Excited mesons and resonances from lattice QCD
 - charm/charmonium

Christopher Thomas, University of Cambridge
c.e.thomas@damtp.cam.ac.uk
"Bound states in strongly coupled systems", GGI 12-16 March 2018

Excited lattice QCD spectroscopy

Finite-volume energy eigenstates from:

$$
C_{i j}(t)=\langle 0| \mathcal{O}_{i}(t) \mathcal{O}_{j}^{\dagger}(0)|0\rangle
$$

Use many different interpolating operators

Excited lattice QCD spectroscopy

Finite-volume energy eigenstates from:

$$
C_{i j}(t)=\langle 0| \mathcal{O}_{i}(t) \mathcal{O}_{j}^{\dagger}(0)|0\rangle
$$

Use many different interpolating operators

Excited charmonia

 [JHEP 1612, 089 (2016)]Large bases of fermion-bilinear operators

$$
\sim \bar{\psi}\ulcorner D \ldots \psi
$$

Excited charmonia

One lattice spacing and volume [Cheung et al (HadSpec), JHEP 1612, 089 (2016)] (similar pattern to older $m_{\pi}=391 \mathrm{MeV}$, 1 lattice spacing and 3 volumes)

Excited charmonia

One lattice spacing and volume [Cheung et al (HadSpec), JHEP 1612, 089 (2016)] (similar pattern to older $m_{\pi}=391 \mathrm{MeV}$, 1 lattice spacing and 3 volumes)

Excited charmonia

One lattice spacing and volume [Cheung et al (HadSpec), JHEP 1612, 089 (2016)] (similar pattern to older $m_{\pi}=391 \mathrm{MeV}$, 1 lattice spacing and 3 volumes)

Charm-light (D) and charm-strange $\left(D_{s}\right)$ mesons

Charm-light (D) and charm-strange $\left(D_{s}\right)$ mesons

Some other LQCD studies:

- Mohler et al [PR D87, 034501 (2012)] - $0^{+} D \pi$ and $1^{+} D^{*} \pi$ resonances
- Mohler et al [PRL 111, 222001 (2013)] - $0^{+} D_{s 0}(2317)$ below $D K$ threshold
- Lang et al [PRD 90, 034510 (2014)] - $0^{+} D_{s 0}(2317)$ and $1^{+} D_{s 1}(2460), D_{s 1}(2536)$
- Bali et al (RQCD) [PRD D96, 074501 (2017)] - $0^{+} D_{s 0}(2317)$ and $1^{+} D_{s 1}(2460)$

Charm-light (D) and charm-strange $\left(D_{s}\right)$ mesons

Some other LQCD studies:

- Mohler et al [PR D87, 034501 (2012)] - $0^{+} D \pi$ and $1^{+} D^{*} \pi$ resonances
- Mohler et al [PRL 111, 222001 (2013)] - $0^{+} D_{s 0}(2317)$ below $D K$ threshold
- Lang et al [PRD 90, 034510 (2014)] - $0^{+} D_{s 0}(2317)$ and $1^{+} D_{s 1}(2460), D_{s 1}(2536)$
- Bali et al (RQCD) [PRD D96, 074501 (2017)] - $0^{+} D_{s 0}(2317)$ and $1^{+} D_{s 1}(2460)$

$\mathrm{D} \pi, \mathrm{D} \eta, \mathrm{D}_{\mathrm{s}} \overline{\mathrm{K}}(\mathrm{I}=1 / 2)$

$$
\begin{aligned}
& \text { Isospin = } 1 / 2 \\
& \text { Strangeness = } 0 \\
& \text { Charm = } 1
\end{aligned}
$$

Use many different fermion-bilinear operators,

$$
\begin{aligned}
& \qquad \bar{\psi} \Gamma D \ldots \psi \\
& \text { and } D \pi, D \eta, D_{s} \bar{K} \\
& \text { 'meson-meson' } \\
& \text { operators }
\end{aligned}
$$

$\mathrm{D} \pi, \mathrm{D} \eta, \mathrm{D}_{\mathrm{s}} \mathrm{K}(\mathrm{I}=1 / 2)$

Isospin = $1 / 2$
Strangeness $=0$ Charm = 1

Use many different fermion-bilinear operators,

$$
\sim \bar{\psi}\ulcorner D \ldots \psi
$$

and $D \pi, D \eta, D_{s} \bar{K}$ 'meson-meson' operators

$\mathrm{D} \pi, \mathrm{D} \eta, \mathrm{D}_{\mathrm{s}} \overline{\mathrm{K}}(\mathrm{I}=1 / 2)$

Isospin = $1 / 2$
Strangeness = 0 Charm = 1

Use many different fermion-bilinear operators,

$$
\sim \bar{\psi}\ulcorner D \ldots \psi
$$

and $D \pi, D \eta, D_{s} \bar{K}$ 'meson-meson' operators

$D \pi, D \eta, D_{s} \bar{K}(l=1 / 2):$ spectra

Use 47 energy levels for $\ell=0,1$ and 18 for $l=2$

Elastic $D \pi(l=1 / 2): ~ \ell=0,1$

$D \pi, D \eta, D_{s} \bar{K}(I=1 / 2): \ell=0$

$D \pi, D \eta, D_{s} \bar{K}(I=1 / 2): \ell=2$

$\mathrm{D} \pi, \mathrm{D} \eta, \mathrm{D}_{\mathrm{s}} \overline{\mathrm{K}}(\mathrm{I}=1 / 2)$: poles of t-matrix

$\mathrm{D} \pi, \mathrm{Dn}, \mathrm{D}_{\mathrm{s}} \overline{\mathrm{K}}(\mathrm{I}=1 / 2)$: poles of t-matrix

$\mathrm{D} \pi, \mathrm{Dn}, \mathrm{D}_{\mathrm{s}} \overline{\mathrm{K}}(\mathrm{l}=1 / 2)$: poles of t-matrix

```
m
```

$D \pi$ thresh.
$\operatorname{Re} \sqrt{s} / \mathrm{MeV}$
2400

2500

$\mathrm{D} \pi, \mathrm{D} \eta, \mathrm{D}_{\mathrm{s}} \overline{\mathrm{K}}(\mathrm{I}=1 / 2)$: poles of t-matrix

$m_{\pi}=391 \mathrm{MeV}$
$D \pi$ thresh.
$\operatorname{Re} \sqrt{s} / \mathrm{MeV}$
2400 2500

Charm tetraquarks

Compute spectra in some exotic-flavour channels

$$
C_{i j}(t)=\langle 0| \mathcal{O}_{i}(t) \mathcal{O}_{j}^{\dagger}(0)|0\rangle
$$

Use a range of 'meson-meson' operators,

$$
\sim \sum_{\hat{p}_{1}, \hat{p}_{2}}\left[\bar{q} \Gamma_{1} q\right]\left(\vec{p}_{1}\right)\left[\bar{q} \Gamma_{2} q\right]\left(\vec{p}_{2}\right)
$$

and 'tetraquark' (diquark-antidiquark) operators,

$$
\sim \sum_{a, d} C_{a d}\left[c_{a b c} q_{a}^{T} \Gamma_{1} q_{b}\right]\left[c_{d e f} \bar{q}_{e} \Gamma_{2} \bar{q}_{f}^{T}\right]
$$

Charm tetraquarks

Compute spectra in some exotic-flavour channels

$$
C_{i j}(t)=\langle 0| \mathcal{O}_{i}(t) \mathcal{O}_{j}^{\dagger}(0)|0\rangle
$$

Use a range of 'meson-meson' operators,

$$
\sim \sum_{\widehat{p}_{1}, \widehat{p}_{2}}\left[\bar{q} \Gamma_{1} q\right]\left(\vec{p}_{1}\right)\left[\bar{q} \Gamma_{2} q\right]\left(\vec{p}_{2}\right)
$$

and 'tetraquark' (diquark-antidiquark) operators,

$$
\sim \sum_{a, d} C_{a d}\left[c_{a b c} q_{a}^{T} \Gamma_{1} q_{b}\right] \quad\left[c_{d e f} \bar{q}_{e} \Gamma_{2} \bar{q}_{f}^{T}\right]
$$

One lattice spacing
1 volume ($\approx 2 \mathrm{fm}$)
$m_{\pi}=391 \mathrm{MeV}$

Hidden-charm $\mathrm{I}=1(c \bar{c} \bar{l} \bar{l})$

Doubly-charmed I=0 $(c c \overline{l l})$

Doubly-charmed $\mathrm{I}=1 / 2(c c \bar{l} \bar{s})$

Summary

- Significant progress in LQCD calculations of excited hadrons, resonances, near-threshold states, etc.
- Examples of recent work (see also Raul's talk earlier):
- $D \pi, D \eta, D_{s} \overline{\mathrm{~K}} \mathrm{I}=1 / 2$ scattering (also I=3/2 $\mathrm{D} \pi$)
- Exotic-flavour channels (tetraquarks)
- Work in progress on other channels and different m_{π}
- Use m_{π} dependence as a tool to probe structure
- Ongoing work on formalism (e.g. 3-hadron scattering)

Jefferson Lab and surroundings, USA:
Raúl Briceño¹, Jozef Dudek², Robert Edwards, Bálint Joó, David Richards, Frank Winter, Bipasha Chakraborty (${ }^{1}$ and Old Dominion University, ${ }^{2}$ and William \& Mary)
W\&M: Christopher Johnson, Archana Radhakrishnan
Trinity College Dublin, Ireland:
Michael Peardon, Sinéad Ryan, David Wilson,
Cian O'Hara, David Tims
University of Cambridge, UK:
CT, Graham Moir, Gavin Cheung, Antoni Woss
Tata Institute, India:
Nilmani Mathur
www.hadspec.org

