Excited mesons and resonances from lattice QCD – charm/charmonium

Christopher Thomas, University of Cambridge

c.e.thomas@damtp.cam.ac.uk

"Bound states in strongly coupled systems", GGI 12 – 16 March 2018

Excited lattice QCD spectroscopy

Finite-volume energy eigenstates from:

$$C_{ij}(t) = \left\langle 0 \left| \mathcal{O}_i(t) \mathcal{O}_j^{\dagger}(0) \right| 0 \right\rangle$$

Use many different interpolating operators

Excited lattice QCD spectroscopy

Finite-volume energy eigenstates from:

$$C_{ij}(t) = \left\langle 0 \left| \mathcal{O}_i(t) \mathcal{O}_j^{\dagger}(0) \right| 0 \right\rangle$$

Use many different interpolating operators

Excited charmonia [JHEP 1612, 089 (2016)]

Large bases of fermion-bilinear operators $\sim \bar{\psi} \Gamma D \dots \psi$

One lattice spacing and volume [Cheung *et al* (HadSpec), JHEP 1612, 089 (2016)] (similar pattern to older m_{π} = 391 MeV, 1 lattice spacing and 3 volumes)

One lattice spacing and volume [Cheung *et al* (HadSpec), JHEP 1612, 089 (2016)] (similar pattern to older m_{π} = 391 MeV, 1 lattice spacing and 3 volumes)

One lattice spacing and volume [Cheung *et al* (HadSpec), JHEP 1612, 089 (2016)] (similar pattern to older m_{π} = 391 MeV, 1 lattice spacing and 3 volumes)

Charm-light (D) and charm-strange (D_s) mesons

Charm-light (D) and charm-strange (D_s) mesons

Some other LQCD studies:

- Mohler *et al* [PR D87, 034501 (2012)] 0⁺ D π and 1⁺ D^{*} π resonances
- Mohler *et al* [PRL 111, 222001 (2013)] 0⁺ D_{s0}(2317) below *D K* threshold
- Lang et al [PRD 90, 034510 (2014)] 0⁺ D_{s0}(2317) and 1⁺ D_{s1}(2460), D_{s1}(2536)
- Bali et al (RQCD) [PRD D96, 074501 (2017)] 0⁺ D_{s0}(2317) and 1⁺ D_{s1}(2460)

Charm-light (D) and charm-strange (D_s) mesons

Some other LQCD studies:

- Mohler *et al* [PR D87, 034501 (2012)] 0⁺ $D \pi$ and 1⁺ $D^* \pi$ resonances
- Mohler et al [PRL 111, 222001 (2013)] 0⁺ D_{s0}(2317) below D K threshold
- Lang et al [PRD 90, 034510 (2014)] 0⁺ D_{s0}(2317) and 1⁺ D_{s1}(2460), D_{s1}(2536)
- Bali et al (RQCD) [PRD D96, 074501 (2017)] 0⁺ D_{s0}(2317) and 1⁺ D_{s1}(2460)

Isospin = ½ Strangeness = 0 Charm = 1

Use many different fermion-bilinear operators,

 $\sim \bar{\psi} \Gamma D \dots \psi$

and $D\pi$, $D\eta$, $D_s \overline{K}$ 'meson-meson' operators

Moir, Peardon, Ryan, CT, Wilson (HadSpec) [JHEP 1610, 011 (2016)]

Dπ, Dη, $D_s \overline{K}$ (I=½)

Isospin = ½ Strangeness = 0 Charm = 1

Use many different fermion-bilinear operators, $\sim \overline{\psi}\Gamma D \dots \psi$ and D π , D η , D $_{s}\overline{K}$ 'meson-meson'

operators

Moir, Peardon, Ryan, CT, Wilson (HadSpec) [JHEP 1610, 011 (2016)]

Dπ, Dη, $D_s \overline{K}$ (I=½)

Isospin = ½ Strangeness = 0 Charm = 1

Use many different fermion-bilinear operators, $\sim \bar{\psi} \Gamma D \dots \psi$

and $D\pi$, $D\eta$, $D_s \overline{K}$ 'meson-meson' operators

Moir, Peardon, Ryan, CT, Wilson (HadSpec) [JHEP 1610, 011 (2016)]

Dπ, Dη, $D_s \overline{K}$ (I=½): spectra

[JHEP 1610, 011 (2016)]

Use 47 energy levels for $\ell = 0, 1$ and 18 for $\ell = 2$

Elastic $D\pi$ (I=½): $\ell = 0,1$

$D\pi$, $D\eta$, $D_s\bar{K}$ (I=½): $\ell = 0$

7

Dπ, Dη, $D_s \overline{K}$ (I=½): ℓ = 2

[JHEP 1610, 011 (2016)]

Dπ, Dη, $D_s \overline{K}$ (I=½): poles of *t*-matrix

[JHEP 1610, 011 (2016)]

$D\pi$, $D\eta$, $D_s\bar{K}$ (I=½): poles of *t*-matrix

[JHEP 1610, 011 (2016)]

Charm tetraquarks

Compute spectra in some exotic-flavour channels

$$C_{ij}(t) = \left\langle 0 \left| \mathcal{O}_i(t) \mathcal{O}_j^{\dagger}(0) \right| 0 \right\rangle$$

Use a range of 'meson-meson' operators,

$$\sim \sum_{\hat{p}_1, \hat{p}_2} \left[\bar{q} \, \Gamma_1 \, q \right] \left(\vec{p}_1 \right) \left[\bar{q} \, \Gamma_2 \, q \right] \left(\vec{p}_2 \right)$$

and 'tetraquark' (diquark-antidiquark) operators,

$$\sim \sum_{a,d} C_{ad} \left[c_{abc} \ q_a^T \ \Gamma_1 \ q_b \right] \left[c_{def} \ \bar{q}_e \ \Gamma_2 \ \bar{q}_f^T \right]$$

Compute spectra in some exotic-flavour channels

$$C_{ij}(t) = \left\langle 0 \left| \mathcal{O}_i(t) \mathcal{O}_j^{\dagger}(0) \right| 0 \right\rangle$$

Use a range of 'meson-meson' operators,

$$\sim \sum_{\hat{p}_1, \hat{p}_2} \left[\overline{q} \, \Gamma_1 \, q \right] \left(\vec{p}_1 \right) \left[\overline{q} \, \Gamma_2 \, q \right] \left(\vec{p}_2 \right)$$

and 'tetraquark' (diquark-antidiquark) operators,

$$\sim \sum_{a,d} C_{ad} \left[c_{abc} q_a^T \, \Gamma_1 \, q_b \right] \left[c_{def} \, \bar{q}_e \, \Gamma_2 \, \bar{q}_f^T \right]$$

One lattice spacing 1 volume (\approx 2 fm) m_{π} = 391 MeV

Hidden-charm I=1 ($c\overline{c}l\overline{l}$)

[JHEP 1711, 033 (2017)]

Doubly-charmed I=0 ($cc\overline{ll}$)

[JHEP 1711, 033 (2017)]

Doubly-charmed I=½ ($cc\overline{ls}$)

[JHEP 1711, 033 (2017)]

Summary

- Significant progress in LQCD calculations of excited hadrons, resonances, near-threshold states, etc.
- Examples of recent work (see also Raul's talk earlier):
 - $D\pi$, $D\eta$, $D_s \overline{K} I = \frac{1}{2}$ scattering (also $I = \frac{3}{2} D\pi$)
 - Exotic-flavour channels (tetraquarks)
- Work in progress on other channels and different m_{π}
- Use m_{π} dependence as a tool to probe structure
- Ongoing work on formalism (e.g. 3-hadron scattering)

Jefferson Lab and surroundings, USA: Raúl Briceño¹, Jozef Dudek², Robert Edwards, Bálint Joó, David Richards, Frank Winter, Bipasha Chakraborty (¹ and Old Dominion University, ² and William & Mary) W&M: Christopher Johnson, Archana Radhakrishnan

Trinity College Dublin, Ireland: Michael Peardon, Sinéad Ryan, David Wilson, *Cian O'Hara, David Tims*

University of Cambridge, UK: CT, Graham Moir, *Gavin Cheung, Antoni Woss*

Tata Institute, India: Nilmani Mathur

www.hadspec.org