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Perturbative calculations of bound states requires NP input, even in QED

e The “lowest order” wave function already has all orders of «
e Free in and out states of S-matrix have no overlap with bound states
* The classical gauge field keeps the asymptotic states bound

* A boundary condition in the classical gluon field eqs gives Aqcp

qq states bound by a classical gluon field may serve as hadrons at O(0)
e They incorporate confinement and chiral symmetry breaking
e Allow inclusion of higher orders in o, via the perturbative S-matrix
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"The J/y is the Hydrogen atom of QCD"
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QED works for atoms

Example: Hyperfine splitting in Positronium G.S. Adkins,
Hyperfine Interact. 233 (2015) 59
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e Binding energy 1s perturbative in . and log(a) (measurable)

e Wave function (r) « exp(— mar) is of O(0*) (used in NRQED)

There are many ways to (re)organize an expansion that starts with O(0.™)
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Linear Cornell potential agrees with Lattice QCD
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... and will here arise from a classical gluon field
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Interaction Picture

H="Ho+H; Ho \Z>m = F; \Z>m

o

Sti = ourlfot — 0 {Texp [—z/ dtHI(t)]}z’,t—> —o0),

— 0

Generates Feynman diagrams to arbitrary order for any scattering process

The in- and our-states at 1 = =0 must overlap the physical i, f states.

Bound states have no overlap with free in- and our-states at t = £ o

No finite order Feynman diagram for e*e- — e*e- has a positronium pole.

—> |We need to expand around in and out states with their classical gauge field
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Define "Potential Picture"

H=Hyv +H; Hy = Ho+ Hi(Ag)

©.@)

S = v{f,t — o0 {TeXp [— z/ dtHI(t)} } it — —00)y,

Hy |i)y, = Eili)y,

Perturbative expansion should be expanded around a stationary action

Classical field defined 5S[AM]
/ [dA*] exp (iS[A"]/h) by stationary action 5AMCZ =0
cl

Dominates for i — 0

A proper derivation a la Interaction Picture required

Here: Stay at 7—[? level.
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Two consequences of i — 0 in QCD

. 't ~
1. The suppression of loops, s~ 043 Gribov hep-ph/9902279
stops the running of o * '

Sept. 2013

. R . . o v T decays (N3LO)
Gribov’s prediction agrees %(Q) @ Lattice QCD (NNLO)

phenomenological estimates: ~ » DIS jets NLO)
03+ 0 Heavy Quarkonia (NLO)

O(S(O)/TE ~0.14 o ¢'¢ jets & shapes (res. NNLO)
® 7 pole fit (N3LO)

v pp—> jets (NLO)

= PQCD corrections to J(h0) 02}
can be relevant.

0.1}
2. In the absence of loops, the = QCD 05(Mg) = 0.1185 % 0.0006

QCD scale Apcp cannot arise 1 0 o[Gev] 1000
from renormalization.

= Aopcp must arise from a boundary condition on the classical field equations.
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Tllustration: Positronium at rest

dk k) is the Schrodinger
A — AV 0 @ (k) 1s the Schrodinge
| >v /(27‘(‘)3 (k) kA1 —’WQ‘ ) wave function

— /da:l dxo @a((), 2131) (I)aﬁ(wl — $2) wﬁ(()? w2) ’O>

where @ is given by the Schrodinger wave function as

(I)Oéﬁ(w) — « [’you(_i V, Al)} [@(Z V, >‘2)70} 3 ¢(CU)

Impose: Hy |M),, = M |M),,

where 7y, has the classical photon field.
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The classical field for Positronium

For the component |1, x2) = 1(t, 1) (¢, £2)|0) of the Positronium state

the classical A9 field 1s NN

t @5
eA%(a; a1, ) = - ,\{\///Z’/\\T

Tl el gl

to be used 1n ‘/'/ \\\\<

Hy (t 1, 2) = /dw Pt 2) [ =iV -+ mny’ + JeA% (@ @y, ®2) (¢, x)

Note: AV1s determined instantaneously for all x

It depends on x1, x2

(87

eA%(x1) = —eA’(x) = is the classical —a/r potential

|z — a0

| But: An external observer at x sees a dipole field
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qG)+, states in QCD

qq state atrest | M), = /dwl dxo Vi (t, 21) <I>£§3(:c1 — x9) W,?(t, x2) |0)

1
Color singlet wave function A5 (1 — x2) = JNo 5AB(I)(5131 — T3)
C

L.
>

Lesson from Dirac dynamics:
A strong potential creates pairs via Z-diagrams. -
Those virtual pairs are included in |M),, 2 §

True particle production (string breaking)
1s included 1teratively, through the overlap
of the zero-width states < B, C‘ A> — A

Duality allows qq states to describe multiparticle production C



Classical confining field in QCD

Consider a homogeneous solution of Gauss law,
for each component g4(x1)qA(x2) of the state:

V:%Ag(w7 L1,L2, A) =0

Translation invariance requires a linear dependence on x.
Universal field energy density determines dependence on x;—x>

Color symmetry requires Ag X ch;‘A

Xr1 — L9 .
TA%6A2 Unique?!
1 — x5

Ad(; 21, @2, A) = |2 — S(21 + T2)] -

Z [VmAg(:B; L1, Lo, A)} “_ 120 O (a?) Universal ﬁel.d energy
density determines Aocp

Z A(x: @y, 0, A) x Tr TA4 =0 Another hadron feels
A no field at any x

Al isof O(g) Perturbative compared to .AJ



Bound state equation

Hy |M),, = M |M),, Bound state condition implies, with x = x1—x>
iV - {7y, @(@)} +m [y, 0(x)] = [M - V(z)| ()

V(o —x2) = Y 39T A (1) — AY(w2)] = gA®|@y — o2
Expanding the 4 x 4 wave function Z Iy V(@)
in a basis of 16 Dirac structures Ii(x) *
we may use rotational, parity and charge conjugation invariance to determine
which I';(x) may occur for a state of given jPC:

0~ trajectory [s =0, {=j]: —np =nc = (=1 75, 75, 13- ®, 3a-x x L

N
%

s=1,0l=j+1]: np=nc =+ 71, a =z, Ya-z, a-xx L, Ya-zx L, YYya-L

[
0™~ trajectory [s =1,
0T T trajectory |

[

(—1)

=4l mp=nc=—(-1) Ypa-x, VYpsa-exL, a-L y"a-L
(—1)
= (—-1)

}—l

0"~ trajectory [exotic] : np = YW, vsa - L

—> There are no solutions for quantum numbers that would be exotic
in the quark model (despite the relativistic dynamics)



Example: O trajectory wf's

2 .2 .
b, ()= [ (i - V +mn°) + 1}75 Py (1Y (&)
M-V
. e 1 g v’ / 1 - 2 2_j(j+1) _
Radial equation: F| + (T + i V)F1 + L(M V) —m - ]Fl =0

Local normalizability at » = 0 and at V(r) = M determines the discrete M

Chiral symmetric spectrum (m = 0)

Linear Regge
trajectories .
with daughters ~ J
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Bound states in motion

A qq bound state with CM momentum P may be expressed as

M, P),, = /dwl do h(t = 0,x1) T @422 () (1, — @)t = 0, 2) |0)

Note: In a Hamiltonian formulation states are at equal time in all frames.

Their boost covariance 1s not explicit: few (if any?) examples exist.

The potential Hamiltonian is

HV:/dwa(t,az)[—za V +my’ + ’YQA(P)} W(t, x)

What is the classical field A( P)

The answer depends on the frame of the observer.
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1. The classical field is independent of P

The component /()Y (x2) |0) specifies positions, not momenta.
It 1s independent of P and so is the instantaneous A9 field.

The bound state equation has a P-independent potential V' (x) = V'|z|
iV {e, 2 (@)} - §P- [0, 0] (@)] + m[y*, 2] ()] = [E - V(x)] & (x)
P breaks rotational symmetry: angular-radial separation is not possible.

An analytic solution for ®1®)(x) is found in D = 1+1 dimensions.

This provides a boundary condition at x. = 0, which ensures £ = vV P? + M?

The wave function ®;)(x) is found numerically (P-dependence analytically?)

@ (P)(x) determines the states with momentum P in the original frame.
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2. The classical field is boosted to frame P

Gives the dynamics of the rest frame state as seen in a moving frame.
Define boost & taking P = (0,0, P) along the z-axis: P = M sinh(&)

In a moving frame the rest frame A° field appears as (x = x1 — x2):
A(()P) (x) = cosh & A (xR) A:()’P) () = sinh ¢ A%(xR)
where the rest frame (Lorentz dilated) separationis Tr = (z,y,2cosh§)

The P-dependence of this ®,(P)(x) is found analytically from the BSE:
O () = =62 O () 677/
The wave function is contracted and spin rotated (like the Dirac wf.)

Extra twist: The magnetic field B = VXA causes the state to precess in time



States withP=M=0

We required the wave function to be normalizable at r =0 and V'r = M
For M = 0 the two points coincide. Regular, massless solutions are found.

The massless 0+ meson “0” is particularly interesting: Having vacuum

quantum numbers it can mix with the vacuum and break chiral invariance.

‘O’> = /diBl dCBQ @E(Zl?l) (I)U(a}l — wg)lp(ibz) |O> =0 ‘O>
Form=0: ®,(x)=N, {Jo(i’lg) + o - x- Jl(irz)}
r
where Jo and J; are Bessel functions.

]5“ ‘0> — () State has vanishing four-momentum in any frame

It 1s like a non-trivial condensate.



A chiral condensate

Since | 0 ) has vacuum quantum numbers and zero momentum it can mix
with the perturbative vacuum without violating Poincaré invariance

Ansatz: |x) = exp(c)|0) implies {x|Y |x) = 4N,

An infinitesimal chiral rotation of the condensate gives rise to a pion
Uyx(B)[x) = (1 = 2iB 7 |x)

where 77 is the massless 0 state with wave function ¢ = V5P,

The massless pion is annihilated by the axial current:

(x|t ()7 |x) = iP' fre " =0
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Bound states built on |y)

M), = / 0z, dwy § (1) B(@1 — x2) (@) [Y)

The fields in ly) will break chiral invariance (no parity doublets).

For low momentum transfers @ 19y
may be approximated to be pointlike

1.0

Bo(2) — Dyo(x) = 6°(2)n

) = o) =exp 60 [ ded@)i@)] 0) .

The contractions of {(x1)Y(x2) with 91 in | x ) will have the effect
of a mass term in Ay

= Momentum dependent mass term as in the DSE approach?



Some topical issues

Validity of perturbative S-matrix with bound asymptotic states

H=Hy + H; Hy = Ho+ Hi(Ayg)

Equal-time bound states in motion
— P-dependence of wave function (fixed field)
— Precession of state (in the magnetic field due to the boost)

Phenomenology of chiral symmetry breaking with m1,, mg # 0
Hadron spectrum (including baryons)
Duality and Parton distributions

Hadron decays and scattering amplitudes (string breaking)
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Back-up slides
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Baryons

For baryons an analogous procedure gives the confining potential:

gA”

V2

Vi(x1, X2, x3) = \/(35‘1 —x9)? + (2 — x3)? + (3 — T1)?

It agrees with the meson potential when two quarks coincide:

VB(€B1,€B27€I32) = VM(a?l — 5132)

Translation invariance requires color singlet meson and baryon states.

The “external” color field vanishes also for the ggg states.

For SU(3) this type of solution only exists for ¢¢ and 999 states.
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The Dirac Electron in Simple Fields*

By MiLTON S. PLESSET
Sloane Physics Laboratory, Yale University

(Received June 6, 1932)

The relativity wave equations for the Dirac electron are transformed in a
simple manner into a symmetric canonical form. This canonical form makes readily
‘possible the investigation of the characteristics of the solutions of these relativity
equations for simple potential fields. If the potential is a polvnomial of any degree
in x, a continuous energy spectrum characterizes the solutions. If the potential is a
polynomial of any degree in 1/x, the solutions possess a continuous energy spectrum
when the energy is numerically greater than the rest-energy of the electron: values
of the energv numerically less than the rest-energv are barred. When the potential
i1s a polynomial of any degree in #, all values of the energy are allowed. For poten-
tials which are polynomials in 1/7 of degree higher than the first, the energy spec-
trum is again continuous. The quantization arising for the Coulomb potential is an
exceptional case.

E. C. Titchmarsh, Proc. London Math. Soc. (3) 11 (1961) 159 and 169; Quart.

J. Math. Oxford (2), 12 (1961), 227.
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Example of Dirac wave functions: V(z) = 2e°|z| in D=1+1 24

/zsz/dx bT ul (p)e™" + o' (pe W} [ S;Eg ] £2)

Wt /NR region: DT
11

| mmm  Dirac @(x)
'. d
0'75; = = Schrodinger p(x) (pairs)
0.5 /
0.25|
0.25}
-0.51

V=2m

The “single particle” Dirac wave function contains pair contributions (duality)



Parton distributions have a sea component

The sea component i1s prominent at low mi/e :

m/e = 0.1

xg;f (xB;)
10¢

N A

(a)

02 04
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xgif (xB;j)

M xBj

1

12}
10§
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(b)

(log scale in xp))

0.001

0.01

a X
0.050.1

The red curve 1s an analytic approximation, valid in the xp; — 0 limat.

Note: Enhancement at low x is not due to P
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Plane waves in bound states

In the parton picture, high energy quarks can be treated as free constituents.
They are momentum eigenstates, described by plane waves.
How does this fit into the bound state wave functions?

Consider a highly excited state (P=0): M — «©, V(x) << M
o=M-V)2 = M2 -2MV —

B(0 — 00) ~ exp(Fic/2) = eFM" exp(Fiz M/2)

Thus oscillations of the wif at large 0 gives a plane wave with p = +M/2

The operator expression for the state 1s in this limit:

V2T o i
M, P =0)= oM (bM/2d—M/2+b M2 M/2)|Q>

As 1n the parton picture, only “valence” particles appear (no b or d operators).

Paul Hoyer Firenze 2018
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Rules of Thumb - e.g., OZT

Connected diagrams: Unsuppressed, string breaking from confining potential

— = % AE Br
s/ '

S

$(1020) - KK ¢ 26 MeV  83.1 %

o~

Disconnected, perturbative diagrams are suppressed

JU 610 MeV 153 %

This suggests that perturbative corrections are small even in the soft regime.
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qdq wave functions

The separation of angular and radial coordinates in the BSE

iV - Ay, ®(x)} +m [y, ()] = [E—V(r)|®(x)

for any radial potential V = V(r) and
equal fermion masses m; = mz = m 1S 1n; Geffen and Suura, PRD 16 (1977) 3305

The solutions of given spin j and J are classified according to their
charge conjugation C and parity P quantum numbers:

pion trajectory: P = (_1)j+1 C — (_1)j
a trajectory: P = (_1)j‘|‘1 C = (_1)j+1
rho trajectory: P = (—1)j O = (_1)3'

There are no “quark model exotics” with P = (—1)? and C = (-1)’"
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N

9

String breaking: Pair production

The bound state equation was obtained neglecting pair
production (string breaking).

\
7\

Thereisan O (1/4/N¢) coupling between 5
( ) the states: 4\
C
(B,Cl4) =
(2m)°

\/N—cég(PA — Pp — P¢) /d51d52 e'01Pc/27i02 P /2y [’YO@E(&)@A((& + 52)@2*(52)}

When squared, this gives a 1/N¢ hadron loop unitarity correction.
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Brief history of QFT bound states

1S

tT tT
1951: Salpeter & Bethe ---- = ---- K

Perturbatively expand propagators S and kernel K 13
Explicit Lorentz covariance ensured

1975: Caswell & Lepage: Not unique: e # of equivalent equations, S <> K

1986: Caswell & Lepage NRQED: Effective NR field theory

Relativistic electrons are rare in atomic wave functions

Today: Accurate calculations of atomic properties use NRQED

Explicit Lorentz covariance is traded for physical arguments.
QED ensures validity of a rest frame calculation in any frame

NRQED chooses to start from Schrodinger atoms with V(r) = — o/r
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