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1An approach to QCD bound states  
Bound states in strongly coupled systems

GGI Firenze  March 12-16, 2018

Paul Hoyer
University of Helsinki

Perturbative calculations of bound states requires NP input, even in QED

• The “lowest order” wave function already has all orders of α
• Free in and out states of S-matrix have no overlap with bound states
• The classical gauge field keeps the asymptotic states bound
• A boundary condition in the classical gluon field eqs gives ΛQCD

qq̅ states bound by a classical gluon field may serve as hadrons at O(αs0)

• They incorporate confinement and chiral symmetry breaking
• Allow inclusion of higher orders in αs via the perturbative S-matrix 

PH 1605.01532 and to appear
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Similarity of atomic and hadronic spectra
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PQED: PQCD?

Adapted from presentation by J. Ritman (2005)
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Positronium Charmonium

“The J/ψ is the Hydrogen atom of QCD”
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QED works for atoms

G. S. Adkins,
Hyperfine Interact.  233 (2015) 59
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where the products imply convolutions over four-momenta similar to that in (2.19). This equation is valid provided
the kernel satisfies

K = (1 +GT S)�1
GT = GT �GT S GT + ... (2.22)

Thus the “propagator” S may in fact be chosen freely. The expansion of K in ↵ follows from the corresponding
expansions of S and GT . As a consequence of unitarity the residues of the bound state poles of GT factorize into a
product of wave functions similarly as in (2.17). Since the finite order kernel K in (2.21) cannot have a bound state
pole the Bethe-Salpeter wave function �P

T (with external propagators truncated) must satisfy

�P
T (q) ⌘

Z
d
4
x�P

T (x)eiq·x =

Z
d
4
k

(2⇡)4
�P

T (k)S(k)K(k, q) (2.23)

which is the all-orders equivalent4 of (2.19). With a suitable choice of the propagator S analytic expressions for the
wave functions are obtained when the lowest order kernel is used in the BSE. These solutions facilitate calculations
of higher order corrections to the binding energies [2].

The wide range of possibilities in the choice of propagator in the BSE motivated a search for an optimal approach
based on physical arguments. The perturbative expansion relies on the non-relativistic nature of atoms, v/c ' ↵ ⌧ 1.
This suggested the use of an e↵ective QED Lagrangian (NRQED) [7], which is essentially an expansion of the standard
Lagrangian in inverse powers of me. At the expense of introducing more interactions the NRQED Lagrangian allows
to use non-relativistic dynamics, which is of great help in high order calculations [3]. The contribution of relativistic
momenta (p ⇠ me) in positronium is only of O

�
↵
5
�
⇠ 10�11, making NRQED very e�cient.

The continuous development of theoretical and experimental techniques have allowed precision tests of QED using
bound states. Thus the hyperfine splitting in positronium, i.e., the energy di↵erence �E between orthopositronium
(JPC = 1��) and parapositronium (JPC = 0�+), expressed in terms of �⌫ ⌘ �E/2⇡~, is calculated using NRQED
methods to be [8]
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= 203.39169(41) GHz (2.24)

Table 1: Summary of systematic errors.

Source Errors in �HFS (ppm)

Material E�ect:

o-Ps pick-o� 3.8

Gas density measurement 1.0

Thermalization of Ps 1.0

Magnetic Field:

Non-uniformity 3.0

O�set and reproducibility 1.0

NMR measurement 1.0

RF System:

RF power 0.7

QL value of RF cavity 0.3

RF frequency 1.0

Analysis:

Choice of energy window 0.6

Quadrature sum 5.4

considered in the previous experiments, fitting without taking

into account the time evolution of �HFS and �pick is performed.

The fitted Ps-HFS value with an assumption that Ps is well ther-

malized results in 203.392 1(16) GHz. Comparing it with Eq.
(15), the non-thermalized o-Ps e�ect is evaluated to be as large

as 10 ± 1 ppm in the timing window we used. This e�ect might
be larger if no timing window is applied, since it depends on the

timing window used for the analysis. In the timing window of

0–50 ns, which we do not use for the analysis, Ps-HFS is dra-

matically changing because Ps is not well thermalized and Ps

velocity is still rapidly changing.

Systematic errors are summarized in Table 1. The largest

contribution is an uncertainty of o-Ps pick-o� rate (�pick(n,�)).
It is estimated by taking the error of the fitting of the o-Ps decay

curve. The uncertainty of the gas density is computed from the

uncertainties of the gas pressure and temperature, resulting in

1.0 ppm uncertainty. The uncertainty of Ps thermalization e�ect

comes from the uncertainties of �m and E0. The second largest
contribution is an uncertainty of the static magnetic field. Dis-

tribution of the static magnetic field is measured by the NMR

magnetometer with the same setup as Ps-HFS measurement for

twice (before and after the measurement). The results of the

two measurements are consistent with each other and the non-

uniformity is weighted by the RF magnetic field strength and

distribution of Ps formation position, which results in 1.5ppm

RMS inhomogeneity. The strength of the static magnetic field

is measured outside of the RF cavity during the run. An o�set

value at this point is measured during the measurement of the

magnetic field distribution, and its uncertainty including repro-

ducibility is 0.5 ppm. The precision of magnetic field measure-

ment is 0.5 ppm, which comes from the polarity-dependence

of the NMR probe. These uncertainties are doubled because

�HFS is approximately proportional to the square of the static

magnetic field strength. The uncertainty of RF power meter re-

sults in 0.7 ppm systematic error. The QL value of the cavity

is measured before and after each run, and the uncertainty is

 (GHz)HFS∆

203.386 203.388 203.39 203.392 203.394 203.396

Old method

a

b
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Previous experimental
                  average

) QED-1
αln3

αO(

Figure 5: Summary of �HFS measurements from past experiments and this

work. The circles with error bars are the experimental data (a�[4], b�[5]),
the hatched band is the average of the previous experiments (a and b), and the

black band is the QED calculation [6, 7, 8].

estimated by the di�erence between them. The uncertainty of
microwave frequency causes 1.0 ppm systematic error. Anal-

ysis with energy window of 511 keV ± 1.5 s.d.(� 26 keV) has
been performed, and the result has changed by 0.6 ppm. This

change is taken into account as a systematic error.

The systematic errors discussed above are regarded as in-

dependent, and the total systematic error is calculated to be

their quadrature sum. When the non-thermalized Ps e�ect is

included, our final result with the systematic errors is

�HFS = 203.394 1±0.001 6(stat.)±0.001 1(sys.) GHz.(16)
A summary plot of �HFS measurements is shown in Fig. 5. Our
result favors the QED calculation within 1.2 s.d., although it

disfavors the previous experimental average by 2.7 s.d.

6. Conclusion

A new precision measurement of Ps-HFS free from possible

common uncertainties from Ps thermalization e�ect was per-
formed to check the Ps-HFS discrepancy. The e�ect of non-

thermalized o-Ps was evaluated to be as large as 10 ± 1 ppm
in a timing window we used. This e�ect might be larger than
10 ppm if no timing window is applied, since it depends on

timing window. Including this e�ect, our new experimental

value results in �HFS = 203.394 1 ± 0.001 6(stat., 8.0 ppm) ±
0.001 1(sys., 5.4 ppm)GHz. It favors theO(�3 ln��1) QED cal-
culation within 1.2 s.d., although it disfavors the previous mea-

surements by 2.7 s.d.
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FIG. 4: Data on positronium hyperfine splitting
compared to theory. Two previous results (a [9],
b [10]) compared to a new measurement [11] and
QED [8] (black band). Figure from [11].

The appearance of ln↵ in (2.24) demonstrates that bound state
perturbation theory indeed di↵ers from the usual expansions of
scattering amplitudes. Such factors arise from apparent infrared
divergences which are regulated by the neutrality of positronium
at the scale of the Bohr radius (↵me)�1.

The combined result of the two most precise measurements
of the hyperfine splitting in positronium [9, 10] is �⌫EXP =
203.38865(67) GHz, which is more than 3� from the QED value
(2.24). Very recently a new measurement [11] gave �⌫EXP =
203.3941 ± .0016 ± .0011 GHz, which is closer to the theoretical
value. The present situation is illustrated in Fig. 4.

Bound state poles in the photon propagator a↵ect also standard
perturbative calculations. The positronium contribution to the
anomalous magnetic moment of the electron was recently evalu-
ated [12]. It was found to be of the same order as state-of-the-art
five-loop calculations – and several times bigger than the weak
corrections.

The successes of QED have inspired the use of analogous methods for the other interactions. In particular, Bethe-
Salpeter and Dyson-Schwinger equations have been extensively applied in QCD (see [13] and references therein).

4 In (2.19) a factor P 0 � Eq+ � Eq� was extracted from the wave function  (q).

Example: Hyperfine splitting in Positronium

ΔνEXP = 203.3941± .003 GHzA. Ishida et al, 1310.6923 :

• Binding energy is perturbative in α and log(α)    (measurable)

• Wave function ψ(r) ∝ exp(– mαr) is of O(α∞)  (used in NRQED)

There are many ways to (re)organize an expansion that starts with O(α∞)
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even a pure Coulomb potential, σ = 0, implies a non-vanishing σeff at finite t ≪ r.
Of course, the symmetry of the Wilson loop under interchange of r and t also implies
that no plateau in V (r, t) can be found, unless t ≫ r. For smeared Wilson loops, one
would still expect a similar 1/t2 approach (with a different coefficient) of σeff towards
the asymptotic limit, while effective masses, V (r, t), will approach V (r) exponentially
fast at any r.

4.7.2 The quenched potential
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Figure 4.2: The quenched Wilson action SU(3) potential, normalised to V (r0) = 0.

In Figure 4.2, we display the quenched potential, obtained at three different β values
in units of r0 ≈ 0.5 fm from the data of Refs. [173, 29]. The lattice spacings, determined
from r0, correspond to a ≈ 0.094 fm, 0.069 fm and 0.051 fm, respectively. The curve
represents the Cornell parametrisation with e = 0.295. At small distances the data
points lie somewhat above the curve, indicating a weakening of the effective coupling
and, therefore, asymptotic freedom. We will discuss this observation later. All data
points for r > 4a collapse onto a universal curve, indicating that for β ≥ 6.0 the scaling
region is effectively reached for the static potential. Moreover, continuum rotational
symmetry is restored: in addition to on-axis separations, many off-axis distances of the
sources have been realised and the corresponding data points are well parameterised by
the Cornell fit for r > 0.6 r0. Prior to comparison between the potential at various β,
the additive self-energy contribution, associated with the static sources, that diverges
in the continuum limit has been removed. This is achieved by the parametrisation-
independent normalisation of the data to V (r0) = 0.

42

The quenched Wilson action SU(3) potential.

Gunnar S. Bali, Phys.Rept. 343 (2001) 1

Linear Cornell potential agrees with Lattice QCD

… and will here arise from a classical gluon field
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The in- and out-states at t = ±∞ must overlap the physical i, f states.

Generates Feynman diagrams to arbitrary order for any scattering process

Bound states have no overlap with free in- and out-states at t = ± ∞

No finite order Feynman diagram for e+e– → e+e– has a positronium pole.

We need to expand around in and out states with their classical gauge field

Sfi = outhf, t ! 1|
⇢
Texp

h
� i

Z 1

�1
dtHI(t)

i�
|i, t ! �1iin

H = H0 +HI H0 |iiin = Ei |iiin

⇒ 
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Perturbative expansion should be expanded around a stationary action

Z
[dAµ] exp

�
iS[Aµ]/~

� Classical field defined 
by stationary action
Dominates for ℏ → 0

�S[Aµ
cl]

�Aµ
cl

= 0

Sfi = Vhf, t ! 1|
⇢
Texp

h
� i

Z 1

�1
dtHI(t)

i�
|i, t ! �1iV

Define “Potential Picture”

H = HV +HI HV = H0 +HI(Acl)

HV |iiV = Ei |iiV

A proper derivation à la Interaction Picture required

Here: Stay at level.H
0
I
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Two consequences of ℏ → 0 in QCD
9. Quantum chromodynamics 33

QCD αs(Mz) = 0.1185 ± 0.0006

Z pole fit  
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Figure 9.4: Summary of measurements of αs as a function of the energy scale Q.
The respective degree of QCD perturbation theory used in the extraction of αs is
indicated in brackets (NLO: next-to-leading order; NNLO: next-to-next-to leading
order; res. NNLO: NNLO matched with resummed next-to-leading logs; N3LO:
next-to-NNLO).
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αscrit ≈ 0.43
✭

Gribov hep-ph/99022791.  The suppression of loops,
stops the running of αs 

Gribov’s prediction agrees
phenomenological estimates:

αs(0)/π ≈ 0.14

⇒  PQCD corrections to O(ℏ0) 

2. In the absence of loops, the
    QCD scale ΛQCD cannot arise
    from renormalization.

ΛQCD  must arise from a boundary condition on the classical field equations.

can be relevant.

⇒
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8 Illustration: Positronium at rest

|MiV =

Z
dk

(2⇡)3
�(k) b†k,�1

d†�k,�2
|0i

=

Z
dx1 dx2  ↵(0,x1)�↵�(x1 � x2) �(0,x2) |0i

φ(k) is the Schrödinger
wave function

�↵�(x) = ↵

⇥
�0u(�ir,�1)

⇤⇥
v̄(ir,�2)�

0
⇤
�
�(x)

where Φ is given by the Schrödinger wave function as

HV |MiV = M |MiVImpose:

where HV has the classical photon field.
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 The classical field for Positronium

|x1,x2i =  ̄(t,x1) (t,x2) |0iFor the component

eA0(x;x1,x2) =
↵

|x� x1|
� ↵

|x� x2|

HV (t;x1,x2) =

Z
dx †(t,x)

⇥
� ir ·↵+m�0 + 1

2eA
0(x;x1,x2)

⇤
 (t,x)

to be used in x2

x1

Note: A0 is determined instantaneously for all x
It depends on x1, x2

eA0(x1) = �eA0(x2) = � ↵

|x1 � x2|
is the classical –α/r potential

But: An external observer at x sees a dipole field

the classical A0 field is

of the Positronium state
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   states in QCD

�AB(x1 � x2) =
1p
NC

�AB�(x1 � x2)Color singlet wave function

|qq̄iV

qq̅ state at rest

Lesson from Dirac dynamics: 
A strong potential creates pairs via Z-diagrams.
Those virtual pairs are included in 

|MiV =

Z
dx1 dx2  ̄

A
↵ (t,x1)�

AB
↵� (x1 � x2) 

B
� (t,x2) |0i

|MiV

39

(ii) It has been known since 1932 [28] that the normalization integral
R
d
3x| (x)|2 of the Dirac wave function diverges

for all polynomial potentials V (|x|) and that the energy spectrum is continuous17. There is little awareness and
understanding of this property of the Dirac bound states (see [30] for a recent discussion). With retarded boundary
conditions  †

 is the number operator of positive and negative energy fermions, and its expectation value in the
Dirac state is | (x)|2. Fig. 14 supports the interpretation of | (x)|2 as an inclusive particle density.

δ1

δ2
A

B

C

FIG. 19: The dual diagram for meson
splitting A ! B + C, given by (7.1).
The qq̄ pair is created at distance �1

from the quark and �2 from the anti-
quark of meson A.

The ff̄ bound states that we studied in Section V also need to be built on
a vacuum that is an eigenstate of the Hamiltonian. This suggests an analogy
to the in and out states used as asymptotic states of the perturbative S-
matrix, which are eigenstates of the free Hamiltonian H0. States defined at
asymptotic times are on-shell and thus independent of the i" prescription in
their propagator. The ff̄ states discussed here may be used as asymptotic
states of the S-matrix, as in the electromagnetic form factor (5.48).

The time development from t = ±1 to the (finite) scattering time is deter-
mined by the full Hamiltonian. The asymptotic states therefore develop into
eigenstates of H by the time of scattering. In addition to contributions from
higher orders in ↵s, the bound states can split and merge as illustrated in
the dual meson diagram of Fig. 19. The amplitude hB,C|Ai can be evaluated
directly from the definition (6.12) of the meson states, using anticommutation
relations for the quark fields according to Fig. 19. Suppressing Dirac and color
indices,

hB,C|Ai =
1p
NC

Z h Y

k=A,B,C

dxk
1dx

k
2

i
e
i(xA

1 +xA
2 )·PA/2�i(xB

1 +xB
2 )·PB/2�i(xC

1 +xC
2 )·PC/2

⇥ h0|
⇥
 
†(xB

2 )�
†
B�

0
 (xB

1 )
⇤⇥
 
†(xC

2 )�
†
C�

0
 (xC

1 )
⇤⇥
 
†(xA

1 )�
0(xA

1 )�A (x
A
2 )

⇤
|0i

= � (2⇡)3p
NC

�
3(PA � PB � PC)

Z
d�1d�2 e

i�1·PC/2�i�2·PB/2Tr
⇥
�
0�†

B(�1)�A(�1 + �2)�
†
C(�2)

⇤
(7.1)

If the A ! B + C amplitude is combined with B + C ! A we get a hadron loop correction to the propagation of A.
The loop also induces mixing between hadrons, A ! B + C ! D. Thus the orthogonal basis of wave functions �(x)
which satisfy the bound state equation (6.10) needs to be rediagonalized when hadron loop corrections are considered.
Similarly to the Dirac wave functions (see remark (ii) above) the original basis functions are not normalizable, as
their norm �†(x)�(x) approaches a constant at large |x|. The mixing will likely redistribute the large |x| components
of low-lying states onto higher-lying states (which then decay into on-shell pairs, much like the pions produced in
phenomenological string breaking). The states of the rediagonalized basis may thus become normalizable. The
importance of the loop corrections for physical quantities depends on how sensitive measurables are to the large |x|
components of the wave functions. In D = 1+ 1 both the parton distributions and duality relations were determined
by low values of x, and should therefore be fairly insensitive to the mixing e↵ects.

There is an essential di↵erence between the Dirac wave functions and the ff̄ solutions of (6.10). The ff̄ wave functions
�(x) are (in the rest frame) generally singular at M = V (|x|) [42]. Regular (locally normalizable) solutions exist
only for discrete bound state masses. The Dirac wave functions have no singularities, implying a continuous mass
spectrum [28, 29].

The bound state equation (6.10) appears to have a hidden boost invariance, which ensures the correct frame depen-

dence for the energy eigenvalues, E =
p

M2 + P 2. We investigated this in some detail in D = 1 + 1 dimensions,
where the P -dependence of the wave function is given by (5.16). In D = 3+ 1 a similar relation holds when x||P , in
which case the bound state equation can be cast in the covariant form (6.32). Whether the frame dependence of the
wave function can be expressed analytically for general x is an open question.

The Poincaré covariance makes it possible to consider dynamical processes involving bound states. We studied
electromagnetic form factors and parton-hadron duality in D = 1+ 1. Many more processes are of interest, including
hadron-hadron scattering. The outcome of such studies, including the loop corrections mentioned above, will determine
whether considering the O

�
g
0
�
homogeneous solution (6.11) of Gauss’ law is physically viable.

17 The sole exception is the V (r) ⇠ 1/r potential in D = 3 + 1 dimensions, which is often found in textbooks.

True particle production (string breaking)
is included iteratively, through the overlap 
of the zero-width states 
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NC

Z h Y

k=A,B,C

dxk
1dx

k
2

i
e
i(xA

1 +xA
2 )·PA/2�i(xB

1 +xB
2 )·PB/2�i(xC

1 +xC
2 )·PC/2

⇥ h0|
⇥
 
†(xB

2 )�
†
B�

0
 (xB

1 )
⇤⇥
 
†(xC

2 )�
†
C�

0
 (xC

1 )
⇤⇥
 
†(xA

1 )�
0(xA

1 )�A (x
A
2 )

⇤
|0i

= � (2⇡)3p
NC

�
3(PA � PB � PC)

Z
d�1d�2 e

i�1·PC/2�i�2·PB/2Tr
⇥
�
0�†

B(�1)�A(�1 + �2)�
†
C(�2)

⇤
(7.1)

If the A ! B + C amplitude is combined with B + C ! A we get a hadron loop correction to the propagation of A.
The loop also induces mixing between hadrons, A ! B + C ! D. Thus the orthogonal basis of wave functions �(x)
which satisfy the bound state equation (6.10) needs to be rediagonalized when hadron loop corrections are considered.
Similarly to the Dirac wave functions (see remark (ii) above) the original basis functions are not normalizable, as
their norm �†(x)�(x) approaches a constant at large |x|. The mixing will likely redistribute the large |x| components
of low-lying states onto higher-lying states (which then decay into on-shell pairs, much like the pions produced in
phenomenological string breaking). The states of the rediagonalized basis may thus become normalizable. The
importance of the loop corrections for physical quantities depends on how sensitive measurables are to the large |x|
components of the wave functions. In D = 1+ 1 both the parton distributions and duality relations were determined
by low values of x, and should therefore be fairly insensitive to the mixing e↵ects.

There is an essential di↵erence between the Dirac wave functions and the ff̄ solutions of (6.10). The ff̄ wave functions
�(x) are (in the rest frame) generally singular at M = V (|x|) [42]. Regular (locally normalizable) solutions exist
only for discrete bound state masses. The Dirac wave functions have no singularities, implying a continuous mass
spectrum [28, 29].

The bound state equation (6.10) appears to have a hidden boost invariance, which ensures the correct frame depen-

dence for the energy eigenvalues, E =
p

M2 + P 2. We investigated this in some detail in D = 1 + 1 dimensions,
where the P -dependence of the wave function is given by (5.16). In D = 3+ 1 a similar relation holds when x||P , in
which case the bound state equation can be cast in the covariant form (6.32). Whether the frame dependence of the
wave function can be expressed analytically for general x is an open question.

The Poincaré covariance makes it possible to consider dynamical processes involving bound states. We studied
electromagnetic form factors and parton-hadron duality in D = 1+ 1. Many more processes are of interest, including
hadron-hadron scattering. The outcome of such studies, including the loop corrections mentioned above, will determine
whether considering the O

�
g
0
�
homogeneous solution (6.11) of Gauss’ law is physically viable.

17 The sole exception is the V (r) ⇠ 1/r potential in D = 3 + 1 dimensions, which is often found in textbooks.

Duality allows qq̅ states to describe multiparticle production
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O
�
↵0
s

�

Consider a homogeneous solution of Gauss law,
for each component qA(x1)q̅A(x2) of the state:

A0
a(x;x1,x2, A) =

⇥
x� 1

2 (x1 + x2)
⇤
· x1 � x2

|x1 � x2|
TAA
a 6⇤2

X

a

⇥
rxA

0
a(x;x1,x2, A)

⇤2
= 12⇤4 Universal field energy

density determines ΛQCD

X

A

A0
a(x;x1,x2, A) / TrTAA = 0 Another hadron feels 

no field at any x

O (g)Aj
a is of Perturbative compared to A0

a

Classical confining field in QCD

Translation invariance requires a linear dependence on x.

Color symmetry requires A0
a / TAA

a

Universal field energy density determines dependence on x1–x2

Unique?!

r2
xA

0
a(x;x1,x2, A) = 0
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  Bound state equation

Bound state condition implies, with x = x1–x2 

ir ·
�
�0�,�(x)

 
+m

⇥
�0,�(x)

⇤
=
⇥
M � V (x)

⇤
�(x)

HV |MiV = M |MiV

Expanding the 4 × 4 wave function 
in a basis of 16 Dirac structures Γi(x) �(x) =

X

i

�i(x)Fi(r)Yj�(x̂)

we may use rotational, parity and charge conjugation invariance to determine
which Γi(x) may occur for a state of given jPC:

10

“trajectories”, identified by the J
PC quantum numbers of their j = 0 member5:

0�+ trajectory [s = 0, ` = j] : �⌘P = ⌘C = (�1)j �5, �
0
�5, �5 ↵ · x, �5 ↵ · x⇥L

0�� trajectory [s = 1, ` = j] : ⌘P = ⌘C = �(�1)j �
0
�5 ↵ · x, �

0
�5 ↵ · x⇥L, ↵ ·L, �

0 ↵ ·L

0++ trajectory [s = 1, ` = j ± 1] : ⌘P = ⌘C = +(�1)j 1, ↵ · x, �
0↵ · x, ↵ · x⇥L, �

0↵ · x⇥L, �
0
�5 ↵ ·L

0+� trajectory [exotic] : ⌘P = �⌘C = (�1)j �
0
, �5 ↵ ·L

(4.4)

The non-relativistic spin s and orbital angular momentum ` are indicated in brackets. Relativistic e↵ects mix the
` = j ± 1 states on the 0++ trajectory, resulting in a pair of coupled radial equations. The j = 0 state on the 0��

trajectory and the entire 0+� trajectory are incompatible with the s, ` assignments and thus exotic in the quark
model. They turn out to be missing also in the relativistic case. The bound state equation (3.8) has no solutions for
states on the 0+� trajectory (�i = �

0 or �5 ↵ ·L) since

ir ·
�
↵, �

0
 
= ir · {↵, �5 ↵ ·L} = m

⇥
�
0
, �

0
⇤
= m

⇥
�
0
, �5 ↵ ·L

⇤
= 0 (4.5)

B. Properties of the 0�+ trajectory: ⌘P = (�1)j+1, ⌘C = (�1)j

1. Wave function and radial equation

According to the classification (4.4) we expand the wave function ��+(x) of the 0�+ trajectory as

��+(x) =
h
F1(r) +↵ · xF2(r) +↵ · x⇥LF3(r) +m�

0
F4(r)

i
�5 Yj�(x̂) (4.6)

Using this in the bound state equation (3.8), noting that ir · x ⇥ L = L2 and equating terms with the same Dirac
structure we get the conditions:

�5 : i(3 + r@r)F2 + j(j + 1)F3 +m
2
F4 = 1

2 (M � V )F1

�5 ↵ · x :
i

r
@rF1 = 1

2 (M � V )F2

�5 ↵ · x⇥L :
1

r2
F1 = 1

2 (M � V )F3

�
0
�5 : F1 = 1

2 (M � V )F4 (4.7)

Expressing F2, F3 and F4 in terms of F1 we find the radial equation (denoting F
0
1 ⌘ @rF1)

F
00
1 +

⇣2
r
+

V
0

M � V

⌘
F
0
1 +

h
1
4 (M � V )2 �m

2 � j(j + 1)

r2

i
F1 = 0 (4.8)

in agreement with the corresponding result in Eq. (2.24) of [11].

The relations (4.7) allow to express the wave function (4.6) as

��+(x) =
h 2

M � V
(i↵ ·

!
r+m�

0) + 1
i
�5 F1(r)Yj�(x̂) = F1(r)Yj�(x̂) �5

h
(i↵ ·

 
r�m�

0)
2

M � V
+ 1

i
(4.9)

The radial equation (4.8) is readily found when the first (second) form is used in the first (second) term of the bound
state equation (3.9). Both terms have a spin-orbit interaction which cancels in their sum. The contribution from the
quark term is, taking into account the radial equation,

h 2

M � V
(i↵ ·

!
r+m�

0)� 1
i
��+(x) =

4V 0

r(M � V )3
(2S ·L� im� · x)�5 F1(r)Yj�(x̂) (4.10)

where the spin S = 1
2�5↵. This contribution is cancelled by the antiquark (second) term of (3.9), ensuring that the

bound state is stationary in time.

5 The first three trajectories were named ⇡, A1 and ⇢ in [11].

There are no solutions for quantum numbers that would be exotic 
in the quark model (despite the relativistic dynamics)

V (x1 � x2) =
X

a

1
2gT

AA
a

⇥
A0

a(x1)�A0
a(x2)

⇤
= g⇤2|x1 � x2|

⇒ 
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  Example: 0–+ trajectory wf’s

��+(x) =
h 2

M � V
(i↵ ·

!
r+m�0) + 1

i
�5 F1(r)Yj�(x̂)

Radial equation: F 00
1 +

⇣2
r
+

V 0

M � V

⌘
F 0
1 +

h
1
4 (M � V )2 �m2 � j(j + 1)

r2

i
F1 = 0

j

Spectrum similar to
dual models

Local normalizability at r = 0 and at V(r) = M determines the discrete M

•  0–+

•  0––

•  0++

/V´

Chiral symmetric spectrum (m = 0)
Linear Regge
trajectories 

with daughters



14Bound states in motion

A qq̅ bound state with CM momentum P may be expressed as

Note: In a Hamiltonian formulation states are at equal time in all frames.

Their boost covariance is not explicit: few (if any?) examples exist.

The potential Hamiltonian is

What is the classical field ?

The answer depends on the frame of the observer.

HV =

Z
dx †(t,x)

⇥
� i↵ ·

!
r+m�0 + 1

2�
0g /A(P )

⇤
 (t,x)

Aµ
(P )

|M,P iV ⌘
Z

dx1 dx2  ̄(t = 0,x1) e
iP ·(x1+x2)/2�(P )(x1 � x2) (t = 0,x2) |0i



151. The classical field is independent of P

The component  ̄(x1) (x2) |0i specifies positions, not momenta.

It is independent of P and so is the instantaneous A0 field.

P breaks rotational symmetry: angular-radial separation is not possible.

E =
p
P 2 +M2

The wave function Φ1(P)(x) is found numerically (P-dependence analytically?)

The bound state equation has a P-independent potential V (x) = V 0|x|

An analytic solution for Φ1(P)(x) is found in D = 1+1 dimensions.

This provides a boundary condition at x⊥ = 0, which ensures

Φ1(P)(x) determines the states with momentum P in the original frame.

ir ·
�
↵,�(P )

1 (x)
 
� 1

2P ·
⇥
↵,�(P )

1 (x)
⇤
+m

⇥
�0,�(P )

1 (x)
⇤
=
⇥
E � V (x)

⇤
�(P )

1 (x)



162. The classical field is boosted to frame P

In a moving frame the rest frame A0 field appears as  (x = x1 – x2): 

Define boost ξ taking  P = (0, 0, P)  along the z-axis:    P = M sinh(ξ)

A3
(P )(x) = sinh ⇠A0(xR)A0

(P )(x) = cosh ⇠A0(xR)

where the rest frame (Lorentz dilated) separation is xR = (x, y, z cosh ⇠)

The P-dependence of this Φ2(P)(x) is found analytically from the BSE:

The wave function is contracted and spin rotated (like the Dirac wf.)

Extra twist: The magnetic field B = ∇×A causes the state to precess in time

Gives the dynamics of the rest frame state as seen in a moving frame.

�(P )
2 (x) = e�⇠�0�3/2 �(0)(xR) e

⇠�0�3/2



17States with P = M = 0

We required the wave function to be normalizable at r = 0 and V´r = M

For M = 0 the two points coincide. Regular, massless solutions are found.

The massless 0++ meson “σ” is particularly interesting: Having vacuum
quantum numbers it can mix with the vacuum and break chiral invariance.

��(x) = N�

h
J0(

1
4r

2) +↵ · x i

r
J1(

1
4r

2)
i

|�i =
Z

dx1 dx2  ̄(x1)��(x1 � x2) (x2) |0i ⌘ �̂ |0i

P̂µ |�i = 0 State has vanishing four-momentum in any frame

For m = 0 :

where J0 and J1 are Bessel functions.

It is like a non-trivial condensate.



18A chiral condensate

Since | σ 〉 has vacuum quantum numbers and zero momentum it can mix
with the perturbative vacuum without violating Poincaré invariance

|�i = exp(�̂) |0iAnsatz: implies h�| ̄ |�i = 4N�

An infinitesimal chiral rotation of the condensate gives rise to a pion

U�(�) |�i = (1� 2i� ⇡̂ |�i

�⇡ = �5��where π̂  is the massless 0–+ state with wave function

h�|jµ5 (x)⇡̂ |�i = iPµf⇡ e
�iP ·x

The massless pion is annihilated by the axial current:

= 0



19Bound states built on |χ〉

|Mi� =

Z
dx1 dx2  ̄(x1)�(x1 � x2) (x2) |�i

The fields in |χ〉 will break chiral invariance (no parity doublets).

5 10 15 20 25

-0.5

0.5

1.0

1.5

J0

For low momentum transfers Φσ 
may be approximated to be pointlike 

��(x) ! ��0(x) = �3(x)�0

|�i ! |�0i = exp
h
�0

Z
dx  ̄(x) (x)

i
|0i

The contractions of ψ̅(x1)ψ(x2) with ψ̅ψ in | χ 〉 will have the effect 
of a mass term in ℋV

⇒ Momentum dependent mass term as in the DSE approach?
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Some topical issues

•   Validity of perturbative S-matrix with bound asymptotic states

H = HV +HI HV = H0 +HI(Acl)

•   Equal-time bound states in motion
– P-dependence of wave function (fixed field)
– Precession of state (in the magnetic field due to the boost)

•   Phenomenology of chiral symmetry breaking with  mu, md ≠ 0

•   Hadron spectrum (including baryons)

•   Duality and Parton distributions

•   Hadron decays and scattering amplitudes (string breaking)
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Back-up slides
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For baryons an analogous procedure gives the confining potential:

Translation invariance requires color singlet meson and baryon states.

It agrees with the meson potential when two quarks coincide:

VB(x1,x2,x2) = VM(x1 � x2)

Baryons

VB(x1,x2,x3) =
g⇤2

p
2

p
(x1 � x2)2 + (x2 � x3)2 + (x3 � x1)2

For SU(3) this type of solution only exists for qq̄ and qqq states.

The “external” color field vanishes also for the qqq states.
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The Dirac Electron in Simple Fields*

By MILTON S. PLESSET

Sloane. Physics Laboratory, Yale University

(Received June 6, 1932)

The relativity wave equations for the Dirac electron are transformed in a

simple manner into a symmetric canonical form. This canonical form makes readily

possible the investigation of the characteristics of the solutions of these relativity

equations for simple potential fields. If' the potential is a polynomial of any degree

in x, a continuous energy spectrum characterizes the solutions. If the potential is a

polynomial of any degree in 1/x, the solutions possess a continuous energy spectrum

when the energy is numerically greater than the rest-energy of the electron; values

of the energy numerically less than the rest-energy are barred. When the potential

is a polynomial of any degree in r, all values of the energy are allowed. For poten-
tials which are polynomials in 1/r of degree higher than the first, the energy spec-

trum is again continuous. The quantization arising for the Coulomb potential is an

exceptional case.

'N HIS treatment of the reflection of the relativity electron at a potential
-- jump Klein' found a paradoxical behavior of the Dirac electron associ-

ated with the possibility of the existence of states of negative kinetic energy.

He showed by an ingenious treatment that the reflection coefficient for elec-

trons incident upon a discontinuous potential jump of height P varied with

P from the value zero for P =0 to the value unity for P = W—mc' (W being

the energy of the incident electrons). For this last value of P the momentum
P associated with the transmitted beam had the value zero, and as I' was
increased beyond t/t' —nsc' this momentum became imaginary and the reHec-

tion coefficient remained unity until I' attained the value t/t/'+mc'. The re-

sults thus far are exactly what would be expected. If I' is increased further

one enters the domain of negative kinetic energy wherein the group velocity

and the momentum in the transmitted beam are oppositely directed; also the

reflection coefficient falls off from the value unity and approaches the value

(W—cp)/(W+cp) as P is indefinitely increased. Thus by a transition to a

state of negative kinetic energy the Dirac electron has apparently an appreci-

able probability of penetrating a barrier of infinite height. Bohr suggested
that this peculiar result might be due to a jump in potential of the order of
mc' over a region of the order of the Compton wa've-length k/mc. It is within
a region of the order of h/mc ths. t the internal structure of the Dirac electron

and the accompanying "trembling" phenomenon' manifests itself. This

supposition of Bohr was verified by Sauter' who treated the problem of the

* The results of this paper were presented at the Washington meeting of the American

Physical Society (April, 1932).
' O. Klein, Zeits. f. Physik 53, 157 (1929).
' E. Schrodinger, Preuss. Akad. Wiss. Berlin, Ber. 24, 418 (1930).
3 F. Sauter, Zeits. f. Physik 69, 742 (1931).
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of the distribution at low xBj is attributed to f ¯f pairs, indicating again

the inclusive nature of the wave functions obtained with retarded boundary

conditions.
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24Example of Dirac wave functions:                         in D=1+1

V=2m

2 4 6 8 10 12 14

-0.5

-0.25

0.25

0.5

0.75

1

m/e = 2.5

ex

30 32 34 361 2 3 4

0.2
0.4
0.6
0.8

1

x

ex

Wf

m/e = 4.0

Dirac φ(x)
Schrödinger ρ(x)  Φ

1
(x)   f f

  ρ(x)   Schrödinger

(a) (b)

_

Wf NR region: b†

d (pairs)

|M � 0i =
Z

dp

2⇡2E

Z
dx

h
b†pu

†(p)e�ipx + dpv
†(p)eipx

i  '(x)
�(x)

�
|⌦i

The “single particle” Dirac wave function contains pair contributions (duality)

V (x) = 1
2e

2|x|
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25Parton distributions have a sea component

The sea component is prominent at low m/e :

0.2 0.4 0.6 0.8 1.0
xBj

2

4

6

8

10
xBjf xBj( )

xBj
2
4
6
8
10
12
14
xBjf xBj( )

0.10.050.010.001

(a) (b)

The red curve is an analytic approximation, valid in the xBj  → 0 limit.

m/e = 0.1

(log scale in xBj)

Note: Enhancement at low x is not due to �IMF
A (valence wf.)
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Plane waves in bound states 

In the parton picture, high energy quarks can be treated as free constituents.
They are momentum eigenstates, described by plane waves.
How does this fit into the bound state wave functions?

Consider a highly excited state (P=0):   M → ∞,  V(x) << M

σ = (M-V)2  ≈ M2 – 2MV  →∞ 

�(� ! 1) ⇠ exp(±i�/2)

Thus oscillations of the wf at large σ gives a plane wave with p = ±M/2

= e±iM2

exp(⌥ixM/2)

The operator expression for the state is in this limit:

|M,P = 0i =
p
2⇡

2M

�
b†M/2d

†
�M/2 + b†�M/2d

†
M/2 |⌦i

As in the parton picture, only “valence” particles appear (no b or d operators).

)



Paul Hoyer Firenze 2018

27

Rules of Thumb - e.g., OZI

�(1020) ! KK̄ 83.1 %ϕ
s
s
_

u

u
_

K

K
_ ΔE

26 MeV

Br

�(1020) ! ⇡⇡⇡ ϕ π
π
π

u

u
_

s

s
_

15.3 %610 MeV

Disconnected, perturbative diagrams are suppressed

Connected diagrams: Unsuppressed, string breaking from confining potential

This suggests that perturbative corrections are small even in the soft regime.
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28qq ̅wave functions

The separation of angular and radial coordinates in the BSE

for any radial potential V = V(r) and
equal fermion masses m1 = m2 = m is in:

ir ·
�
�0�,�(x)

 
+m

⇥
�0,�(x)

⇤
=
⇥
E � V (r)

⇤
�(x)

Geffen and Suura, PRD 16 (1977) 3305

The solutions of given spin j and jz are classified according to their
charge conjugation C and parity P quantum numbers:

pion trajectory: P = (�1)j+1 C = (�1)j

C = (�1)j+1a1 trajectory: 

rho trajectory: C = (�1)jP = (�1)j

P = (�1)j+1

There are no “quark model exotics” with  P = (�1)j and C = (�1)j+1
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39

(ii) It has been known since 1932 [28] that the normalization integral
R
d
3x| (x)|2 of the Dirac wave function diverges

for all polynomial potentials V (|x|) and that the energy spectrum is continuous17. There is little awareness and
understanding of this property of the Dirac bound states (see [30] for a recent discussion). With retarded boundary
conditions  †

 is the number operator of positive and negative energy fermions, and its expectation value in the
Dirac state is | (x)|2. Fig. 14 supports the interpretation of | (x)|2 as an inclusive particle density.

δ1

δ2
A

B

C

FIG. 19: The dual diagram for meson
splitting A ! B + C, given by (7.1).
The qq̄ pair is created at distance �1

from the quark and �2 from the anti-
quark of meson A.

The ff̄ bound states that we studied in Section V also need to be built on
a vacuum that is an eigenstate of the Hamiltonian. This suggests an analogy
to the in and out states used as asymptotic states of the perturbative S-
matrix, which are eigenstates of the free Hamiltonian H0. States defined at
asymptotic times are on-shell and thus independent of the i" prescription in
their propagator. The ff̄ states discussed here may be used as asymptotic
states of the S-matrix, as in the electromagnetic form factor (5.48).

The time development from t = ±1 to the (finite) scattering time is deter-
mined by the full Hamiltonian. The asymptotic states therefore develop into
eigenstates of H by the time of scattering. In addition to contributions from
higher orders in ↵s, the bound states can split and merge as illustrated in
the dual meson diagram of Fig. 19. The amplitude hB,C|Ai can be evaluated
directly from the definition (6.12) of the meson states, using anticommutation
relations for the quark fields according to Fig. 19. Suppressing Dirac and color
indices,

hB,C|Ai =
1p
NC

Z h Y

k=A,B,C

dxk
1dx

k
2

i
e
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1 +xA
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2 )·PB/2�i(xC

1 +xC
2 )·PC/2

⇥ h0|
⇥
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2 )
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i�1·PC/2�i�2·PB/2Tr
⇥
�
0�†

B(�1)�A(�1 + �2)�
†
C(�2)

⇤
(7.1)

If the A ! B + C amplitude is combined with B + C ! A we get a hadron loop correction to the propagation of A.
The loop also induces mixing between hadrons, A ! B + C ! D. Thus the orthogonal basis of wave functions �(x)
which satisfy the bound state equation (6.10) needs to be rediagonalized when hadron loop corrections are considered.
Similarly to the Dirac wave functions (see remark (ii) above) the original basis functions are not normalizable, as
their norm �†(x)�(x) approaches a constant at large |x|. The mixing will likely redistribute the large |x| components
of low-lying states onto higher-lying states (which then decay into on-shell pairs, much like the pions produced in
phenomenological string breaking). The states of the rediagonalized basis may thus become normalizable. The
importance of the loop corrections for physical quantities depends on how sensitive measurables are to the large |x|
components of the wave functions. In D = 1+ 1 both the parton distributions and duality relations were determined
by low values of x, and should therefore be fairly insensitive to the mixing e↵ects.

There is an essential di↵erence between the Dirac wave functions and the ff̄ solutions of (6.10). The ff̄ wave functions
�(x) are (in the rest frame) generally singular at M = V (|x|) [42]. Regular (locally normalizable) solutions exist
only for discrete bound state masses. The Dirac wave functions have no singularities, implying a continuous mass
spectrum [28, 29].

The bound state equation (6.10) appears to have a hidden boost invariance, which ensures the correct frame depen-

dence for the energy eigenvalues, E =
p

M2 + P 2. We investigated this in some detail in D = 1 + 1 dimensions,
where the P -dependence of the wave function is given by (5.16). In D = 3+ 1 a similar relation holds when x||P , in
which case the bound state equation can be cast in the covariant form (6.32). Whether the frame dependence of the
wave function can be expressed analytically for general x is an open question.

The Poincaré covariance makes it possible to consider dynamical processes involving bound states. We studied
electromagnetic form factors and parton-hadron duality in D = 1+ 1. Many more processes are of interest, including
hadron-hadron scattering. The outcome of such studies, including the loop corrections mentioned above, will determine
whether considering the O

�
g
0
�
homogeneous solution (6.11) of Gauss’ law is physically viable.

17 The sole exception is the V (r) ⇠ 1/r potential in D = 3 + 1 dimensions, which is often found in textbooks.
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When squared, this gives a 1/NC hadron loop unitarity correction.

The bound state equation was obtained neglecting pair
production (string breaking).

String breaking: Pair production

There is an O

⇣
1/
p

NC

⌘
coupling between 
the states:
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1951: Salpeter & Bethe

1975: Caswell & Lepage: Not unique: ∞ # of equivalent equations,  S ↔ K

1986: Caswell & Lepage NRQED: Effective NR field theory
Relativistic electrons are rare in atomic wave functions

Today: Accurate calculations of atomic properties use NRQED 
Explicit Lorentz covariance is traded for physical arguments.
QED ensures validity of a rest frame calculation in any frame

44 Craig D. Roberts

Figure 6.1. Omitting the inhomogeneity, the upper panel illustrates the textbook form
of the Bethe-Salpeter equation, Eq. (3.10), whereas the lower panel depicts the form ex-
pressed in Eq. (6.1). The reversal of the total-momentum’s flow is immaterial here. N.B.
In any symmetry-preserving truncation, beyond the leading-order identified in Ref. [97];
i.e., rainbow-ladder, the Bethe-Salpeter kernel is nonplanar even if the vertex in the gap
equation is planar [167]. This is illustrated in Fig. 3.1.

Consider Eq. (6.2). Rainbow-ladder is the leading-order term in the systematic DSE
truncation scheme of Refs. [96,97]. It corresponds to Γf

ν = γν , in which case Eq. (6.2)
is solved by Λfg

5µβ ≡ 0 ≡ Λfg
5β . This is the solution that indeed provides the rainbow-

ladder forms of Eq. (6.1). Such consistency will be apparent in any valid systematic
term-by-term improvement of the rainbow-ladder truncation.

However, since the two-point functions of elementary excitations are strongly modified
in the infrared, one must accept that the same is generally true for three-point functions;
i.e., the vertices. Hence the bare vertex will be a poor approximation to the complete
result unless there are extenuating circumstances. This is readily made apparent, for
with a dressed-quark propagator of the form in Eq. (2.7), one finds immediately that the
Ward-Takahashi identity is breached; viz.,

Pµiγµ ≠ S−1(k + P/2) − S−1(k − P/2) , (6.3)

and the violation is significant whenever and wherever the mass function in Fig. 2.9
is large. This was actually realised early on, with studies of the fermion–gauge-boson
vertex in Abelian gauge theories [177] that have inspired numerous ensuing analyses. The
importance of this dressing to the reliable computation of hadron physics observables
was exposed in Refs. [178,179], insights from which have subsequently been exploited
effectively; e.g., Refs. [14,114,120,180–185].

The most important feature of the perturbative or bare vertex is that it cannot
cause spin-flip transitions; namely, it is an helicity conserving interaction. However, one
must expect that DCSB introduces nonperturbatively generated structures that very
strongly break helicity conservation. These contributions will be large when the dressed-
quark mass-function is large. Conversely, they will vanish in the ultraviolet; i.e., on the
perturbative domain. The exact form of the vertex contributions is still the subject of
study but their existence is model-independent.

Critical now is a realisation that Eq. (6.2) is far more than just a device for checking
a truncation’s consistency. For, just as the vector Ward-Takahashi identity has long

Perturbatively expand propagators S and kernel K
Explicit Lorentz covariance ensured

Brief history of QFT bound states

NRQED chooses to start from Schrödinger atoms with V(r) = – α/r


