Bound States in Strongly Coupled Systems, GGI

PENTAQUARKS AND HADRONIC INTERACTIONS

Eric Swanson

```
\(P_{c}(4450)\) \(P_{c}(4380)\)
```

$$
\Lambda_{b}^{0} \rightarrow J / \psi K^{-} p
$$

$P_{c}(4450) \quad \Gamma=39 \pm 5 \pm 19 \mathrm{MeV}$
$P_{c}(4380) \quad \Gamma=205 \pm 18 \pm 86 \mathrm{MeV}$

$$
\begin{aligned}
& J^{P}=\frac{3}{2}^{ \pm} \\
& J^{P}=\frac{5}{2}^{\mp}
\end{aligned}
$$


```
Pc(4450)
Pc}(4380
```


$P_{c}(4450)$
$P_{c}(4380)$

NB: evidence for 4380 does not just come from the projection


```
\(P_{C}(4450)\)
\(P_{c}(4380)\)
```


	$P_{c}(4380)^{+}$	$P_{c}(4450)^{+}$
Mass	$4380 \pm 8 \pm 29$	$4449.8 \pm 1.7 \pm 2.5$
Width	$205 \pm 18 \pm 86$	$35 \pm 5 \pm 19$
Assignment 1	$3 / 2^{-}$	$5 / 2^{+}$
Assignment 2	$3 / 2^{+}$	$5 / 2^{-}$
Assignment 3	$5 / 2^{+}$	$3 / 2^{-}$
Assignment 4	$5 / 2^{-}$	$3 / 2^{+}$
$\Sigma_{c}^{*+} \bar{D}^{0}$	$(u d c)(u \bar{c})$	4382.3 ± 2.4
$\Sigma_{c}^{+} \bar{D}^{* 0}$	$(u d c)(u \bar{c})$	
$\Lambda_{c}^{+}(1 P) \bar{D}^{0}$	$(u d c)(u \bar{c})$	
$\chi_{c 1} p$	$(u d u)(c \bar{c})$	

Production Mechanisms (tree)

LHC is a baryon factory!

Production Mechanisms (loop)

A Calculation

Organization

(iii) soft dynamics/ final state interactions

(0) Background - Lambda spectrum

(0) Background - Lambda spectrum

$$
\wedge_{b} \rightarrow \psi K p
$$

via a simple covariant model
(what's with the font change??)
<< x^{-}
Package-X v1.0.3, by Hiren H. Patel
For more information, see the guide
$\mathbf{P}=-\mathfrak{g}_{\mu, v}+\psi_{\mu} \psi_{v} / \mathbf{m} \psi^{\wedge} \mathbf{2}$
$\frac{\psi_{\mu} \psi_{\nu}}{m \psi^{2}}-g_{\mu, \nu}$
$t t=\operatorname{Spur}\left[\Lambda \cdot \gamma+m \Lambda \mathbb{1}, \gamma_{\mu}, R \cdot \gamma+(m R-I \Gamma) 1, \gamma 5, p \cdot \gamma+m p 1, \gamma 5, R \cdot \gamma+(m R+I r) \mathbb{1}, \gamma_{\nu}\right]$ 8 i $m \Lambda \Gamma p_{\nu} \mathrm{R}_{\mu}+8$ in $m \Gamma \Gamma \mathrm{p}_{\mu} \mathrm{R}_{\nu}-4 \mathrm{mR}^{2} \mathrm{p}_{\nu} \Lambda_{\mu}-4 \Gamma^{2} \mathrm{p}_{\nu} \Lambda_{\mu}+4 \mathrm{R} . \mathrm{R} \mathrm{p}_{\nu} \Lambda_{\mu}+$
$8 \mathrm{mp} \mathrm{mRR}_{V} \Lambda_{\mu}-8 \mathrm{p} \cdot \mathrm{RR}_{V} \Lambda_{\mu}-4 \mathrm{mR}^{2} \mathrm{p}_{\mu} \Lambda_{V}-4 \Gamma^{2} \mathrm{p}_{\mu} \Lambda_{V}+4 \mathrm{R} \cdot \mathrm{R} \mathrm{p}_{\mu} \Lambda_{V}+8 \mathrm{mpmR} \mathrm{R}_{\mu} \Lambda_{\nu}$ $8 \mathrm{p} \cdot \mathrm{R} \mathrm{R}_{\mu} \Lambda_{\nu}+4 \mathrm{mp} \mathrm{mR}^{2} \mathrm{~m} \Lambda \mathrm{~g}_{\mu, \nu}+4 \mathrm{mp} \mathrm{m} \Lambda \Gamma^{2} \mathrm{~g}_{\mu, \nu}-8 \mathrm{mR} \mathrm{m} \Lambda \mathrm{p} \cdot \mathrm{R} \mathrm{g}_{\mu, \nu}+4 \mathrm{mR}^{2} \mathrm{p} \cdot \Lambda \mathrm{g}_{\mu, \nu}+$

amp $=$ Contract $[P t t]$
$4 m p m R^{2} \mathrm{~m} \Lambda d-4 \mathrm{mpm} \Lambda d \Gamma^{2}+8 \mathrm{mR} \mathrm{m} \Lambda d \mathrm{p} \cdot \mathrm{R}+8 \mathrm{mR}^{2} \mathrm{p} \cdot \Lambda-4 \mathrm{mR}^{2} d \mathrm{p} \cdot \Lambda+8 \Gamma^{2} \mathrm{p} \cdot \Lambda-4 d \Gamma^{2} \mathrm{p} \cdot \Lambda-$

(0) Background - Lambda spectrum

try a fit to the Kp
and $J / \psi p$
projections with $\Lambda \mathrm{s}$

Lambdas	
$m R(1)=1.1157 \mathrm{~d} 0$! 1/2+
$G R(1)=2.48 \mathrm{~d}-15$! GeV
$m R(2)=1.4051 \mathrm{~d} 0$! 1/2-
$G R(2)=0.05$	
$m R(3)=1.520 \mathrm{~d} 0$! 3/2-
$G R(3)=0.0156$	
$m R(4)=1.6$! 1/2+
$G R(4)=0.15$! vague state
$m R(5)=1.67$! 1/2-
$G R(5)=0.035$! vague-ish
$m R(6)=1.69$! 3/2-
$\mathrm{GR}(6)=0.06$	
$m \mathrm{R}(7)=1.713 \mathrm{~d} 0$! 1/2+
$G R(7)=0.18$	
$m R(8)=1.8$! 1/2-
$G R(8)=0.3$! vague-ish
$m R(9)=1.81$! 1/2+
$G R(9)=0.15$	
$m R(10)=1.82$! 5/2+
$G R(10)=0.08$	
$m R(11)=1.83$! 5/2-
$G R(11)=0.095$	
$m R(12)=1.89$! 3/2+
$G R(12)=0.1$	
$m R(13)=2.1$! 7/2-
$G R(13)=0.2$	

(i) Electroweak Production Vertex

note that flavour-spin structure gets preserved in the spectator lines

(i) Electroweak Production Vertex

use heavy quark formalism

$$
\begin{aligned}
\ominus i \mathcal{M}\left(\Lambda_{b} \rightarrow\right. & \left.D_{s} \Lambda_{c}\right)=\frac{G_{F}}{\sqrt{2}} V_{b c} V_{c s}^{*} i f_{D_{s}} p_{D_{s}}^{\mu} \xi(w) \bar{u}_{c} \gamma_{\mu} u_{b} \\
& \Gamma=5.8 \cdot 10^{-15} \mathrm{GeV} \\
& \Gamma_{\text {expt }}=4.95 \cdot 10^{-15} \mathrm{GeV}
\end{aligned}
$$

(i) Electroweak Production Vertex

$$
\begin{aligned}
\operatorname{ei\mathcal {M}(\Lambda _{b}\rightarrow \chi _{c1}\Lambda)} & =\frac{G_{F}}{\sqrt{2}} V_{b c} V_{c s}^{*} \frac{1}{N_{c}} m_{\chi} f_{\chi} \epsilon^{\mu}\left(p_{\chi}, \lambda_{\chi}\right) \xi(w) \bar{u}_{s} \gamma_{\mu} u_{b} \\
\Gamma & =4.6 \cdot 10^{-16} \mathrm{GeV}
\end{aligned}
$$

This is colour-suppressed. Comparing other predictions to experiment indicates that about $1 / 2$ of the amplitude is due to rescattering from colour enhanced decay modes.

(i) Electroweak Production Vertex

Quark model computation

- $i \mathcal{M} \approx \frac{G_{F}}{\sqrt{2}} \frac{1}{N_{c}} V_{b c} V_{c s} \int \frac{d^{3} q}{(2 \pi)^{3}} \frac{d^{3} \ell}{(2 \pi)^{3}} \frac{d^{3} k_{1}}{(2 \pi)^{3}} \frac{d^{3} k_{2}}{(2 \pi)^{3}} \frac{d^{3} k_{3}}{(2 \pi)^{3}} \cdot \phi_{\Lambda_{b}}\left(k_{1}, k_{2}, k_{3}\right)$

$$
\bar{u}_{b}\left(k_{3}\right) \Gamma^{\mu} u_{c}\left(k_{3}-q\right) \phi_{\Lambda_{c}}^{*}\left(k_{1}, k_{3}-q, \ell\right) \bar{v}_{c}(q-\ell) \Gamma^{\mu} u_{s}(\ell) \phi_{D}^{*}\left(k_{2}, q-\ell\right)
$$

$$
(2 \pi)^{3} \delta\left(Q-q+\ell-k_{2}\right)(2 \pi)^{3} \delta\left(-Q-\ell-k_{3}+q-k_{1}\right)
$$

$$
\Gamma \approx 1.1 \cdot 10^{-16} \mathrm{GeV}
$$

(ii) Loop Dynamics

(ii) Loop Dynamics

Loops create cusps
E.P. Wigner, Phys. Rev. 73 (1948) 1002
D. V. Bugg, Europhys. Lett. 96, 11002 (2011)
D. V. Bugg, Int. J. Mod. Phys. A 24, 394 (2009)
E.S. Swanson, arXiv:1409.3291; arXiv:1504.07952

(a)

(b)

(c)

(d)

and are related to thresholds

(ii) Loop Dynamics

try a fit to the Kp
and $J / \psi p$
projections with $\Lambda \mathrm{s}$

Lambdas	
$m R(1)=1.1157 d 0$! 1/2+
$\mathrm{GR}(1)=2.48 \mathrm{~d}-15$! GeV
$m R(2)=1.4051 \mathrm{~d} 0$! 1/2-
$\mathrm{GR}(2)=0.05$	
$m \mathrm{R}(3)=1.520 \mathrm{~d} 0$! 3/2-
$\mathrm{GR}(3)=0.0156$	
$m R(4)=1.6$! 1/2+
$\mathrm{GR}(4)=0.15$! vague state
$m R(5)=1.67$! 1/2-
$G R(5)=0.035$! vague-issh
$m R(6)=1.69$! 3/2-
$\mathrm{GR}(6)=0.06$	
$m \mathrm{R}(7)=1.713 \mathrm{~d} 0$! 1/2+
$G R(7)=0.18$	
$m R(8)=1.8$! 1/2-
$G R(8)=0.3$! vague-ish
$m R(9)=1.81$! 1/2+
$\mathrm{GR}(9)=0.15$	
$m R(10)=1.82$! 5/2+
$G R(10)=0.08$	
$m R(11)=1.83$! 5/2-
$G R(11)=0.095$	
$m R(12)=1.89$! 3/2+
$G R(12)=0.1$	
$m R(13)=2.1$! 7/2-
$\mathrm{GR}(13)=0.2$	

(ii) Loop Dynamics

- S-waves only
- ground states only
- narrow states only

B	C	A	$\mathrm{B}+\mathrm{C}$	$\left(\Lambda_{b}-\mathrm{A}-\mathrm{B}\right) / \Lambda_{b}[\%]$	$(\mathrm{A}-\mathrm{K}-\mathrm{C}) / \mathrm{A}[\%]$
Λ_{1}	D	$D_{s 0}$	4156	17	2
Λ_{1}	D^{*}	$D_{s 1}$	4296	15	0
D	Λ_{1}	Ξ_{1}	4156	17	-0.3
D^{*}	Λ_{1}	Ξ_{1}	4296	15	-0.3
D	Σ_{1}	Ξ_{1}	4325	17	6
D^{*}	Σ_{1}	Ξ_{1}	4465	15	6
D^{*}	Σ_{3}	Ξ_{3}	4530	15	7
D^{*}	Λ_{3}	Ξ_{3}	4950	14	22

Who wins?

$$
\begin{aligned}
& \Lambda_{1}=\Lambda_{c}\left(1 / 2^{+} ; 2286\right) ; \Lambda_{3}=\Lambda_{c}\left(3 / 2^{+} ; 2940\right) ; \Xi_{1}=\Xi_{c}\left(1 / 2^{-} ; 2790\right) ; \\
& \Xi_{3}=\Xi_{c}\left(3 / 2^{-} ; 2815\right) ; \Sigma_{1}=\Sigma_{c}\left(1 / 2^{+} ; 2455\right), \Sigma_{3}=\Sigma_{c}\left(3 / 2^{+} ; 2520\right) \\
& D(1870) ; D^{*}(2010) ; D_{s 0}(2317) ; D_{s 1}(2466) .
\end{aligned}
$$

(iii) Final State Interactions

what's in the box??
-> one pion exchange/ short range dynamics

(iii) Final State Interactions

For point-like constituents:

$$
C(r)=\frac{g^{2} m^{3}}{12 \pi f_{\pi}^{2}}\left(\frac{e^{-m r}}{m r}-\frac{4 \pi}{m^{3}} \delta^{3}(\vec{r})\right)
$$

For extended hadrons, use dipole form factors with cutoff Λ. The limit $\Lambda \rightarrow \infty$ recovers the point-like case.

(iii) Final State Interactions

diagonal only

Potential without the delta term.
(Deuteron binding requires $\Lambda=0.8 \mathrm{GeV}$.)

	$\Lambda_{c} \bar{D}$	$\Lambda_{c} \bar{D}^{*}$	$\Sigma_{c} \bar{D}$	$\Sigma_{c}^{*} \bar{D}$	$\Sigma_{c} \bar{D}^{*}$	$\Sigma_{c}^{*} \bar{D}^{*}$
$\frac{1}{2}\left(\frac{1}{2}^{-}\right)$	\checkmark	\checkmark	\checkmark		$+16 / 3$	$+20 / 3$
$\frac{1}{2}\left(\frac{3}{2}^{-}\right)$		\checkmark		\checkmark	$-8 / 3$	$+8 / 3$
$\frac{1}{2}\left(\frac{5}{2}^{-}\right)$						-4
$\frac{3}{2}\left(\frac{1}{2}^{-}\right)$			\checkmark		$-8 / 3$	$-10 / 3$
$\frac{3}{2}\left(\frac{3}{2}^{-}\right)$				\checkmark	$+4 / 3$	$-4 / 3$
$\frac{3}{2}\left(\frac{5}{2}^{-}\right)$						+2

(iii) Final State Interactions

C only

$$
I J^{P}=\frac{1}{2} \frac{1}{2}^{-}
$$

$V_{o \pi e}$	$D \Lambda_{1}$	$D^{*} \Lambda_{1}$	$D \Sigma_{1}$	$D^{*} \Sigma_{1}$	$D^{*} \Sigma_{3}$
$D \Lambda_{1}$	-	-	-	$2 \sqrt{3}$	$4 \sqrt{3 / 2}$
$D^{*} \Lambda_{1}$		-	$2 \sqrt{3}$	-4	$2 \sqrt{2}$
$D \Sigma_{1}$			-	$-8 / 3$	$4 \sqrt{2 / 3}$
$D^{*} \Sigma_{1}$				$+16 / 3$	$4 / 3 \sqrt{2}$
$D^{*} \Sigma_{3}$					$+20 / 3$

(iii) Final State Interactions

$$
I J^{P}=3 / 21 / 2^{-} \quad 7 \text { channels }(\text { central }+ \text { tensor })
$$

Sigma D 32/(1/2-) Lambda=1.9, sr=0

(iii) Final State Interactions

$$
I J^{P}=3 / 21 / 2^{-}
$$

7 channels (central + tensor)

(iii) Final State Interactions

$$
I J^{P}=1 / 23 / 2^{-} \quad 14 \text { channels }(\text { central }+ \text { tensor })
$$

1/2 (3/2-)

(iii) Final State Interactions

$$
I J^{P}=3 / 25 / 2^{-}
$$

8 channels (central + tensor)

$|T|$

(iii) Final State Interactions

$$
I J^{P}=1 / 25 / 2^{-} \quad 11 \text { channels }(\text { tensor } \& \text { central) }
$$

(iii) Final State Interactions

Amusing to try box quantisation a la Luescher rur tur sum....

(iii) Final State Interactions

 disambiguating the short range оле

Q Effective field theory: cutoff where we no longer trust the long range dynamics and fit a constant to the short range.

$$
\begin{aligned}
& V_{L R}(r) \rightarrow \\
& c(\Lambda) \delta(r)+V_{L R}(r ; \Lambda)
\end{aligned}
$$ NB: long range observables can be sensitive to SR dynamics!

Q There are a lot of contact terms in the Pc system!

(iii) Final State Interactions disambiguating the short range оле

Q There is no guarantee that a consistent power counting exists! Bedaque and van Kolck, ARNPS 52, 339 (2002)

- Strong UV divergence in ope tensor interaction can ruin naive power counting.

Q The correct renormalization of singular potentials is intrinsically nonperturbative.

(iii) Final State Interactions

disambiguating the short range оле

$$
\begin{aligned}
& V=f(p / \Lambda) c_{0} f(p / \Lambda) \quad Q \sim\left(p, m_{\pi}, 1 / a, \ldots\right) \\
& -\frac{1}{c_{0}}=\int \frac{d^{3} q}{(2 \pi)^{3}} f^{2}(q / \Lambda) \frac{2 \mu}{q^{2}-2 \mu E_{B}} \\
& -\frac{1}{c_{0}} \approx \frac{\mu}{2 \pi}\left(\sqrt{-2 \mu E_{B}}-\frac{2}{\pi} \Lambda\right) \\
& O(Q) \quad \Lambda \sim O(Q) \quad \text { thus } \quad c_{0} \sim 1 / Q
\end{aligned}
$$

(iii) Final State Interactions
 disambiguating the short range оле

XEFT

Q $\mathrm{X}-\chi$ mixing is $\mathrm{O}(\mathrm{Q})$ and therefore subleading.

Q "For weakly bound systems the addition of coupled channels seems not justified from the effective field theory point of view."
Lu, Geng, and Valderrama, arXiv:1706.02588

Q But: quark-based model is a subset of effective field theories in which X-chi coupling and coupled channel effects are comparable in strength to the SR interactions.

Q Thus the power counting can be confounded by ambiguous scales or large anomalous dimensions.

(iii) Final State Interactions

on-shell pions

$$
\Omega_{A}=\langle B \pi| H|A\rangle
$$

$$
\begin{aligned}
K_{A B} \psi_{A B}+\Omega_{A} \varphi_{B B \pi}+\Omega_{B} \varphi_{A A \pi} & =E \psi_{A B} \\
\Omega_{A}^{\dagger} \psi_{A B}+K_{B B \pi} \varphi_{B B \pi} & =E \varphi_{B B \pi} \\
\Omega_{B}^{\dagger} \psi_{A B}+K_{A A \pi} \varphi_{A A \pi} & =E \varphi_{A A \pi} .
\end{aligned}
$$

$K_{A B} \psi_{A B}+V_{e f f} \psi_{A B}=E \psi_{A B}$

$$
V_{e f f}=\Omega_{A}^{\prime} \frac{1}{E-K_{B B \pi}+i \epsilon} \Omega_{A}+\Omega_{B}^{\dagger} \frac{1}{E-K_{A A \pi}+i \epsilon} \Omega_{B} .
$$

(iii) Final State Interactions

on-shell pions

$$
V_{e f f}=\Omega_{A}^{\dagger} \frac{1}{E-K_{B B \pi}+i \epsilon} \Omega_{A}+\Omega_{B}^{\dagger} \frac{1}{E-K_{A A \pi}+i \epsilon} \Omega_{B}
$$

assume a point-like vertex, weak binding, and approximate K's as m's

$$
\frac{k^{2}}{2 \mu_{A B}} \psi_{A B}(k)+\frac{g^{2}}{4 m_{A} m_{B}} \int \frac{d^{3} q}{(2 \pi)^{3}} \frac{1}{2 \omega(q)}\left(\frac{1}{m_{A}-m_{B}-\omega+i \epsilon}+\frac{1}{m_{B}-m_{A}-\omega+i \epsilon}\right) \psi_{A B}(k-q)=(\varepsilon-i \Gamma / 2) \psi_{A B}(k)
$$

can go on-shell, evaluate the imaginary part: $\quad \Gamma=\frac{g^{2}}{8 \pi m_{A} m_{B}} \bar{q}_{*}$

$$
m_{B}=m_{A}+\omega\left(\bar{q}_{*}\right)
$$

compare to the perturbative relativistic result: $\Gamma=\frac{g^{2}}{8 \pi m_{B}^{2}} q_{*}$

$$
m_{B}=E_{A}\left(q_{*}\right)+\omega\left(q_{*}\right)
$$

(iii) Final State Interactions

on-shell pions

Lastly, Fourier transform:

$$
\begin{aligned}
-\frac{\nabla^{2}}{2 \mu_{A B}} \psi_{A B}(r)-\frac{g^{2}}{4 m_{A} m_{B}} V(r) \psi_{A B}=(\varepsilon-i \Gamma / 2) \psi_{A B}(r) . & \\
V(r)=\int \frac{d^{3} q}{(2 \pi)^{3}} \frac{\exp (i \vec{q} \cdot \vec{r})}{\overrightarrow{q^{2}}+m_{\pi}^{2}-\left(m_{B}-m_{A}\right)^{2}-i \epsilon} . & =\frac{1}{4 \pi r} \exp (i \bar{\mu} r) \\
& \bar{\mu}^{2}=m_{\pi}^{2}-\left(m_{B}-m_{A}\right)^{2} .
\end{aligned}
$$

Evaluate the perturbative imaginary shift in the energy:

$$
\begin{array}{ll}
\Gamma=2 \frac{g^{2}}{4 m_{A} m_{B}}\left\langle\psi_{0}\right| \frac{\sin (\bar{\mu} r)}{4 \pi r}\left|\psi_{0}\right\rangle . & \bar{\mu} \ll \mu_{A B} e^{2} \\
\Gamma=\frac{32 \mu_{A B}^{4} e^{10} \bar{\mu}}{\left(\left(2 \mu_{A B} e^{2}\right)^{2}+\bar{\mu}^{2}\right)^{2}} \rightarrow 2 \bar{\mu} e^{2}+O\left(\bar{\mu}^{3}\right) .
\end{array}
$$

(iii) Final State Interactions

short range

ie. try to pin down the LE constants

$$
J / \psi p(J=1 / 2) \rightarrow \bar{D}^{0} \Lambda_{c}^{+}
$$

J. P. Hilbert, N. Black, T. Barnes, and E. S. Swanson

Phys Rev C 75, 064907 (2007)

(iii) Final State Interactions

short range

does it work?

Woss, Thomas, Dudek, Edwards, Wilson, arXiv:1802.05580
Barnes, Black, and Swanson Phys.Rev. C63 (2001) 025204

lattice scattering from Woss at ~ s quark masses
orange $=$ pi-rho scaled to s-quark

Conclusions

my best bet:

Q Use the strongest EW vertex:

$$
\text { B }->\operatorname{Ds} J \mathrm{D}(*), \mathrm{Ds} 1 \gg \mathrm{Ds} 0 \gg \mathrm{Ds} 1(\mathrm{H}) \gg \mathrm{Ds} 2
$$

- Ds1 $\rightarrow \mathrm{D}^{*} \mathrm{~K}$ is large.
- D* $\Lambda(1 / 23 / 2-)$ scattering" glitches" just below 4450

Q $\left.\left.\sigma\left(D^{*} \Lambda_{c} \rightarrow J / \psi p\right)\right|_{J=3 / 2} \approx 10 \sigma\left(D^{*} \Lambda_{c} \rightarrow J / \psi p\right)\right|_{J=1 / 2}$
© The $\operatorname{Pc}(4450)$ is a $1 / 23 / 2$ - rescattering effect

Conclusions

Search at JLab will be interesting.

Wang, Liu, Zhao, arXiv:1508.00339

Conclusions

		low	medium
exotic-ness	high!	hadrons	hadrons
d.o.f.	quarks	rescattering	π exchange
interactions	g exchange	$(1 \otimes 1)$	
colour	$(1 \otimes 1) \oplus(8 \otimes 8)$	$(1 \otimes 1)$	extended
size	compact		at thresholds
masses	model dependent	at thresholds	restricted
$J^{P C}$	all	restricted	restricted
flavours	all	restricted	HQ restricted
channels	most	medium	high
falsifiability	low		

+ ÆERIC MEC HEHT GEWYRCAN +

