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What is "confinement"?

Suppose we have an SU(N) gauge theory with matter fields in the fundamental representation,
e.g. QCD. Wilson loops have perimeter-law falloff asymptotically, Polyakov lines have a non-zero
VEV, what does it mean to say such theories (QCD in particular) are confining?

Most people take it to mean “color confinement” or

C-confinement
There are only color neutral particles in the asymptotic spectrum.

The problem with C-confinement is that it also holds true for gauge-Higgs theories, deep in the
Higgs regime, where there are

only Yukawa forces,

no linearly rising Regge trajectories,

no color electric flux tubes.

If C-confinement is “confinement,” then the Higgs phase is also confining.
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C-confinement in gauge-Higgs theories

How we know this:

1 Elitzur’s Theorem: No such thing as spontaneous
symmetry breaking of a local gauge symmetry.

2 The Fradkin-Shenker-Osterwalder-Seiler (FSOS)
Theorem: There is no transition in coupling-constant
space which isolates the Higgs phase from a
confinement-like phase.

3 Frölich-Morchio-Strocchi (FMS) and also ’t Hooft
(1980): physical particles (e.g. W’s) in the spectrum
are created by gauge-invariant operators in the Higgs
region.
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FMS show how to recover the usual results of perturbation theory, starting from gauge-invariant
composite operators.

Conclusion: If the confinement-like (QCD-like) region has a color neutral spectrum,
then so does the Higgs-like region.
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Beyond C-confinement?

In a pure SU(N) gauge theory there is a different and stronger meaning that can be
assigned to the word “confinement," which goes beyond C-confinement.

Of course the spectrum consists only of color neutral objects: glueballs.

But such theories also have the property that the static quark potential rises linearly or,
equivalently, that large planar Wilson loops have an area-law falloff.

Is there any way to generalize this property to gauge theories with matter in the
fundamental representation?
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Separation-of-charge (“S”) confinement

The Wilson area-law criterion for pure gauge theories is equivalent to “S-confinement.”

A static qq pair, connected by a Wilson line,
evolves in Euclidean time to some state

ΨV ≡ qa(x)V ab(x, y; A)qb(y)Ψ0

where V (x, y; A) is a gauge bi-covariant operator
transforming as

V ab(x, y; A)→ gac(x, t)V cd (x, y; A)g†db(y, t)

Wilson Line

quark antiquark

V(x,y,A)

ti
m

e

The energy above the vacuum energy Evac is

EV (R) = 〈ΨV |H|ΨV 〉 − Evac
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S-confinement, continued...

S-confinement

means that there exists an asymptotically linear function E0(R), i.e.

lim
R→∞

dE0

dR
= σ > 0

such that
EV (R) ≥ E0(R)

for ANY choice of bi-covariant V (x, y; A).

For an SU(N) pure gauge theory, E0(R) is the ground state energy of a static quark-antiquark pair,
and σ is the string tension. This is equivalent to the Wilson area-law criterion.

Our proposal: S-confinement should also be regarded as the confinement criterion in
gauge+matter theories. The crucial element is that the bi-covariant operators V ab(x, y; A) must
depend only on the gauge field A at a fixed time, and not on the matter fields.
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The idea is to study the energy EV (R) of physical states with large separations R of static color
charges, unscreened by matter fields.

If V ab(x, y; A) would also depend on the matter field(s), then it is easy to violate the
S-confinement criterion, e.g. let φ be a matter field in the fundamental representation, and

V ab(x, y, φ) = φa(x)φ†b(y)

Then

ΨV = {qa(x)φa(x)} × {φ†b(y)qb(y)}Ψ0

corresponds to two color singlet (static quark + Higgs) states, only weakly interacting at large
separations. Operators V of this kind, which depend on the matter fields, are excluded.

This also means that the lower bound E0(R), unlike in pure gauge theories, is not the lowest
energy of a state containing a static quark-antiquark pair.

It is the lowest energy of such states when color screening by matter is excluded.
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SU(2) doublet to group element

We consider a unimodular |φ| = 1 Higgs field. In SU(2) the doublet can be mapped to an SU(2)
group element

~φ =

[
φ1
φ2

]
=⇒ φ =

[
φ∗2 φ1
−φ∗1 φ2

]

and the corresponding action is

S = β
∑
plaq

1
2

Tr[UUU†U†] + γ
∑
x,µ

1
2

Tr[φ†(x)Uµ(x)φ(x + µ̂)]
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Tests of S-confinement

1 Does S-confinement exist anywhere in the β − γ phase diagram, apart from pure gauge
theory?

It can be shown that gauge-Higgs theory is S-confining in the region

γ � β � 1 and γ � 1
5

This is based on strong-coupling expansions and a theorem (Gershgorim) in linear algebra.

2 Then does S-confinement hold everywhere in the β − γ phase diagram?

If we can find even one V which violates the S-confinement criterion in some region of the
phase diagram, then we know the theory is not S-confining in that region. The question is
which V -operators might be useful for this purpose.
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Candidate operators

For V = Wilson line, EV (R) ∝ R even for non-confining theories. Not useful!
Instead we consider

1 The Dirac state
generalization of the lowest energy state with static charges in an abelian theory.

2 Pseudomatter
Introduce fields built from the gauge field which transform like matter fields. See if these
induce string-breaking.

3 "Fat link" states
Wilson lines built from smoothed links.
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The Calculation

In general

EV (R) = − lim
t→0

d
dt

log

[
〈ΨV |e−Ht |ΨV 〉
〈ΨV |ΨV 〉

]
− Evac

on the lattice

EV (R) = − log


〈

Tr
[
U0(x , t)V (x , y , t + 1)U†0 (y , t)V (y , x , t)

]〉
〈Tr [V (x , y , t)V (y , x , t)]〉



and we will focus on the SU(2) gauge-Higgs action

S = β
∑
plaq

1
2

Tr[UUU†U†] + γ
∑
x,µ

1
2

Tr[φ†(x)Uµ(x)φ(x + µ̂)]

where φ is SU(2) group-valued.
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The Dirac state

In an abelian theory, the gauge-invariant ground state with static ± electric charges is

Ψqq = {q(x)G†C(x; A)} × {GC(y; A)q(y)}Ψ0

where

GC(x; A) = exp
[
−i
∫

d3z Ai (z)∂i
1

4π|x− ~z|

]
GC(x,A) is the gauge transformation A→ Coulomb gauge. Non-abelian theory: define
V ab(x , y ; A) = G†ac

C (x; A)Gcb
C (y; A) and

ΨV = qa(x)G†ac
C (x; A)Gcb

C (y; A)qb(y)Ψ0

= qc(x)qc(y)Ψ0 in Coulomb gauge

then compute in Coulomb gauge

EV (R) = − log
〈 1

N
Tr[U0(0, 0)U†0 (R, 0)]

〉
by lattice Monte Carlo.
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EV (R) in the Dirac state

There is a sharp thermodynamic crossover in
the SU(2) gauge model at β = 2.2, γ ≈ 0.84.
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EV (R) rises linearly below the crossover, consistent with (but not a proof of)
S-confinement in this region.

The theory appears to be in the C-confinement phase above the transition.
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There is no thermodynamic transition or
crossover in the SU(2) gauge model at β = 1.2.
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EV (R) would appear to rise linearly below roughly γ = 1.68, at least in the large volume limit.
This is consistent with the conjectured S-confinement at small γ.

The theory appears to be in the C-confinement phase at higher γ.
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Remnant symmetry breaking

The transition in EV (R) coincides with the breaking of a remnant gauge symmetry g(x , t) = g(t)
that exists in Coulomb gauge. The appropriate order parameter for the symmetry breaking on a
time slice is

u(t) =
1
√

2V3

∑
x

U0(x, t)

and on the lattice we compute the susceptability

χ = V3(〈|u|2〉 − 〈|u|〉2) where |u| =

√√√√ 1
Nt

Nt∑
t=1

Tr[u†(t)u(t)]

Other gauges have other remnant symmetries. However,
the transition lines for remnant-symmetry breaking are
gauge-dependent.
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Pseudomatter

A pseudomatter field is a field constructed from the gauge field which transforms like matter in the
fundamental representation. Any example is any eigenstate

(−Di Di )
ab
xyϕ

b
n(y) = λnϕ

a
n(x)

of the covariant spatial Laplacian

(−Di Di )
ab
xy =

3∑
k=1

[
2δabδxy − Uab

k (x)δy,x+k̂ − U†ab
k (x− k̂)δy,x−k̂

]

We construct

V ab(x, y; A) = ϕa
1(x)ϕ†b1 (y)

from the lowest-lying eigenstate, and compute EV (R) by lattice Monte Carlo.
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Fat links

Let Vthin(x, y; A) be a Wilson line running between x, y, and

Ψthin(R) = q(x)Vthin(x , y ; A)q(y)

Likewise, let U(0)
k (x) = Uk (x, t) and construct fat links by an iterative procedure

U(n+1)
i (x) = N

{
αU(n)

i (x) +
∑
j 6=i

(
U(n)

j (x)U(n)
i (x + ĵ)U†j (x + î)

+U(n)†
j (x − ĵ)U(n)

i (x − ĵ)U(n)
j (x − ĵ + î)

)}
Denote the link variables after the last iteration as U fat

i (x) and define

Vfat (x , y ; A) = U fat
k (x)U fat

k (x + k̂)...U fat
k (x + (R − 1)k̂)

Ψfat (R) = q(x)Vfat (x , y ; A)q(y)

We then compute EV (R) for V = Vthin,Vfat .
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Results

We find an S to C-confinement transition for the V operator constructed from
pseudomatter fields. The transition line is close to (but a little below) the transition
line for the Dirac state.

The fat link state seems to be everywhere S-confining. This doesn’t mean the
gauge-Higgs theory is everywhere S-confining. It means instead that not every
operator can detect the transition to C-confinement.
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Other criteria

Other criteria for distinguishing the confinement from the Higgs phase have been proposed in the
past:

1 the Kugo-Ojima criterion
2 Non-positivity/unphysical poles

in quark/gluon propagators
3 the Fredenhagen-Marcu criterion

Kugo-Ojima

A condition for C-confinement, formulated in covariant gauges. Introduce

uab(p2)

(
gµν −

pµpν
p2

)
=

∫
d4x eip(x−y)〈0|T [Dµca(x)g(Aν × c)b(y)|0〉

Then 〈phys |Qa|phys〉 = 0 providing that
remnant symmetry with respect to spacetime-independent
gauge transformations is unbroken

uab(0) = −δab
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The Neuberger 0/0 Problem

The problem with Kugo-Ojima is that remnant symmetry is broken in the Higgs region, yet
C-confinement persists throughout the phase diagram. Somethings wrong...probably the
assumption of unbroken BRST symmetry.

It was shown by Neuberger in 1986 that in a covariant gauge, the functional integral

Z =

∫
DAµDcDc exp[−(S + Sgf )]

vanishes. Every expectation value has the form 0/0. The argument applies to any BRST invariant
action.

Latttice simulations in, e.g. Landau gauge, avoid the 0/0 problem, but the gauge-fixing procedure
also breaks BRST symmetry.

Formulations which depend on BRST symmetry are unreliable at the non-perturbative level.
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Non-positivity & unphysical poles

The idea is that positivity violation and/or unphysical poles in covariant-gauge quark and gluon
propagators would mean that such particles can’t show up as asymptotic states in scattering
amplitudes. Positivity violation has been observed in lattice calculations of the gluon propagator.

But what is actually done on the lattice is to compute

Dab
µν(x − y) = 〈[GL ◦ A]aµ(x)[GL ◦ A]bν(y)〉

where GL is the gauge transformation taking configuration A to Landau gauge inside the first
Gribov horizon. This avoids the 0/0 problem, but the restriction also

breaks BRST symmetry

violates the condition needed for reflection positivity (GL is non-local in time)

If one cannot rely on BRST arguments, then there is no strong reason to suppose that quark and
gluon operators in covariant gauges create physical states, and there is one good reason to think
otherwise, namely, the fact that correlators of such operators do not satisfy the requirements for
reflection positivity.
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Other criteria, continued

In covariant gauges:

BRST yes? =⇒ Neuberger 0/0 problem!

BRST no? =⇒ propagator-to-confinement connection is unclear.

Isolated quark/gluon operators in Landau gauge do not create physical states, but that doesn’t
mean that physical states with widely separated color charges do not exist!

The correct conclusion is that other types of operators must be employed to create such states.

Dirac, pseudomatter, fat link states are examples.

The real question is whether or not a wide separation of color charged objects in a physical state
incurs a proportionally large cost in energy.
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Brout-Englert-Higgs and symmetry breaking

Does the transition from S to C-confinement correspond to the spontaneous breaking of some
symmetry in the gauge-Higgs theory?

Is there any gauge-invariant meaning to “spontaneous symmetry breaking” in the context of the
Brout-Englert-Higgs mechanism?

It is well-known, in the SU(2) gauge-Higgs model, that the full symmetry of the Higgs action

SH = γ
∑
x,µ

1
2

Tr[φ†(x)Uµ(x)φ(x + µ̂)]

is SU(2)gauge× SU(2)global :

Uµ(x) → L(x)Uµ(x)L†(x + µ̂)

φ(x) → L(x)φ(x)R
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Global SU(2) symmetry

SU(2)gauge can’t break spontaneously, but what about SU(2)global ? Note that Z is a sum of “spin
systems”

Z (β, γ) =

∫
DU Zspin(γ,U)e−SW

where

Zspin(γ,U) =

∫
Dφ e−SH [φ,U]

= e−FH [γ,U]

The only symmetry of the spin system, since Uµ(x) is fixed, is the SU(2)global symmetry
φ(x)→ φ(x)R.

Question: Can we observe a spontaneous breaking of the SU(2)global (R-transformation)
symmetry without recourse to gauge-fixing?

This might be a gauge-invariant version of the gauge-dependent statement that 〈φ〉 6= 0.
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Gauge-invariant order parameter
for spontaneous symmetry breaking

Consider φ(x) fluctuating in a background gauge field U, which is held fixed. Denote its average
value in this background as φ(x ; U).

In general,
∫

dxφ = 0, because if no gauge is fixed, so Uµ(x) varies wildly in space, then φ(x)
also varies wildly.

On the other hand, it could be that

φ(x ; U) ≡ 〈φ(x)〉U 6= 0

at any given point x , even if the spatial average vanishes.

Since the action at fixed Uµ is invariant under φ(x)→ φ(x)R,
this would imply SSB of an SU(2)global symmetry.
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order parameter, continued

So we introduce the following gauge-covariant operator:

φ(x ; U) =
1

Z [U]

∫
Dφ′ φ′(x) exp

γ∑
x,µ

1
2

Tr[φ′†(x)Uµ(x)φ′(x + µ̂)]


Z [U] =

∫
Dφ′ exp

γ∑
x,µ

1
2

Tr[φ′†(x)Uµ(x)φ′(x + µ̂)]


and compute the following gauge-invariant order parameter:

Q =

〈√
1
2

Tr[φ†(x ; U)φ(x ; U)]

〉

=
1
Z

∫
DUDφ

√
1
2

Tr[φ†(x ; U)φ(x ; U)]eS[U,φ]

by a Monte Carlo-within-a-Monte Carlo. Of course, there is no spontaneous symmetry breaking
on a finite lattice; any “broken” state is only metastable in time (just like a real magnet). “Time” in
our case is the number of Monte Carlo sweeps nsw used to compute φ′(x ; U).
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Results

In the unbroken phase we expect Q ∝ 1√
nsw

.

For the broken phase, we expect Q is roughly constant with nsw . Eventually Q → 0 in the broken
phase, but only after a Monte Carlo time which increases with lattice volume.

And that’s what we see.

Here are the results at β = 2.2, above
(γ = 0.86) and below (γ = 0.82) the
thermodynamic crossover.
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In this way we can map out the SSB transition line throughout the phase diagram.
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Transition lines

Both the gauge-invariant
transition line and the
Landau gauge transition
are shown; they are
clearly not identical.
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Hidden center symmetry

The global “R” symmetry in the SU(2) gauge-Higgs model is accidental. A Higgs field in SU(N)
gauge-Higgs theory at N > 2 cannot be expressed as an SU(N) group element.

However, the SU(N>2) Higgs action

SH [U, φ] = γ
∑
x,µ

Re[φ†(x)Uµ(x)φ(x + µ̂)]

does have a discrete global symmetry

φ(x)→ zφ(x) , z = e2πin/N , n = 0, 1, 2, ...,N − 1

and this global symmetry can be spontaneously broken. The order parameter is the same as
before

|φ(x ; U)| =

√
φ
†
(x ; U)φ(x ; U)

except that a dot product of color indices, rather than a trace, is implied
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Symmetry breaking in SU(3)
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Conclusions

We have

1 defined a generalization of the Wilson area law criterion, “S-confinement,” which is applicable
to gauge theories with matter fields in the fundamental representation,

2 shown that in gauge-Higgs theories there must exist a transition between two physically
distinct (S and C) types of confinement,

3 identified a “hidden” global symmetry in SU(N) gauge-higgs theories, and

4 shown that this symmetry breaks spontaneously, as detected by a gauge-invariant order
parameter.

Our conjecture is that the S-to-C confinement transition and the gauge-invariant
symmetry-breaking transition coincide.
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EXTRA

SLIDES

Jeff Greensite (SFSU) confinement Seattle 32 / 32



Flux tubes in the Dirac state

Frölich, Morchio, and Strocchi (and
independently ’t Hooft) pointed out that
physical particles in SU(2)
gauge-Higgs theory are created by
gauge-invariant composite operators.

As ’t Hooft put it, a physical lepton can
be thought of as a Higgs-fermion
bound state.

 
 
 
                        

 

But there are other options for creating gauge-singlet physical states. Their properties have not
been investigated, except in one case: The Dirac state for a static quark-antiquark pair in pure
SU(2) gauge theory.
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We want to calculate

〈ΨV |TrE2
x (p)|ΨV 〉 − 〈Ψ0|TrE2

x |Ψ0〉

in the Dirac state

ΨV = qa(x)G†ac
C (x; A)Gcb

C (y; A)qb(y)Ψ0

0 R

U+U

t

x

y

Tr[ ]

Tr[ ]

Let R be the quark-antiquark separation along the x-axis, and y a transverse distance from the
axis. Then on the lattice we compute

Q(R, y) =
〈Tr[U0(0, 0)U†0 (RL, 0)] 1

2 TrUP(~p, 0)〉

〈Tr[U0(0, 0)U†0 (RL, 0)]〉
− 〈

1
2

TrUP〉

in Coulomb gauge.
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Result: Q(R, y) falls of exponentially with
transverse distance y . A flux tube.

The data shown is for β = 2.5 in pure SU(2)
lattice gauge theory. In that case we have
calculated the color electric field distribution
surrounding the quark-antiquark pair.
K. Chung and JG, arXiv:1704.08995.
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It would be interesting to investigate the Dirac and pseudomatter states in the Higgs regime.

Jeff Greensite (SFSU) confinement Seattle 35 / 32


