and Si .

NIR applied to φi !!

Tr{Si Sj} = Ni δij with

S1 = γ5 , S2 =
/p

M
γ5 , S3 =

k · p
M3

/p γ5 −
1

M
/kγ5 ,S4 =

i

M2
σµνpµkν γ5

p = p1 + p2 and k = (p1 − p2)/2
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LF projection ⇒ integral-equation system
F For each φi , use NIR and apply LF projection

ψi (γ, z) =

∫
dk−

2π
φi (k, p) = − i

M

∫ ∞
0

dγ′
gi (γ

′, z ;κ2)

[γ + γ′ + m2z2 + (1− z2)κ2 − iε]2

γ ≡ |k⊥|2 ∈ [0,∞]

z ≡ 2ξ − 1 ∈ [−1, 1] with ξ ∈ [0, 1]

κ2 = 4m2 −M2 with M = 2m − B.(B ≡ binding energy).

F F The coupled-equation system

ψi (γ, z) = g 2
∑
j

∫ 1

−1

dz ′
∫ ∞
0

dγ′ gj(γ
′, z ′;κ2) Lij(γ, z , γ

′, z ′; p)

gj(γ
′, z ′;κ2) are Nakanishi weights, eigenvectors of the integral-equation system.

For actual calculations, a suitable basis is: Laguerre(γ) × Gegenbauer(z).

The kernel Lij(γ, z , γ
′, z ′; p) contains singular contributions produced by

integrating on k− the combination of the numerator of the fermionic propagators
and the operators Si in Φ(k ′, p).
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Within our LF framework, singular contributions to Lij can be singled out in a
straightforward way, and rigorously evaluated by using well-known results by Yan et al
(PRD 7 (1973) 1780 is one of their papers addressing the field theory in the Infinite
Momentum frame).

For the two-fermion BSE, singularities have generic form:

Cj =

∫ ∞
−∞

dk−

2π
(k−)j S(k−, v , z , z ′, γ, γ′) j = 1, 2, 3

with S(k−, v , z , z ′, γ, γ′) explicitly calculable

N.B., in the worst case

S(k−, v , z , z ′, γ, γ′) ∼ 1

[k−]2
for k− →∞

Then, one cannot close the arc at the ∞ for carrying out the needed analytic
integration, but has to deal with a singular behavior on the light-cone, that acquaints
meaning in the realm of the distribution functions → δ(x)

F The severity of the singularities, i.e. the power j , does depend upon the numerator of
the propagators and the structure of the BS amplitude, only
F F The fermion-scalar case is not plagued by singularities of this type.
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Numerical comparison: Scalar coupling

µ/m = 0.15 µ/m = 0.50

B/m g 2
dFSV (full) g 2

CK g 2
dFSV (full) g 2

CK g 2
WR

0.01 7.844 7.813 25.327 25.23 -
0.02 10.040 10.05 29.487 29.49 -
0.04 13.675 13.69 36.183 36.19 36.19
0.05 15.336 15.35 39.178 39.19 39.18
0.10 23.122 23.12 52.817 52.82 -
0.20 38.324 38.32 78.259 78.25 -
0.40 71.060 71.07 130.177 130.7 130.3
0.50 88.964 86.95 157.419 157.4 157.5
1.00 187.855 - 295.61 - -
1.40 254.483 - 379.48 - -
1.80 288.31 - 421.05 - -

First column: binding energy.
Red digits: coupling constant g 2 for µ/m = 0.15 and 0.50, with the analytical treatment
of the fermionic singularities (present work). -
Black digits: results with a numerical treatment of the singularities (Carbonell &
Karmanov EPJA 46, (2010) 387).
Blue digits: results by using the Wick-rotation from Dorkin et al FBS. 42 (2008) 1.
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Numerical comparison: Pseudo-Scalar coupling

µ/m = 0.15 µ/m = 0.50

B/m g 2
dFSV (full) g 2

CK g 2
dFSV (full) g 2

CK

0.01 225.7 224.8 422.6 422.3
0.02 233.2 232.9 430.5 430.1
0.04 243.1 243.1 440.9 440.4
0.05 247.1 247.0 444.9 444.3
0.10 262.1 262.1 460.4 459.9
0.20 282.9 282.9 482.1 480.7
0.40 311.7 311.8 513.3 515.2
0.50 322.9 323.1 525.8 525.9
1.00 362.3 - 570.9 -
1.40 380.1 - 591.8 -
1.80 388.7 - 602.1 -
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Solid lines: µ/m = 0.15 - Dotted lines: µ/m = 0.5
Scalar Pseudoscalar
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Full dots: g 2 from Carbonell & Kar-
manov EPJA 46, (2010) 387, with a
numerical treatment of the singulari-
ties.
N.B. A critical value gcrit is clearly ap-
proached for B/m → 2 (cf G. Baym
PR 117 (1960) 886)
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Vector coupling and high-momentum tails: γ ≡ |k⊥|2

0 1 2 3 4 5 6
γ /m2

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

 (γ
/m

2 ) 
ψ

i(γ
,z

=0
;κ

2 )/ψ
1(0

,0
;κ

2 )

x 0.1

x 0.1

x 0.1

LF amplitudes ψi times γ/m2

at fixed z = 0 (ξ = 1/2), for
the massless-vector coupling.

B/m = 0.1 (thin lines) and 1.0
(thick lines).

: (γ/m2) ψ1.
− −: (γ/m2) ψ2.
− • : (γ/m2) ψ4.
ψ3 = 0 for z = 0 (odd func-
tion)

Power one is expected for the pion valence amplitude from dimensional arguments by X.
Ji et al, PRL 90 (2003) 241601 (cf also Brodsky & Farrar (PRL 31 (1973) 1153) for the
counting rules of exclusive amplitudes)

For scalars φ(γ, z) ∼ 1/[γ]2 (FSV PRD 89 (2014) 016010)

(INFN) Solving the Homogeneous Bethe-Salpeter Equation in Minkowski space 20 / 25



A mock pion

A fermion-antifermion 0− system bound through a massive-vector exchange, with
a fermion mass m = 200 MeV , hence for mπ = 150 MeV one gets B/m = 1.25). The
effective gluon mass has been fixed to µ = 300 MeV

Light-front valence amplitudes

ψi (γ, z) =

∫
dk−

2π
φi (k, p) = − i

M

∫ ∞
0

dγ′
gi (γ

′, z ;κ2)

[γ + γ′ + m2z2 + (1− z2)κ2 − iε]2

where

φi (k, p) =

∫ ∞
0

dγ′
∫ 1

−1

dz ′
gi (γ

′, z ′;κ2)[
k2 + z ′k · p − γ′ − κ2 + iε

]3
N.B. κ2 = 4m2 −M2, γ = |kT |2, z → ξ ∈ [0, 1]

|ψi (|kT |2, ξ)|2 → longitudinal and transverse-momentum distributions, for the valence
component
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αS = 32.4
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Preliminary result for a fermion-scalar bound system
The covariant decomposition of the BS amplitude for a (1/2)+ bound system, composed
by a fermion and a scalar, reads

Φ(k, p) =
[
S1 φ1(k, p) + S2 φ2(k, p)

]
U(p, s)

with U(p, s) a Dirac spinor, S1(k) = 1, S2(k) = /k/M,and M2 = p2

A first check: scalar coupling αs = λs
Fλ

s
S/(8πmS), for mF = mS and µ/m̄ = 0.15, 0.50

B/m̄ αs
M(0.15) αs

WR(0.15) αs
M(0.50) αs

WR(0.50)

0.10 1.5057 1.5057 2.6558 2.6558
0.20 2.2969 2.2969 3.2644 3.6244
0.30 3.0467 3.0467 4.5354 4.5354
0.40 3.7963 3.7963 5.4505 5.4506
0.50 4.5680 4.5681 6.4042 6.4043
0.80 7.2385 7.2387 9.8789 9.8794
1.00 9.7779 9.7783 13.7379 13.7380

First column: the binding energy in unit of m̄ = (mS + mF )/2..
Second and fourth columns: coupling constant αM , obtained by solving the BSE in
Minkowski space, for given B/m̄.
Third and fifth columns: Wick-rotated results, αWR .
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Conclusions & Perspectives

A systematization of the technique for solving the fermionic BSE with spin dof has
been given.

The LF framework has well-known advantages in performing analytical
integrations, and in the case of systems with spin dof its effectiveness has been
shown in its full glory.

Dynamical quantities can be addressed in Minkowski space: the space where the
processes evolve!!

Our numerical investigations, performed in ladder approximation at the present
stage, confirm both the robustness of the Nakanishi Integral Representation for the
BS amplitude,that can be applied to any analytical BS kernel, and encourage to
extend the technique to the Dyson-Schwinger Eq. (work in progress)
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Besides the valence momentum distributions, other dynamical quantities to be
investigated

Pion transverse-momentum distributions and electromagnetic form factor (work in
progress)

Fragmentation functions?
γ∗

π
q
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