[238-136]

March, 2018

Bound States in Strongly Coupled Systems, GGI

PENTAQUARKS AND HADRONIC INTERACTIONS

5/2+ preferred for 4450

 $\Lambda_h^0 o J/\psi K^- p$

 $P_c(4450)$ $\Gamma = 39 \pm 5 \pm 19 \text{ MeV}$ $P_c(4380)$ $\Gamma = 205 \pm 18 \pm 86 \text{ MeV}$

LHCb 1507.03414v2

 $P_c(4450)$ $P_c(4380)$

blue = 4450 purple = 4380

NB: evidence for 4380 does not just come from the projection

 $P_c(4450) P_c(4380)$

T. J. Burns
Phenomenology of Pc(4380)+, Pc(4450)+ and related states
arXiv:1509.02460v1 [hep-ph]

		<i>P_c</i> (4380)+	<i>P_c</i> (4450) ⁺
Mass Width		$4380 \pm 8 \pm 29$ $205 \pm 18 \pm 86$	$\begin{array}{c} 4449.8 \pm 1.7 \pm 2.5 \\ 35 \pm 5 \pm 19 \end{array}$
Assignment 1 Assignment 2 Assignment 3 Assignment 4		3/2 3/2 ⁺⁻ 5/2 ⁺⁻ 5/2	5/2 ⁺ 5/2 ⁻ 3/2 ⁻ 3/2 ⁺
$\Sigma_{c}^{*+} \bar{D}^{0} \ \Sigma_{c}^{+} \bar{D}^{*0} \ \Lambda_{c}^{+} (1P) \bar{D}^{0} \ \chi_{c1} p$	$(udc)(u\bar{c})$ $(udc)(u\bar{c})$ $(udc)(u\bar{c})$ $(udu)(c\bar{c})$	4382.3 ± 2.4	4459.9 ± 0.5 4457.09 ± 0.35 4448.93 ± 0.07

Production Mechanisms (tree)

 \overline{C} b

LHC is a baryon factory!

Production Mechanisms (loop)

A Calculation

(iii) soft dynamics/ final state interactions

(0) Background – Lambda spectrum

(0) Background – Lambda spectrum

$\Lambda_b \to \psi K p$

via a simple covariant model

(what's with the font change??)

<< X`

Package-X v1.0.3, by Hiren H. Patel

For more information, see the guide

$\mathbf{P} = -\mathbf{g}_{\mu,\nu} + \psi_{\mu} \psi_{\nu} / \mathbf{m} \psi^{2} \mathbf{2}$

 $\frac{\psi_{\mu} \ \psi_{\nu}}{\mathfrak{m} \psi^2} - \mathfrak{g}_{\mu,\nu}$

$\texttt{tt} = \texttt{Spur}[\Lambda.\gamma + \texttt{m}\Lambda1, \gamma_{\mu}, \texttt{R}.\gamma + (\texttt{m}\texttt{R} - \texttt{I}\Gamma)1, \gamma \texttt{5}, \texttt{p}.\gamma + \texttt{m}\texttt{p}1, \gamma \texttt{5}, \texttt{R}.\gamma + (\texttt{m}\texttt{R} + \texttt{I}\Gamma)1, \gamma_{\nu}]$

amp = Contract[Ptt]

 $-4 \text{ mp m} \mathbb{R}^2 \text{ m} \wedge d - 4 \text{ mp m} \wedge d \Gamma^2 + 8 \text{ m} \mathbb{R} \text{ m} \wedge d \text{ p.R} + 8 \text{ m} \mathbb{R}^2 \text{ p.} \wedge - 4 \text{ m} \mathbb{R}^2 d \text{ p.} \wedge + 8 \Gamma^2 \text{ p.} \wedge - 4 d \Gamma^2$

• • •

(0) Background – Lambda spectrum

try a fit to the Kp and J/ ψ p projections with Λ s

С

Lambdas	
mR(1) = 1.1157d0	! 1/2+
GR(1) = 2.48d - 15	! GeV
mR(2) = 1.4051d0	! 1/2-
GR(2) = 0.05	
mR(3) = 1.520d0	! 3/2-
GR(3) = 0.0156	
mR(4) = 1.6	! 1/2+
GR(4) = 0.15	! vague state
mR(5) = 1.67	! 1/2-
GR(5) = 0.035	<pre>vague-ish</pre>
mR(6) = 1.69	! 3/2-
GR(6) = 0.06	
mR(7) = 1.713d0	! 1/2+
GR(7) = 0.18	
mR(8) = 1.8	! 1/2-
GR(8) = 0.3	! vague-ish
mR(9) = 1.81	! 1/2+
GR(9) = 0.15	
mR(10) = 1.82	! 5/2+
GR(10) = 0.08	
mR(11) = 1.83	! 5/2-
GR(11) = 0.095	
mR(12) = 1.89	! 3/2+
GR(12) = 0.1	
mR(13) = 2.1	! 7/2-
GR(13) = 0.2	

note that flavour-spin structure gets preserved in the spectator lines

first is strongly preferred, need to argue for who dominates...

(i) Electroweak Production Vertex

use heavy quark formalism

•
$$i\mathcal{M}(\Lambda_b \to D_s\Lambda_c) = \frac{G_F}{\sqrt{2}} V_{bc} V_{cs}^* i f_{D_s} p_{D_s}^{\mu} \xi(w) \bar{u}_c \gamma_{\mu} u_b$$

 $\Gamma = 5.8 \cdot 10^{-15} \text{ GeV}$
 $\Gamma_{expt} = 4.95 \cdot 10^{-15} \text{ GeV}$

(i) Electroweak Production Vertex

$$\Im \mathcal{M}(\Lambda_b \to \chi_{c1}\Lambda) = \frac{G_F}{\sqrt{2}} V_{bc} V_{cs}^* \frac{1}{N_c} m_\chi f_\chi \epsilon^\mu(p_\chi, \lambda_\chi) \,\xi(w) \,\bar{u}_s \gamma_\mu u_b$$

$$\Gamma = 4.6 \cdot 10^{-16} \,\,\mathrm{GeV}$$

This is colour-suppressed. Comparing other predictions to experiment indicates that about 1/2 of the amplitude is due to rescattering from colour enhanced decay modes.

(i) Electroweak Production Vertex

Quark model computation

 $\begin{aligned} & \mathbf{i}\mathcal{M} \approx \frac{G_F}{\sqrt{2}} \frac{1}{N_c} V_{bc} V_{cs} \int \frac{d^3 q}{(2\pi)^3} \frac{d^3 \ell}{(2\pi)^3} \frac{d^3 k_1}{(2\pi)^3} \frac{d^3 k_2}{(2\pi)^3} \frac{d^3 k_3}{(2\pi)^3} \cdot \phi_{\Lambda_b}(k_1, k_2, k_3) \\ & \bar{u}_b(k_3) \Gamma^{\mu} u_c(k_3 - q) \phi^*_{\Lambda_c}(k_1, k_3 - q, \ell) \bar{v}_c(q - \ell) \Gamma^{\mu} u_s(\ell) \phi^*_D(k_2, q - \ell) \cdot \\ & (2\pi)^3 \delta(Q - q + \ell - k_2) (2\pi)^3 \delta(-Q - \ell - k_3 + q - k_1) \end{aligned}$

$$\Gamma \approx 1.1 \cdot 10^{-16} \text{ GeV}$$

E.P. Wigner, Phys. Rev. 73 (1948) 1002

D. V. Bugg, Europhys. Lett. 96, 11002 (2011)

D. V. Bugg, Int. J. Mod. Phys. A 24, 394 (2009)

E.S. Swanson, arXiv:1409.3291; arXiv:1504.07952

try a fit to the Kp and $J/\psi p$ projections with Λs

С		

Lambdas	
mR(1) = 1.1157d0	! 1/2+
GR(1) = 2.48d - 15	! GeV
mR(2) = 1.4051d0	! 1/2-
GR(2) = 0.05	
mR(3) = 1.520d0	! 3/2-
GR(3) = 0.0156	
mR(4) = 1.6	! 1/2+
GR(4) = 0.15	! vaque state
mR(5) = 1.67	! 1/2-
GR(5) = 0.035	! vaque-ish
mR(6) = 1.69	! 3/2-
GR(6) = 0.06	, .
mR(7) = 1.713d0	! 1/2+
GR(7) = 0.18	/ _ ·
mR(8) = 1.8	! 1/2-
GR(8) = 0.3	vaque-ish
mR(9) = 1.81	1/2+
GR(9) = 0.15	. 1/2.
mR(10) = 1.82	1 5/2+
GR(10) = 0.08	. 5/21
mR(11) = 1.83	1 5/2-
GR(11) = 0.005	. 3/2
mR(12) = 1.80	1 3/2+
GR(12) = 0.1	: 3/21
mP(13) = 2.1	1 7/2-
(13) - 211	. //2-
GR(13) = 0.2	

- S-waves only
- ground states only
- narrow states only

В	С	А	B+C	$(\Lambda_b - A - B)/\Lambda_b ~[\%]$	(A - K - C)/A [%]
Λ_1	D	D_{s0}	4156	17	2
Λ_1	D^*	D_{s1}	4296	15	0
D	Λ_1	Ξ_1	4156	17	-0.3
D^*	Λ_1	Ξ_1	4296	15	-0.3
D	Σ_1	Ξ_1	4325	17	6
D^*	Σ_1	Ξ_1	4465	15	6
D^*	Σ_3	Ξ_3	4530	15	7
D^*	Λ_3	Ξ_3	4950	14	22

Who wins?

 $\Lambda_1 = \Lambda_c(1/2^+; 2286); \ \Lambda_3 = \Lambda_c(3/2^+; 2940); \ \Xi_1 = \Xi_c(1/2^-; 2790); \\ \Xi_3 = \Xi_c(3/2^-; 2815); \ \Sigma_1 = \Sigma_c(1/2^+; 2455), \ \Sigma_3 = \Sigma_c(3/2^+; 2520) \\ D(1870); \ D^*(2010); \ D_{s0}(2317); \ D_{s1}(2466).$

what's in the box??

-> one pion exchange/ short range dynamics

For point-like constituents:

$$C(\mathbf{r}) = \frac{\mathbf{g}^2 m^3}{12\pi f_\pi^2} \left(\frac{e^{-m\mathbf{r}}}{m\mathbf{r}} - \frac{4\pi}{m^3}\delta^3(\mathbf{r})\right)$$

For extended hadrons, use dipole form factors with cutoff Λ . The limit $\Lambda \to \infty$ recovers the point-like case.

diagonal only

Potential without the delta term. (Deuteron binding requires $\Lambda = 0.8$ GeV.)

	$\Lambda_c \bar{D}$	$\Lambda_c \bar{D}^*$	Σ _c D̄	$\Sigma_c^* \bar{D}$	$\Sigma_c \bar{D}^*$	$\Sigma_c^* \bar{D}^*$
$\frac{1}{2}\left(\frac{1}{2}^{-}\right)$	\checkmark	\checkmark	\checkmark		+16/3	+20/3
$\frac{1}{2}\left(\frac{3}{2}^{-}\right)$		\checkmark		\checkmark	-8/3	+8/3
$\frac{1}{2}\left(\frac{5}{2}^{-}\right)$						—4
$\frac{3}{2}\left(\frac{1}{2}^{-}\right)$			\checkmark		-8/3	-10/3
$\frac{3}{2}\left(\frac{3}{2}^{-}\right)$				\checkmark	+4/3	-4/3
$\frac{3}{2}\left(\frac{5}{2}^{-}\right)$						+2

C only

$$I J^P = \frac{1}{2} \frac{1}{2}^{-1}$$

$V_{o\pi e}$	$D\Lambda_1$	$D^*\Lambda_1$	$D\Sigma_1$	$D^*\Sigma_1$	$D^*\Sigma_3$
$D\Lambda_1$	_	_	_	$2\sqrt{3}$	$4\sqrt{3/2}$
$D^*\Lambda_1$		_	$2\sqrt{3}$	-4	$2\sqrt{2}$
$D\Sigma_1$			_	-8/3	$4\sqrt{2/3}$
$D^*\Sigma_1$				+16/3	$4/3\sqrt{2}$
$D^*\Sigma_3$					+20/3

large phase motion at 4450 near Sigma D*

$$I J^P = 3/21/2^-$$
 7 channels (central + tensor)

Sigma D 32/(1/2-) Lambda=1.9, sr=0

(iii) Final State Interactions

small glitch at SD* L=0.8

(iii) Final State Interactions

$$I J^P = 1/2 3/2^-$$
 14 channels (central + tensor)

$I J^P = 3/25/2^-$ 8 channels (central + tensor)

delta

|T|

(iii) Final State Interactions $I J^P = 1/25/2^-$ 11 channels (tensor & central)

dots indicate significant components with higher mass states

Also, the size of the state provides information!

Amusing to try box quantisation a la Luescher 101 mis stur...

Effective field theory: cutoff where we no longer trust the long range dynamics and fit a constant to the short range. NB: long range observables can be sensitive to SR dynamics!

 $V_{LR}(r) \rightarrow$ $c(\Lambda)\delta(r) + V_{LR}(r;\Lambda)$

There is no guarantee that a consistent power counting exists!
Bedaque and van Kolck, ARNPS 52, 339 (2002)

- Strong UV divergence in ope tensor interaction can ruin naive power counting.
- The correct renormalization of singular potentials is intrinsically nonperturbative.

$$V = f(p/\Lambda)c_0 f(p/\Lambda) \qquad Q \sim (p, m_\pi, 1/a, \ldots)$$

$$-\frac{1}{c_0} = \int \frac{d^3q}{(2\pi)^3} f^2(q/\Lambda) \frac{2\mu}{q^2 - 2\mu E_B}$$

Q are the light scales in the problem

c ~ 1/Q rather than the naively expected Q^0

XEFT

- \subseteq X- χ mixing is O(Q) and therefore subleading.
- "For weakly bound systems the addition of coupled channels seems not justified from the effective field theory point of view." Lu, Geng, and Valderrama, arXiv:1706.02588
- *But*: quark-based model is a subset of effective field theories in which
 X-chi coupling and coupled channel effects are comparable in strength to the SR interactions.
- Thus the power counting can be confounded by ambiguous scales or large anomalous dimensions.

on-shell pions

$$\Omega_A = \langle B\pi | H | A \rangle$$

$$\begin{split} K_{AB}\psi_{AB} + \Omega_{A}\,\varphi_{BB\pi} + \Omega_{B}\,\varphi_{AA\pi} &= E\psi_{AB} \\ \Omega^{\dagger}_{A}\,\psi_{AB} + K_{BB\pi}\varphi_{BB\pi} &= E\varphi_{BB\pi} \\ \Omega^{\dagger}_{B}\,\psi_{AB} + K_{AA\pi}\varphi_{AA\pi} &= E\varphi_{AA\pi}. \end{split}$$

$$\begin{split} K_{AB}\psi_{AB} + V_{eff}\psi_{AB} &= E\psi_{AB} \\ V_{eff} &= \Omega_A' \frac{1}{E - K_{BB\pi} + i\epsilon} \Omega_A + \Omega_B^{\dagger} \ \frac{1}{E - K_{AA\pi} + i\epsilon} \Omega_B. \end{split}$$

on-shell pions

$$V_{eff} = \Omega_A^{\dagger} \frac{1}{E - K_{BB\pi} + i\epsilon} \Omega_A + \Omega_B^{\dagger} \frac{1}{E - K_{AA\pi} + i\epsilon} \Omega_B.$$

assume a point-like vertex, weak binding, and approximate K's as m's

$$\frac{k^{2}}{2\mu_{AB}}\psi_{AB}(k) + \frac{g^{2}}{4m_{A}m_{B}}\int \frac{d^{3}q}{(2\pi)^{3}} \frac{1}{2\omega(q)} \left(\frac{1}{m_{A} - m_{B} - \omega + i\epsilon} + \frac{1}{m_{B} - m_{A} - \omega + i\epsilon}\right)\psi_{AB}(k-q) = (\varepsilon - i\Gamma/2)\psi_{AB}(k)$$
can go on-shell, evaluate the imaginary part: $\Gamma = \frac{g^{2}}{8\pi m_{A}m_{B}}\overline{q}_{*}$
 $m_{B} = m_{A} + \omega(\overline{q}_{*})$
compare to the perturbative relativistic result: $\Gamma = \frac{g^{2}}{8\pi m_{B}^{2}}q_{*}$
 $m_{B} = E_{A}(q_{*}) + \omega(q_{*}).$

on-shell pions

Lastly, Fourier transform:

$$-\frac{\nabla^2}{2\mu_{AB}}\psi_{AB}(r) - \frac{g^2}{4m_A m_B}V(r)\psi_{AB} = (\varepsilon - i\Gamma/2)\psi_{AB}(r).$$

$$V(r) = \int \frac{d^3q}{(2\pi)^3} \frac{\exp(i\vec{q}\cdot\vec{r})}{\vec{q}^2 + m_\pi^2 - (m_B - m_A)^2 - i\epsilon} = \frac{1}{4\pi r} \exp(i\bar{\mu}r)$$
$$= \frac{1}{4\pi r} \exp(i\bar{\mu}r)$$
$$= \frac{1}{4\pi r} (m_B - m_A)^2.$$

Evaluate the perturbative imaginary shift in the energy:

$$\Gamma = 2 \frac{g^2}{4m_A m_B} \langle \psi_0 | \frac{\sin(\bar{\mu}r)}{4\pi r} | \psi_0 \rangle. \qquad \bar{\mu} \ll \mu_{AB} e^2$$
$$\Gamma = \frac{32\mu_{AB}^4 e^{10}\bar{\mu}}{((2\mu_{AB} e^2)^2 + \bar{\mu}^2)^2} \to 2\bar{\mu}e^2 + O(\bar{\mu}^3). \qquad \checkmark$$

nearly Coulombic wavefunction, mubar = q*

short range

ie. try to pin down the LE constants

 $J/\psi p(J=1/2) \to \bar{D}^0 \Lambda_c^+$

J. P. Hilbert, N. Black, T. Barnes, and E. S. Swanson Phys Rev C 75, 064907 (2007)

short range

does it work?

Woss, Thomas, Dudek, Edwards, Wilson, arXiv:1802.05580 Barnes, Black, and Swanson Phys.Rev. C63 (2001) 025204 lattice scattering from Woss at ~ s quark masses purple = pi-rho physica; orange = pi-rho scaled to s-quark

Use the strongest EW vertex:
 B -> DsJ D(*), Ds1 >> Ds0 >> Ds1(H) >> Ds2
 Ds1 -> D*K is large.

 \square D* Λ (1/2 3/2-) scattering "glitches" just below 4450

 $\odot \ \sigma(D^*\Lambda_c \to J/\psi p)|_{J=3/2} \approx 10\sigma(D^*\Lambda_c \to J/\psi p)|_{J=1/2}$

The Pc(4450) is a 1/2 3/2- rescattering effect

Conclusions

Search at JLab will be interesting.

Wang, Liu, Zhao, arXiv:1508.00339

Conclusions

			8
exotic-ness	high!	low	medium
d.o.f.	quarks	hadrons	hadrons
interactions	g exchange	rescattering	π exchange
colour	$(1 \otimes 1) \oplus (8 \otimes 8)$	$(1\otimes1)$	$(1\otimes1)$
size	compact		extended
masses	model dependent	at thresholds	at thresholds
J ^{PC}	all	restricted	restricted
flavours	all	restricted	restricted(<i>I</i> -mix)
channels	most	restricted	HQ restricted
falsifiability	low	medium	high

★ÆRIC MEC HEHT GEWYRCAN+

