Quark mass dependence of $\gamma^{(*)}\pi \to \pi\pi$

Malwin Niehus

March 15, 2018

Bound states in strongly coupled systems

work in progress with M. Hoferichter, B. Kubis

Malwin Niehus

Quark mass dependence of $\gamma^{(*)}\pi \rightarrow \pi\pi$

Content

(1) Aspects of $\gamma \pi \rightarrow \pi \pi$

- 2 $\pi\pi \rightarrow \pi\pi$: quark mass dependence
- (3) $\gamma \pi \rightarrow \pi \pi$: quark mass dependence

g-2 of μ

March 15, 2018 3 / 23

Anomaly

anomaly in ChPT:

- odd number of pseudo-Goldstone bosons
- Wess-Zumino-Witten action

[Wess, Zumino, Phys. Lett. B **37**(1971)] [Witten, Nucl. Phys. B **223**(1983)] structure of amplitude:

$$\mathcal{M}\left(\gamma\left(q\right)\pi^{-}\left(p_{1}\right)\rightarrow\pi^{-}\left(p_{2}\right)\pi^{0}\left(p_{0}\right)\right)=i\epsilon_{\mu\nu\alpha\beta}\epsilon^{\mu}\left(q\right)p_{1}^{\nu}p_{2}^{\alpha}p_{0}^{\beta}\mathcal{F}\left(s,t,u\right)$$
$$s=\left(q+p_{1}\right)^{2}, \qquad t=\left(p_{1}-p_{2}\right)^{2}, \qquad u=\left(p_{1}-p_{0}\right)^{2}$$

at low energies due to anomaly:

$$\mathcal{F}(s,t,u)
ightarrow F_{3\pi} = rac{eN_{ ext{colour}}}{12\pi^2 F_{\pi}^3}$$

tested only at 10% level [Hoferichter, Kubis, Sakkas, Phys. Rev. D **86**(2012)]

ρ resonance

resonance properties encoded in pole:

- mass/width from pole position
 - $M_
 ho pprox 760 \, {
 m MeV}$
 - $\Gamma_{
 ho} \approx 140 \, {
 m MeV}$

$$\Rightarrow \frac{\Gamma_{\rho}}{M_{\rho}} \approx 20\%$$

[García-Martín et al., Phys. Rev. Lett. 107(2011)]

Breit-Wigner not optimal

- coupling via residue: model independent extraction of radiative coupling $g_{
 ho\pi\gamma}$
- extension to ρ_3 via VMD

[Hoferichter, Kubis, Zanke, Phys. Rev. D 96(2017)]

Quark mass dependence

- ullet lattice QCD calculations the more expensive the lower M_π
- simulations at physical point become more and more feasible
- simulations of some scattering processes still with unphysical M_{π} , e.g. $\gamma \pi \rightarrow \pi \pi$ with $M_{\pi} \approx 400 \text{ MeV}$ [Briceño et al., Phys. Rev. Lett. **115**(2015)]
- \Rightarrow need for extrapolation
 - for $\pi\pi \to \pi\pi$: unitarised ChPT (e.g. via dispersion relations) [Bolton, Briceño, Wilson, Phys. Lett. B **757**(2016)]
 - for $\gamma\pi \to \pi\pi$: extrapolation more difficult

$\pi\pi \to \pi\pi$: Inverse amplitude method (IAM)

elastic unitarity ($SS^{\dagger} = 1$, only $\pi\pi$ intermediate states):

$$\begin{aligned} & \operatorname{Im}\left[t\left(s\right)\right] = \sigma\left(s\right)\left|t\left(s\right)\right|^{2}, \qquad \sigma\left(s\right) = \sqrt{1 - \frac{4M_{\pi}^{2}}{s}} \\ \Rightarrow \qquad \operatorname{Im}\left[\frac{1}{t\left(s\right)}\right] = -\sigma\left(s\right) \end{aligned}$$

unitarity in ChPT only perturbatively:

$$t = t_2 + t_4 + \mathcal{O}\left(p^6\right) \qquad \Rightarrow \qquad \operatorname{Im}\left[\frac{t_4\left(s\right)}{t_2^2\left(s\right)}\right] = \sigma\left(s\right)$$

partial wave dispersion relation + ChPT at subtraction point and left cut:

$$t\left(s
ight)pproxrac{t_{2}\left(s
ight)^{2}}{t_{2}\left(s
ight)-t_{4}\left(s
ight)+\mathsf{P}\left(s
ight)}$$

[Truong, Phys. Rev. Lett. **67**(1991)] [Gómez Nicola, Peláez, Ríos, Phys. Rev. D **77**(2008)]

Malwin Niehus

Quark mass dependence of $\gamma^{(*)}\pi \rightarrow \pi\pi$

I = J = 1 partial waves in SU(2) ChPT

[Gasser, Leutwyler, Annals of Physics **158**(1984)] • LO:

$$t_2\left(s\right) = \frac{s - 4M_\pi^2}{96\pi F^2}$$

NLO:

$$t_{4}\left(s\right) = \frac{s - 4M_{\pi}^{2}}{4608\pi^{3}F^{4}} \left\{ s\left(\bar{l} + \frac{1}{3}\right) - \frac{15}{2}M_{\pi}^{2} + \left(\text{logarithmic terms}\right) \right\} + i\sigma\left(s\right)t_{2}^{2}\left(s\right)$$

• **F**: pion decay constant in chiral limit • $\overline{l} := \overline{l}_2 - \overline{l}_1$: only free parameter at NLO

both independent of M_{π} , $F \rightarrow F_{\pi}$ introduces \overline{I}_4

- F_{π} , \overline{I}_4 depend on M_{π}
- both approaches differ at $O(p^6)$ (NNLO)

ad hoc NNLO polynomial:

$$p_{6}(s) = \frac{s - 4M_{\pi}^{2}}{4608\pi^{3}F^{4}} \frac{1}{16\pi F^{2}} \left\{ \alpha s M_{\pi}^{2} + \beta M_{\pi}^{4} + \gamma s^{2} \right\}$$

Fit to lattice data

- lattice data: $M_{\pi} \approx 236 \text{ MeV}$ [Wilson et al., Phys. Rev. D **92**(2015)]
- $\bullet\,$ fit directly energy levels: IAM phases \rightarrow Lüscher's method $\rightarrow\,$ energy levels
- Roy equations + NNLO ChPT: *1* = 4.7(6)
 [Colangelo, Gasser, Leutwyler, Nucl. Phys. B 603(2001)]
- lattice $(N_f = 2 + 1) + \text{ChPT}$: $\overline{l}_4 = 4.10(45)$ [FLAG, EPJ C 77(2017)]

¹[Bolton, Briceño, Wilson, Phys. Lett. B **757**(2016)] Malwin Niehus Quark mass dependence of $\gamma^{(*)}\pi \to \pi\pi$

Fit to lattice data

- lattice data: $M_{\pi} \approx 236 \text{ MeV}$ [Wilson et al., Phys. Rev. D 92(2015)]
- fit directly energy levels: IAM phases \rightarrow Lüscher's method \rightarrow energy levels
- Roy equations + NNLO ChPT: *l* = 4.7(6)
 [Colangelo, Gasser, Leutwyler, Nucl. Phys. B 603(2001)]
- lattice $(N_f = 2 + 1) + \text{ChPT}$: $\bar{l}_4 = 4.10(45)$ [FLAG, EPJ C 77(2017)]

	$\chi^2/{ m d.o.f.}$	7	Ī4	β	γ
only Ī	3.2	5.9			
\bar{l} and \bar{l}_4 1	1.3	7.0(2)	$-1.0(^{+1.1}_{-2.0})$		
\bar{l} and γs^2	1.1	4.9			0.6
\bar{I} and $eta M_\pi^4$	1.25	7.0		-82.6	

 \Rightarrow need to fit full NNLO ChPT IAM (together with J. Ruiz de Elvira)

¹[Bolton, Briceño, Wilson, Phys. Lett. B **757**(2016)] Malwin Niehus
Quark mass dependence of $\gamma^{(*)}\pi \to \pi\pi$

parametrisation of experimental data from [Caprini, Colangelo, Leutwyler, EPJ C **72**(2012)]

Malwin Niehus

Analytic structure

[Dobado, Peláez, Phys. Rev. D 56(1997)]

Pion mass dependence

- increasing $M_{\pi} \Rightarrow$ increase of $M_{
 ho}$
- increasing M_π ⇒ decrease of Γ_ρ decrease in phase space

[Hanhart, Peláez, Ríos, Phys. Rev. Lett. **100**(2008)] [Bolton, Briceño, Wilson, Phys. Lett. B **757**(2016)]

Fixed-t dispersion relations

2 variables \rightarrow 1 variable:

•
$$s + t + u = 3M_\pi^2 + q^2 =: R$$

• fix t

•
$$\mathcal{F}_{s}^{t}(s) := \mathcal{F}(s, t, u^{t}(s))$$

analytic structure of $\mathcal{F}_{s}^{t}(s)$:

• $s \ge 4M_{\pi}^2$: right-hand cut

•
$$u \ge 4M_{\pi}^2$$
: left-hand cut

calculate:

$$\frac{s^{n}}{2\pi i}\int_{\mathcal{C}}\frac{\mathcal{F}_{s}^{t}\left(\zeta\right)}{\left(\zeta-s\right)\zeta^{n}}\mathsf{d}\zeta$$

Fixed-t dispersion relations

2 variables \rightarrow 1 variable:

•
$$s + t + u = 3M_\pi^2 + q^2 =: R$$

• fix t

•
$$\mathcal{F}_{s}^{t}(s) := \mathcal{F}(s, t, u^{t}(s))$$

analytic structure of $\mathcal{F}_{s}^{t}(s)$:

• $s \ge 4M_{\pi}^2$: right-hand cut

calculate:

$$\frac{s^{n}}{2\pi i}\int_{\mathfrak{C}}\frac{\mathcal{F}_{s}^{t}\left(\zeta\right)}{\left(\zeta-s\right)\zeta^{n}}\mathsf{d}\zeta$$

$$\mathcal{F}_{s}^{t}(s) = P_{n-1}^{t}(s) + \frac{s^{n}}{2\pi i} \int_{s^{\text{thr}}}^{\infty} \frac{\text{disc}_{x}\left[\mathcal{F}_{s}^{t}(x)\right]}{(x-s)x^{n}} \, dx \\ + \frac{\left(u^{t}(s)\right)^{n}}{2\pi i} \int_{u^{\text{thr}}}^{\infty} \frac{\text{disc}_{x}\left[\mathcal{F}_{u}^{t}(x)\right]}{(x-u^{t}(s))x^{n}} \, dx$$

Reconstruction theorem

- discontinuities via partial wave expansion
- truncate (here: only f₁)

$$\mathcal{F}(s, t, u) = \mathcal{B}(s) + \mathcal{B}(t) + \mathcal{B}(u)$$
$$\mathcal{B}(\zeta) = \text{const.} + \frac{\zeta^{n}}{2\pi i} \int_{4M_{\pi}^{2}}^{\infty} \frac{\text{disc}[f_{1}(x)]}{(x - \zeta)x^{n}} \, dx$$

- applicable for all s, t, u
- correct cuts in all channels
- study ${\mathcal B}$ (only right cut) instead of ${\mathcal F}$
- invariant if $\mathcal{B}(\zeta) \mapsto \mathcal{B}(\zeta) + \lambda (3\zeta R)$ with $R = s + t + u = 3M_{\pi}^2 + q^2$
- possible to incorporate higher partial waves

• applicable to other processes (e.g. $\eta' \rightarrow \eta \pi \pi$, cf. talk by T. Isken) [Stern, Sazdjian, Fuchs, Phys. Rev. D **47**(1993)] [Ananthanarayan et al., EPJ C **19**&**22**(2001)]

[Novotný, Zdráhal, Phys. Rev. D 78(2008)]

Malwin Niehus

Inhomogeneous Omnès problem

elastic unitarity \Rightarrow Watson's theorem:

disc
$$(f_1(x)) = 2if_1(x) \exp[-i\delta(x)] \sin[\delta(x)]$$

 $\delta = \pi\pi$ scattering phase $(I = J = 1)$

hat function:

$$\widehat{\mathcal{B}}(s) \coloneqq f_{1}(s) - \mathcal{B}(s) = \frac{3}{2} \int_{-1}^{1} (1 - z^{2}) \mathcal{B}(t(s, z)) dz$$
$$\operatorname{disc}(f_{1}(x)) = 2i \left[\mathcal{B}(x) + \widehat{\mathcal{B}}(x) \right] \exp\left[-i\delta(x)\right] \sin\left[\delta(x)\right]$$

Inhomogeneous Omnès problem

$$\mathcal{B}(s) = \Omega(s) \left[\sum_{k=0}^{m-1} c_k s^k + \frac{s^m}{\pi} \int_{4M_\pi^2}^{\infty} \frac{\widehat{\mathcal{B}}(x) \sin \left[\delta(x)\right]}{\left|\Omega(x)\right| (x-s) x^m} dx \right]$$
$$\Omega(s) = \exp\left[\frac{s}{\pi} \int_{4M_\pi^2}^{\infty} \frac{\delta(x)}{x(x-s)} dx \right], \qquad \widehat{\mathcal{B}}(s) = \frac{3}{2} \int_{-1}^{1} (1-z^2) \mathcal{B}(t(s,z)) dz$$

right cut only:

right cut + crossed channel cuts:

Inhomogeneous Omnès problem

$$\mathcal{B}(s) = \Omega(s) \left[\sum_{k=0}^{m-1} c_k s^k + \frac{s^m}{\pi} \int_{4M_\pi^2}^{\infty} \frac{\widehat{\mathcal{B}}(x) \sin \left[\delta(x)\right]}{|\Omega(x)| (x-s) x^m} dx \right]$$
$$\Omega(s) = \exp\left[\frac{s}{\pi} \int_{4M_\pi^2}^{\infty} \frac{\delta(x)}{x(x-s)} dx \right], \qquad \widehat{\mathcal{B}}(s) = \frac{3}{2} \int_{-1}^{1} (1-z^2) \mathcal{B}(t(s,z)) dz$$

- δ unknown at high energies ($\delta \rightarrow \pi$ useful)
- *m* = 1: one subtraction constant
- m = 3: three two subtraction constants (polynomial shifts)

 \$\begin{aligned} \$\begin{aligned} \$B\$ linear in \$\begin{aligned} \$B\$:

$$\mathcal{B}\left(s\right)=\sum_{k=0}^{m-1}c_{k}\mathcal{B}_{k}\left(s\right)$$

- basis functions \mathcal{B}_k depend on δ only
- \mathcal{B}_k can be computed numerically (iteratively)

Malwin Niehus

Quark mass dependence of $\gamma^{(*)}\pi \rightarrow \pi\pi$

if $\widehat{\mathcal{B}}=0{:}~\mathcal{B}_0=\Omega{:}$ important to incorporate left cut

Pion mass dependence

$$\mathcal{B}(s, M_{\pi}) = \sum_{k=0}^{m-1} c_k(M_{\pi}) \mathcal{B}_k(s, M_{\pi})$$

Pion mass dependence

$$\mathcal{B}(s, M_{\pi}) = \sum_{k=0}^{m-1} c_k(M_{\pi}) \mathcal{B}_k(s, M_{\pi})$$

basis functions:

$$\mathcal{B}_{k}(s, M_{\pi}) = \Omega(s, M_{\pi}) \left[s^{k} + \frac{s^{m}}{\pi} \int_{4M_{\pi}^{2}}^{\infty} \frac{\widehat{\mathcal{B}}_{k}(x, M_{\pi}) \sin \left[\delta(x, M_{\pi})\right]}{\left|\Omega(x, M_{\pi})\right| (x - s) x^{m}} dx \right]$$
$$\widehat{\mathcal{B}}_{k}(s, M_{\pi}) = \frac{3}{2} \int_{-1}^{1} (1 - z^{2}) \mathcal{B}_{k}(t(s, z, M_{\pi}), M_{\pi}) dz$$

Omnès function:

$$\Omega(s, M_{\pi}) = \exp\left[\frac{s}{\pi} \int_{4M_{\pi^2}}^{\infty} \frac{\delta(x, M_{\pi})}{x(x-s)} \, \mathrm{d}x\right]$$

Malwin Niehus

Quark mass dependence of $\gamma^{(*)}\pi$ ightarrow $\pi\pi$

Virtual photon

analytic continuation via contour integral (\rightarrow Khuri-Treiman equations):

$$\widehat{\mathcal{B}}_{k}\left(s
ight)=rac{3}{2}\int_{-1}^{1}\left(1-z^{2}
ight)\mathcal{B}_{k}\left(t\left(s,z; q^{2}
ight)
ight)\mathrm{d}z$$

[Bronzan, Kacser, Phys. Rev. **132**(1963)] [Niecknig, Kubis, Schneider, EPJ C **72**(2012)] Malwin Niehus Quark mass dependence of $\gamma^{(*)}\pi \to \pi\pi$ March 15, 2018 21 / 23

Subtraction constants

intermediate states in $\gamma \to \pi\pi\pi$ lead to discontinuity in q^2

$$c_{k}\left(q^{2}, M_{\pi}^{2}\right) = \sum_{j=0}^{n-1} d_{j}\left(M_{\pi}^{2}\right)\left(q^{2}\right)^{j} + \frac{\left(q^{2}\right)^{n}}{2\pi i} \int_{v^{\mathrm{thr}}}^{\infty} \frac{\mathrm{disc}_{x}\left(c_{k}\left(x, M_{\pi}^{2}\right)\right)}{\left(x - q^{2}\right)x^{n}} \mathrm{d}x$$

	$M/{ m MeV}$	Γ/MeV	decay channels	$\Gamma_i/\Gamma/\%$
ω	782.65(12)	8.49(8)	$\pi^+\pi^-\pi^0$ $\pi^0\gamma$	89.2(7) 8.40(22)
ϕ	1019.460(16)	4.247(16)	$ \begin{array}{c} \mathcal{K}^+ \mathcal{K}^- \\ \mathcal{K}^0_L \mathcal{K}^0_S \\ \pi^+ \pi^- \pi^0 \end{array} $	48.9(5) 34.2(4) 15.32(32)

[Particle Data Group, Chin. Phys. C 40(2016 and 2017 update)]

- discontinuity via Breit-Wigner [Hoferichter et al., EPJ C 74(2014)]
- pion mass dependence of d_j e.g. via matching to ChPT

Summary

framework:

- () fit IAM to LQCD data for $\pi\pi \to \pi\pi$ to fix δ
- $\textcircled{0} \quad \text{use } \delta \text{ to compute basis function numerically}$
- § determine subtraction constants via fit to LQCD data for $\gamma\pi\to\pi\pi$
- extrapolate to physical point

Summary

framework:

- $\label{eq:alpha} {\rm \ \ } {\rm \ fit\ IAM\ to\ LQCD\ data\ for\ } \pi\pi\to\pi\pi\ {\rm \ to\ fix\ } \delta$
- $\textcircled{0} \quad \text{use } \delta \text{ to compute basis function numerically}$
- § determine subtraction constants via fit to LQCD data for $\gamma\pi\to\pi\pi$
- extrapolate to physical point

approximations:

- isospin symmetry
- only $\pi\pi$ intermediate multi-particle states
- IAM uses ChPT to given order (in particular at left cut)
- $\bullet~\delta$ unknown at high energies
- disc $[f_J(s)] = 0, \quad \forall J \geq 3$
- model building for q^2 dependence of subtraction constants

Reconstruction theorem: sketch of derivation

Investigation of the second state of the second stat

$$\mathcal{F}(s,t,u) = \sum_{J=0}^{\infty} f_{2J+1}(s) P'_{2J+1}(z(s,t,u))$$
$$= f_1(s) + \dots$$

- express discontinuities in DRs via PWs
- symmetrise amplitude

$$\mathcal{F}(s, t, u) = \mathcal{B}(s) + \mathcal{B}(t) + \mathcal{B}(u)$$
$$\mathcal{B}(\zeta) = \text{const.} + \frac{\zeta^{n}}{2\pi i} \int_{4M_{\pi}^{2}}^{\infty} \frac{\text{disc}[f_{1}(x)]}{(x - \zeta) \times^{n}} \, dx$$

[Stern, Sazdjian, Fuchs, Phys. Rev. D **47**(1993)] [Ananthanarayan et al., EPJ C **19&22**(2001)] [Novotný, Zdráhal, Phys. Rev. D **78**(2008)]

Malwin Niehus

Quark mass dependence of $\gamma^{(*)}\pi$ ightarrow $\pi\pi$

Subtraction constants: details

$$c_{k}\left(q^{2}, M_{\pi}^{2}\right) = \sum_{j=0}^{n-1} d_{j}\left(M_{\pi}^{2}\right) \left(q^{2}\right)^{j} + \frac{\left(q^{2}\right)^{n}}{2\pi i} \int_{v^{\text{thr}}}^{\infty} \frac{\text{disc}_{x}\left(c_{k}\left(x, M_{\pi}^{2}\right)\right)}{\left(x - q^{2}\right) x^{n}} dx$$

Breit-Wigner for ω [Hoferichter et al., EPJ C 74(2014)] :

$$\mathsf{disc}_{q^2}\left(c_k\left(q^2, M_{\pi}^2\right)\right) = 2i\mathsf{Im}\left[\frac{r}{M_{\omega}^2 - i\sqrt{q^2}\Gamma_{\omega} - q^2}\right]$$

 M_{π} dependence of:

- M_{ω} like M_{π} dependence of M_{ρ} [Bijnens, Gosdzinsky, Phys. Lett. B 388(1996)]
- $M_{
 ho}$ via IAM (approx. linear in M_{π})
- $\Gamma_{\omega \to 3\pi}$ via dispersive framework [Niecknig, Kubis, Schneider, EPJ C 72(2012)] well described by kinematic terms only (cf. talk by T. Isken)
- $\Gamma_{\omega \to \pi^0 \gamma}$ via effective Lagrangian [Klingl, Kaiser, Weise, Z. Phys. A **356**(1996)]
- *d_j* via ChPT/resonance saturation

LECs

$$egin{aligned} \mathcal{F}_{\pi} &= \mathcal{F} + rac{\mathcal{M}_{\pi}^2}{16\pi^2 \mathcal{F}_{\pi}} ar{l}_4 \ ar{l}_4 &= 16\pi^2 l_4^{\prime\prime}\left(\mu
ight) - \ln\left(rac{\mathcal{M}_{\pi}^2}{\mu^2}
ight) \end{aligned}$$

here: $\mu = 770 \,\mathrm{MeV}$

[Gasser, Leutwyler, Annals of Physics 158(1984)]

Quantum numbers

	1	J	Ρ	С	G	$M/{ m MeV}$	$\Gamma/{ m MeV}$
γ	0,1	1	—	—		0	
π^0	1	0	_	+	_	134.9770(5)	
π^{\pm}	1	0	—		—	139.57061(24)	
$\rho^{\pm}, \rho^{\rm 0}$	1	1	—	—	+	pprox 770	pprox 149
ω	0	1	_	—	_	782.65(12)	8.49(8)
ϕ	0	1	_	_	_	1019.460(16)	4.247(16)

[Particle Data Group, Chin. Phys. C 40(2016 and 2017 update)]

Symmetry and partial wave decomposition of ${\mathcal F}$

- G invariance
 - \Rightarrow only isoscalar photons
 - \Rightarrow only isospin 1 waves
- + Bose symmetry in final $\pi\pi$ state
 - \Rightarrow only odd partial waves

C invariance + crossing symmetry $\Rightarrow \mathcal{F}(s, t, u) = \mathcal{F}(u, t, s)$

isospin invariance

$$\Rightarrow \mathcal{F}(s,t,u) = \mathcal{F}(t,s,u)$$

altogether:

- ${\mathcal F}$ completely symmetric
- only odd partial waves

Malwin Niehus

Connection to doubly-virtual π^0 transition form factor

isospin decomposition:

$$m{F}_{\pi^{0}\gamma^{*}\gamma^{*}}\left(q_{1}^{2},q_{2}^{2}
ight)=m{F}_{ ext{vs}}\left(q_{1}^{2},q_{2}^{2}
ight)+\left(q_{1}^{2}\leftrightarrow q_{2}^{2}
ight)$$

once subtracted dispersion relation in isovector virtuality:

$$\begin{aligned} F_{vs}\left(s_{1}, s_{2}\right) &= F_{vs}\left(0, s_{2}\right) + \frac{es_{1}}{12\pi^{2}} \int_{4M_{\pi}^{2}}^{\infty} \frac{q_{\pi}^{3}\left(x\right) F_{\pi}^{V*}\left(x\right) f_{1}\left(x, s_{2}\right)}{x^{3/2}\left(x - s_{1}\right)} \, \mathrm{d} \, x \\ q_{\pi}\left(x\right) &= \sqrt{\frac{x}{4} - M_{\pi}^{2}} \end{aligned}$$

[Hoferichter et al., EPJ C 74(2014)]

Malwin Niehus

Kinematics

Mandelstam variables:

$$\begin{split} t_{\gamma\pi} \left(s, z, q^2, M_{\pi}^2 \right) &= a \left(s, q^2, M_{\pi}^2 \right) + b \left(s, q^2, M_{\pi}^2 \right) z \\ a \left(s, q^2, M_{\pi}^2 \right) &= \frac{3M_{\pi}^2 + q^2 - s}{2} \\ b \left(s, q^2, M_{\pi}^2 \right) &= \frac{\sigma \left(s, M_{\pi}^2 \right)}{2} \sqrt{\lambda(s, q^2, M_{\pi}^2)} \\ \sigma \left(s, M_{\pi}^2 \right) &= \sqrt{1 - \frac{4M_{\pi}^2}{s}} \\ u_{\gamma\pi} \left(s, z, q^2, M_{\pi}^2 \right) &= t_{\gamma\pi} \left(s, -z, q^2, M_{\pi}^2 \right) \end{split}$$

threshold:

$$s^{\mathsf{thr}} = egin{cases} \left(\sqrt{q^2} + M_\pi
ight)^2, & q^2 > M_\pi^2 \ 4M_\pi^2, & q^2 \le M_\pi^2 \end{cases}$$

•