Light-Meson Spectroscopy with COMPASS

Boris Grube

Institute for Hadronic Structure and Fundamental Symmetries Technische Universität München Garching, Germany

Workshop on Bound States in Strongly Coupled Systems Galileo Galilei Institute for Theoretical Physics Florence, 15.03.2018

[Courtesy K. Götzen, GSI]

"Light-meson frontier"

- Many states need confirmation in mass region m ≥ 2 GeV/c²
- Many wide states ⇒ overlap and mixing
- Identification of higher excitations becomes exceedingly difficult

[Courtesy K. Götzen, GSI]

"Light-meson frontier"

- Many states need confirmation in mass region m ≥ 2 GeV/c²
- Many wide states ⇒ overlap and mixing
- Identification of higher excitations becomes exceedingly difficult

[Courtesy K. Götzen, GSI]

"Light-meson frontier"

- Many states need confirmation in mass region *m* ≥ 2 GeV/*c*²
- Many wide states ⇒ overlap and mixing
- Identification of higher excitations becomes exceedingly difficult

[Courtesy K. Götzen, GSI]

"Light-meson frontier"

- Many states need confirmation in mass region m ≥ 2 GeV/c²
- Many wide states ⇒ overlap and mixing
- Identification of higher excitations becomes exceedingly difficult

Beyond the Constituent Quark Model

QCD permits additional color-neutral configurations

- *Physical mesons:* linear superpositions of *all* allowed basis states
- Amplitudes in principle determined by QCD interactions
- Disentanglement of contributions difficult
- *Light mesons:* no definitive experimental evidence yet

Beyond the Constituent Quark Model

QCD permits additional color-neutral configurations

- *Physical mesons:* linear superpositions of *all* allowed basis states
- Amplitudes in principle determined by QCD interactions
- Disentanglement of contributions difficult
- *Light mesons:* no definitive experimental evidence yet

Light-Meson Spectrum from Lattice QCD

State-of-the-art calculation with $m_{\pi} = 391 \,\mathrm{MeV}/c^2$

Dudek et al., PRD 88 (2013) 094505

- High towers of excited states
- Essentially recovers quark-model pattern
- Additional hybrid-meson super-multiplet

The COMPASS Experiment at the CERN SPS

Experimental Setup

C. Adolph et al., NIMA 779 (2015) 69

E/HCAL2

E/HCAL1

Fixed-target experiment

- Two-stage spectrometer
- Large acceptance over wide kinematic range
- Electromagnetic and hadronic calorimeters
- Beam and final-state particle ID (CEDARs, RICH)

RPD + Target

Beam

SN

RICH

The COMPASS Experiment at the CERN SPS

Experimental Setup

C. Adolph et al., NIMA 779 (2015) 69

Fixed-target experiment

- Two-stage spectrometer
- Large acceptance over wide kinematic range
- Electromagnetic and hadronic calorimeters
- Beam and final-state particle ID (CEDARs, RICH)

RPD + Target

Beam

2008-09.2012

- 190 GeV/*c* secondary hadron beams
 - h^- beam: 97% π^- , 2% K^- , 1% \bar{p}
 - h^+ beam: 75 % p, 24 % π^+ , 1 % K^+
- Various targets: *l*H₂, Ni, Pb, W

The COMPASS Experiment at the CERN SPS

Experimental Setup

C. Adolph et al., NIMA 779 (2015) 69

Fixed-target experiment

- Two-stage spectrometer
- Large acceptance over wide kinematic range
- Electromagnetic and hadronic calorimeters
- Beam and final-state particle ID (CEDARs, RICH)

- h^- beam: 97% π^- , 2% K^- , 1% \bar{p}
- h^+ beam: 75 % p, 24 % π^+ , 1 % K^+
- Various targets: *l*H₂, Ni, Pb, W

RPD + Target 🇼

Beam

- Soft scattering of beam particle off target
 - Production of *n* forward-going hadrons
 - Target particle stays intact
- 190 GeV/*c* beam momentum ⇒ interaction dominated by space-like Pomeron exchange
- All final-state particles are measured

- Beam particle gets excited into intermediate resonances *X*
- X dissociate into n-body hadronic final state
- Rich spectrum of interfering intermediate states X

Goal: disentangle all contributing resonances X

Determine their mass, width, and quantum numbers

- Exploits full kinematic information of events
- Amplitude analysis: interference of intermediate states
 - Additional phase information increases sensitivity

- Beam particle gets excited into intermediate resonances *X*
- X dissociate into *n*-body hadronic final state
- Rich spectrum of interfering intermediate states X

Goal: disentangle all contributing resonances X

Determine their mass, width, and quantum numbers

- Exploits full kinematic information of events
- Amplitude analysis: interference of intermediate states
 - Additional phase information increases sensitivity

- Beam particle gets excited into intermediate resonances *X*
- X dissociate into *n*-body hadronic final state
- Rich spectrum of interfering intermediate states X

Goal: disentangle all contributing resonances X

• Determine their mass, width, and quantum numbers

- Exploits full kinematic information of events
- Amplitude analysis: interference of intermediate states
 - Additional phase information increases sensitivity

- Beam particle gets excited into intermediate resonances *X*
- X dissociate into *n*-body hadronic final state
- Rich spectrum of interfering intermediate states X

Goal: disentangle all contributing resonances X

• Determine their mass, width, and quantum numbers

- Exploits full kinematic information of events
- Amplitude analysis: interference of intermediate states
 - Additional phase information increases sensitivity

Example: $\pi^-\pi^-\pi^-$ final state

- Exclusive measurement
 - Clean data sample
- Squared four-momentum transfer 0.1 < t' < 1.0 (GeV/c)²
- $46 \times 10^{6} \pi^{-} \pi^{-} \pi^{+}$ events
- Well-known 3π resonances appear in $m_{3\pi}$ spectrum

Example: $\pi^-\pi^-\pi^+$ final state

- Exclusive measurement
 - Clean data sample
- Squared four-momentum transfer 0.1 < t' < 1.0 (GeV/c)²
- $46 \times 10^{6} \pi^{-} \pi^{-} \pi^{+}$ events
- Well-known 3π resonances appear in m_{3π} spectrum

Example: $\pi^-\pi^-\pi^+$ final state

Example: $\pi^-\pi^-\pi^+$ final state

Example: $\pi^-\pi^-\pi^+$ final state

Example: $\pi^-\pi^-\pi^+$ final state

C. Adolph et al., PRD 95 (2017) 032004

Decay of *X* via intermediate $\pi^-\pi^+$ resonances = "isobars"

Example: $\pi^-\pi^-\pi^+$ final state

C. Adolph et al., PRD 95 (2017) 032004

Decay of X via intermediate $\pi^-\pi^+$ resonances = "isobars"

C. Adolph et al., PRD 95 (2017) 032004

Fit model

- Included isobar resonances:
 - $[\pi\pi]_S \qquad J^{PC} = 0^{++}$
 - $\rho(770)$ 1⁻⁻ • $f_0(980)$ 0⁺⁺
 - $f_2(1270)$ 2^{++}
 - $f_0(1500)$ 0⁺⁺

3--

- $\rho_3(1690)$
- Requires precise knowledge of isobar $\rightarrow \pi^{-}\pi^{+}$ amplitudes

- Notation: $J^{PC} M^{\epsilon} \xi \pi L$
- *J* and *L* up to 6
- 87 partial waves
- Additional incoherent isotropic background wave

- Partial-wave decomposition performed independently in narrow $m_{3\pi}$ and t' bins
 - In each bin: fit to measured 5-dimensional intensity distribution
 - *Result*: transition amplitudes $\mathcal{T}_{wave}(m_{3\pi}, t')$
- PWA makes no assumptions about 3π resonances

- Partial-wave decomposition performed independently in narrow $m_{3\pi}$ and t' bins
 - In each bin: fit to measured 5-dimensional intensity distribution
 - *Result:* transition amplitudes $\mathcal{T}_{wave}(m_{3\pi}, t')$
- PWA makes no assumptions about 3π resonances

PWA $\pi^{-}\pi^{-}\pi^{+}$ Final State: Major Waves

PWA $\pi^{-}\pi^{-}\pi^{+}$ Final State: Major Waves

C. Adolph *et al.*, PRD **95** (2017) 032004 $a_2(1320)$ $a_2(1320)$ $a_2(1320)$ $a_2(1320)$ $a_2(1320)$ $a_2(1320)$ $a_2(1320)$ $a_2(1320)$

1.5

2

 $m_{3\pi}$ [GeV/c²]

2.5

 $\times 10^{6}$

8.5

PWA $\pi^{-}\pi^{-}\pi^{+}$ Final State: Major Waves

PWA $\pi^{-}\pi^{-}\pi^{+}$ Final State: Extraction of Resonances

[arXiv:1802.05913]

Experimental signatures of a resonance

- Intensity peak at resonance mass
- Phase motion: ϕ rises from 0° to 180° and is 90° at peak position
- Resonance mass and width are independent of four-momentum transfer *t*′

PWA $\pi^{-}\pi^{-}\pi^{+}$ Final State: Extraction of Resonances

[arXiv:1802.05913]

Experimental signatures of a resonance

- Intensity peak at resonance mass
- Phase motion: ϕ rises from 0° to 180° and is 90° at peak position
- Resonance mass and width are independent of four-momentum transfer *t*′

[arXiv:1802.05913]

Experimental signatures of a resonance

- Intensity peak at resonance mass
- Phase motion: ϕ rises from 0° to 180° and is 90° at peak position
- Resonance mass and width are independent of four-momentum transfer t'

Boris Grube, TU München Light-Meson Spectroscopy with COMPASS

Ansatz for resonance model

$$\mathcal{T}_{i}(m_{3\pi}, t') \propto \sum_{i}^{\text{wave components}} \mathcal{C}_{i}^{j}(t') \mathcal{D}_{j}(m_{3\pi}, t'; \zeta_{j})$$

• Dynamical amplitudes $\mathcal{D}_{j}(m_{3\pi}, t'; \zeta_{j})$

- For resonances: Breit-Wigner amplitudes
- For non-resonant components: (real-valued) empirical parametrizations
- "Shape parameters" ζ
- "Coupling amplitudes" $C_i^j(t')$
 - Strengths and phases of wave components
- Determine {ζ_j} and {C^j_i(t')} by χ²-fit to PWA result

Ansatz for resonance model

$$\mathcal{T}_{i}(m_{3\pi}, t') \propto \sum_{i}^{\text{wave components}} \mathcal{C}_{i}^{j}(t') \mathcal{D}_{j}(m_{3\pi}, t'; \zeta_{j})$$

• Dynamical amplitudes $\mathcal{D}_{j}(m_{3\pi}, t'; \zeta_{j})$

- For resonances: Breit-Wigner amplitudes
- For non-resonant components: (real-valued) empirical parametrizations
- "Shape parameters" ζ
- "Coupling amplitudes" $C_i^j(t')$
 - Strengths and phases of wave components
- Determine {ζ_j} and {C^j_i(t')} by χ²-fit to PWA result

Ansatz for resonance model

• Dynamical amplitudes $D_j(m_{3\pi}, t'; \zeta_j)$

- For resonances: Breit-Wigner amplitudes
- For non-resonant components (real-valued) empirical parametrizations
- "Shape parameters" ζ_j
- "Coupling amplitudes" $C_i^j(t')$
 - Strengths and phases of wave components
- Determine {ζ_j} and {C^j_i(t')} by χ²-fit to PWA result

[arXiv:1802.05913]

Ansatz for resonance model

• Dynamical amplitudes $D_j(m_{3\pi}, t'; \zeta_j)$

- For resonances: Breit-Wigner amplitudes
- For non-resonant components: (real-valued) empirical parametrizations
- "Shape parameters" ζ_j
- "Coupling amplitudes" $C_i^j(t')$
 - Strengths and phases of wave components
- Determine $\{\zeta_j\}$ and $\{C_i^j(t')\}$ by χ^2 -fit to PWA result

Ansatz for resonance model

• Dynamical amplitudes $\mathcal{D}_j(m_{3\pi}, t'; \zeta_j)$

- For resonances: Breit-Wigner amplitudes
- For non-resonant components: (real-valued) empirical parametrizations
- "Shape parameters" ζ_j
- "Coupling amplitudes" $C_i^j(t')$
 - Strengths and phases of wave components
- Determine {ζ_j} and {C^j_i(t')} by χ²-fit to PWA result

Ansatz for resonance model

• Dynamical amplitudes $\mathcal{D}_j(m_{3\pi}, t'; \zeta_j)$

- For resonances: Breit-Wigner amplitudes
- For non-resonant components: (real-valued) empirical parametrizations
- "Shape parameters" ζ_j
- "Coupling amplitudes" $C_i^j(t')$
 - Strengths and phases of wave components
- Determine {ζ_j} and {C^j_i(t')} by χ²-fit to PWA result

Ansatz for resonance model

• Dynamical amplitudes $\mathcal{D}_j(m_{3\pi}, t'; \zeta_j)$

- For resonances: Breit-Wigner amplitudes
- For non-resonant components: (real-valued) empirical parametrizations
- "Shape parameters" ζ_j
- "Coupling amplitudes" $C_i^j(t')$
 - Strengths and phases of wave components
- Determine {ζ_j} and {C^j_i(t')} by χ²-fit to PWA result

[arXiv:1802.05913]

Boris Grube, TU München

[arXiv:1802.05913]

[arXiv:1802.05913]

- Selected 14 waves with clear resonance signals
 - Represent ca. 60% of total intensity
 - Most comprehensive analysis of this type so far
- Data described by 11 resonances + one non-resonant component in each wave
- Fit 11 *t*′ bins simultaneously
- Same resonance parameters in all *t*' bins
- Large fit
 - 722 real-valued fit parameters constraint by ca. 76 500 data points
 - Only 51 shape parameters
- Model not perfect
 - Tensions with data
 - Multimodal behavior of χ^2 function
 - Result depends on choice of start parameters
 - Perform 1000 fit attempts
- Expensive: one fit result \approx 30 000 CPUh

- Selected 14 waves with clear resonance signals
 - Represent ca. 60% of total intensity
 - Most comprehensive analysis of this type so far
- Data described by 11 resonances + one non-resonant component in each wave
- Fit 11 *t*′ bins simultaneously
- Same resonance parameters in all *t*' bins
- Large fit
 - 722 real-valued fit parameters constraint by ca. 76 500 data points
 - Only 51 shape parameters
- Model not perfect
 - Tensions with data
 - Multimodal behavior of χ^2 function
 - Result depends on choice of start parameters
 - Perform 1000 fit attempts
- Expensive: one fit result \approx 30 000 CPUh

- Selected 14 waves with clear resonance signals
 - Represent ca. 60% of total intensity
 - Most comprehensive analysis of this type so far
- Data described by 11 resonances + one non-resonant component in each wave
- Fit 11 *t*′ bins simultaneously
- Same resonance parameters in all *t*' bins
- Large fit
 - 722 real-valued fit parameters constraint by ca. 76 500 data points
 - Only 51 shape parameters
- Model not perfect
 - Tensions with data
 - Multimodal behavior of χ^2 function
 - Result depends on choice of start parameters
 - Perform 1000 fit attempts
- Expensive: one fit result \approx 30 000 CPUh

- Selected 14 waves with clear resonance signals
 - Represent ca. 60% of total intensity
 - Most comprehensive analysis of this type so far
- Data described by 11 resonances + one non-resonant component in each wave
- Fit 11 *t*′ bins simultaneously
- Same resonance parameters in all *t*' bins
- Large fit
 - 722 real-valued fit parameters constraint by ca. 76 500 data points
 - Only 51 shape parameters
- Model not perfect
 - Tensions with data
 - Multimodal behavior of χ^2 function
 - Result depends on choice of start parameters
 - Perform 1000 fit attempts
- Expensive: one fit result $\approx 30\,000\,\text{CPUh}$

[arXiv:1802.05913]

[arXiv:1802.05913]

Boris Grube, TU München

Light-Meson Spectroscopy with COMPASS

$2^{++}1^+\rho(770) \pi D$ Components: t' Spectra

[arXiv:1802.05913]

- For each t' bin: integrate intensity of wave components over fitted $m_{3\pi}$ range
- Fit *t*' spectrum with simple model: $\mathcal{I}_j(t') = A_j \cdot (t')^{|M|} \cdot e^{-b_j t'}$

• Slope parameter *b_j*

$2^{++} 1^+ \rho(770) \pi D$ Components: t' Spectra

[arXiv:1802.05913]

- For each t' bin: integrate intensity of wave components over fitted $m_{3\pi}$ range
- Fit *t*' spectrum with simple model: $\mathcal{I}_j(t') = A_j \cdot (t')^{|M|} \cdot e^{-b_j t'}$

• Slope parameter *b_j*

non-resonant

$2^{++}1^+\rho(770) \pi D$ Components: t' Spectra

[arXiv:1802.05913]

- For each t' bin: integrate intensity of wave components over fitted $m_{3\pi}$ range
- Fit *t*' spectrum with simple model: $\mathcal{I}_j(t') = A_j \cdot (t')^{|M|} \cdot e^{-b_j t'}$

• Slope parameter *b_j*

Boris Grube, TU München Light-Meson Spectroscopy with COMPASS

- Includes effects from final-state interactions
- Process-independent pole positions of resonances
 - 2 poles: a₂(1320) and a₂(1700)

Diffractively produced $\eta\pi^-$

C. Adolph et al., PLB 740 (2015) 303

- Clear $a_2(1320)$ peak
- Dominant D-wave

Reanalysis with improved resonance model

A. Jackura et al., PLB 779 (2018) 464

- Analytical model based on *S*-matrix principles
 - Developed by JPAC
 - Includes effects from final-state interactions
- Process-independent pole positions of resonances
 - 2 poles: *a*₂(1320) and *a*₂(1700)

 π^{-} Diffractively produced $\eta\pi^ =\sum_{i=1}^{n}$ s, L, MC. Adolph et al., PLB 740 (2015) 303 Im • Clear $a_2(1320)$ peak Dominant D-wave $\times 10^3$ 140 20Reanalysis with improved 120 resonance model 10 100 Intensity/ 40 MeV A. Jackura et al., PLB 779 (2018) 464 80 Analytical model based on 0 1.6 1.4 1.8 2.0S-matrix principles 60 • Developed by JPAC 40 Includes effects from 20final-state interactions Process-independent pole Normalized Residual 0 3 positions of resonances 0 • 2 poles: $a_2(1320)$ and 0.51.0 1.52.02.53.0 \sqrt{s} [GeV] $a_2(1700)$

$a_2(1700)$ parameters

From $\pi^- \pi^- \pi^+$ analysis: $m_0 = (1681^{+22}_{-35}) \text{ MeV}/c^2$ $\Gamma_0 = (436^{+20}_{-16}) \text{ MeV}/c^2$

[arXiv:1802.05913]

From $\eta\pi$ analysis:

- $$\begin{split} m_0 &= (1720 \pm 10_{\text{ stat.}} \pm 60_{\text{ sys.}}) \,\text{MeV}/c^2 \\ \Gamma_0 &= (280 \pm 10_{\text{ stat.}} \pm 70_{\text{ sys.}}) \,\text{MeV}/c^2 \\ \text{A. Jackura$$
 et al., PLB**779** $(2018) 464 \end{split}$
 - *a*₂(1700) masses in agreement
 - Breit-Wigner width from $\pi^-\pi^-\pi^+$ analysis 156 MeV/ c^2 larger

Spin-exotic $1^{-+} 1^+ \rho(770) \pi P$ Wave

[arXiv:1802.05913]

Boris Grube, TU München

Light-Meson Spectroscopy with COMPASS

Spin-exotic $1^{-+} 1^+ \rho(770) \pi P$ Wave

[arXiv:1802.05913]

Boris Grube, TU München

Light-Meson Spectroscopy with COMPASS

 Data at high t' cannot be described without π₁(1600) component (dashed curves)

Model for Non-resonant Component

Purely empirical parametrization for non-resonant components

$$\mathcal{D}_{j}^{\text{NR}}(m_{3\pi}, t'; b, c_{0}, c_{1}, c_{2}) = \left[\frac{m_{3\pi} - m_{\text{thr}}}{m_{\text{norm}}}\right]^{b} e^{-(c_{0} + c_{1} t' + c_{2} t'^{2}) q^{2}}$$

- $m_{\rm thr} = 0.5 \,{\rm GeV}/c^2$ and $m_{\rm norm} = 1 \,{\rm GeV}/c^2$
- *q* is breakup momentum of $X \rightarrow \text{isobar} + \pi$

Deck effect

MC pseudodata generated according to model of Deck amplitude based on ACCMOR, NPB 182 (1981) 269

Use partial-wave projections as non-resonant components

Model for Non-resonant Component

Purely empirical parametrization for non-resonant components

$$\mathcal{D}_{j}^{\text{NR}}(m_{3\pi}, t'; b, c_{0}, c_{1}, c_{2}) = \left[\frac{m_{3\pi} - m_{\text{thr}}}{m_{\text{norm}}}\right]^{b} e^{-(c_{0} + c_{1}t' + c_{2}t'^{2})q^{2}}$$

- $m_{\rm thr} = 0.5 \,{\rm GeV}/c^2$ and $m_{\rm norm} = 1 \,{\rm GeV}/c^2$
- *q* is breakup momentum of $X \rightarrow \text{isobar} + \pi$

Deck effect

- MC pseudodata generated according to model of Deck amplitude based on ACCMOR, NPB 182 (1981) 269
- Use partial-wave projections as non-resonant components

Model for Non-resonant Component

- *Dashed curves:* partial-wave projection of Deck model used as non-resonant component
 - Good description of data
 - Higher $\pi_1(1600)$ yield at low t'

Boris Grube, TU München Light-Meson Spectroscopy with COMPASS
$1^{++} 0^{+} f_0(980) \pi P$ Wave: A New $a_1(1420)$ Meson?

C. Adolph et al., PRL 115 (2015) 082001 and [arXiv:1802.05913]

- Unexpected peak around 1.4 GeV/c²
- Small intensity: only 0.3 % relative contribution
- Peak and phase motion well described by Breit-Wigner amplitude

Resonance parameters

- $a_1(1420)$ $m_0 = (1411 {}^{+4}_{-5}) \text{ MeV}/c^2$ $\Gamma_0 = (161 {}^{+11}_{-14}) \text{ MeV}/c^2$
- Suspiciously close to *KK** threshold

$1^{++} 0^{+} f_0(980) \pi P$ Wave: A New $a_1(1420)$ Meson?

C. Adolph et al., PRL 115 (2015) 082001 and [arXiv:1802.05913]

 $1^{++}0^{+} f_{0}(980) \pi P$ $[1^{++}0^{+}f_{0}(980) \pi P] - [1^{++}0^{+}\rho(770) \pi S]$ $\times 10^{3}$ • Unexpected peak $0.100 < t' < 0.113 (\text{GeV}/c)^2$ $0.100 < t' < 0.113 (\text{GeV}/c)^2$ Model curve 200 around 1.4 GeV/ c^2 Resonances $a_1(1420)$ intensity / (20 MeV/c²) Nonres, comp. • Small intensity: 10 $\Delta \phi$ [deg] only 0.3% relative contribution • Peak and phase -100motion well 15 05 05 $m_{2\pi}$ [GeV/ c^2] $m_{2\pi}$ [GeV/ c^2] described by 1⁺⁺⁰⁺ ρ(770) π S ×10⁶ **Breit-Wigner** $0.100 < t' < 0.113 (\text{GeV}/c)^2$ Model curve amplitude Resonances Intensity / (20 MeV/c2) Nonres, comp $a_1(1260)$ 05 15 25 $m_{3\pi}$ [GeV/ c^2]

$1^{++} 0^{+} f_0(980) \pi P$ Wave: A New $a_1(1420)$ Meson?

C. Adolph et al., PRL 115 (2015) 082001 and [arXiv:1802.05913]

 $1^{++}0^{+} f_{0}(980) \pi P$ $[1^{++}0^{+}f_{0}(980) \pi P] - [1^{++}0^{+}\rho(770) \pi S]$ $\times 10^{3}$ • Unexpected peak $0.100 < t' < 0.113 (\text{GeV}/c)^2$ $0.100 < t' < 0.113 (\text{GeV}/c)^2$ Model curve 200 around 1.4 GeV/ c^2 Resonance $a_1(1420)$ intensity / (20 MeV/c²) Nonres, comp • Small intensity: 10 $\Delta \phi$ [deg] only 0.3% relative contribution • Peak and phase -100motion well 15 05 05 $m_{2\pi}$ [GeV/ c^2] $m_{2\pi}$ [GeV/ c^2] described by 1⁺⁺⁰⁺ ρ(770) π S ×10⁶ **Breit-Wigner** $0.100 < t' < 0.113 (\text{GeV}/c)^2$ Model curve amplitude Resonances Intensity / (20 MeV/c2) Nonres, comp Resonance parameters • $a_1(1420)$ $a_1(1260)$ $m_0 = (1411^{+4}_{-5}) \,\mathrm{MeV}/c^2$ $\Gamma_0 = (161^{+11}_{-14}) \,\mathrm{MeV}/c^2$ • Suspiciously close 05 15 25 $m_{3\pi}$ [GeV/ c^2]

to *KK*^{*} threshold

Proposed Explanations without additional Resonance

Effect in production of $a_1(1260)$?

• Two-channel unitarized Deck amplitude + direct $a_1(1260)$

• Phase motion around $a_1(1260)$ instead around $1.4 \,\text{GeV}/c^2$

Proposed Explanations without additional Resonance

Effect in production of $a_1(1260)$?

• Two-channel unitarized Deck amplitude + direct $a_1(1260)$

• Phase motion around $a_1(1260)$ instead around $1.4 \,\text{GeV}/c^2$

Proposed Explanations without additional Resonance

Effect in decay of $a_1(1260)$?

• Singularity in triangle diagram

Mikhasenko et al., PRD 91 (2015) 094015

Aceti et al., PRD 94 (2016) 096015

• Describes data equally well as Breit-Wigner amplitude

Proposed Explanations without additional Resonance

Effect in decay of $a_1(1260)$?

• Singularity in triangle diagram

Mikhasenko et al., PRD 91 (2015) 094015

Aceti et al., PRD 94 (2016) 096015

• Describes data equally well as Breit-Wigner amplitude

Resonance-Model Fit of $\pi^-\pi^-\pi^+$ Data

Summary: Parameters of *a*₁-like Resonances

Resonance-Model Fit of $\pi^-\pi^-\pi^+$ Data

[arXiv:1802.05913]

Summary: Parameters of π_I -like Resonances

Diffractively produced multi-body final states

• Ideal laboratory to study hadronic resonances and hadron dynamics

_arge data sets allow us to employ novel analysis techniques

• *t'-resolved analysis:* better separation of resonant and non-resonant components

Non-resonant components play important role

- Limit accuracy of resonance parameters
- First studies based on Deck models are promising
- Tight collaboration with theorists to improve analysis model

- Pion diffraction into $\pi^-\eta$, $\pi^-\eta'$, $\pi^-\pi^0\omega$, ...
- Kaon diffraction into $K^-\pi^+\pi^-, \dots$

Diffractively produced multi-body final states

• Ideal laboratory to study hadronic resonances and hadron dynamics

Large data sets allow us to employ novel analysis techniques

• *t'-resolved analysis:* better separation of resonant and non-resonant components

Non-resonant components play important role

- Limit accuracy of resonance parameters
- First studies based on Deck models are promising
- Tight collaboration with theorists to improve analysis model

- Pion diffraction into $\pi^-\eta$, $\pi^-\eta'$, $\pi^-\pi^0\omega$, ...
- Kaon diffraction into $K^-\pi^+\pi^-, \dots$

Diffractively produced multi-body final states

• Ideal laboratory to study hadronic resonances and hadron dynamics

Large data sets allow us to employ novel analysis techniques

• *t'-resolved analysis:* better separation of resonant and non-resonant components

Non-resonant components play important role

- Limit accuracy of resonance parameters
- First studies based on Deck models are promising
- Tight collaboration with theorists to improve analysis model

- Pion diffraction into $\pi^-\eta$, $\pi^-\eta'$, $\pi^-\pi^0\omega$, ...
- Kaon diffraction into $K^-\pi^+\pi^-, \dots$

Diffractively produced multi-body final states

• Ideal laboratory to study hadronic resonances and hadron dynamics

Large data sets allow us to employ novel analysis techniques

• *t'-resolved analysis:* better separation of resonant and non-resonant components

Non-resonant components play important role

- Limit accuracy of resonance parameters
- First studies based on Deck models are promising
- Tight collaboration with theorists to improve analysis model

- Pion diffraction into $\pi^-\eta$, $\pi^-\eta'$, $\pi^-\pi^0\omega$, ...
- Kaon diffraction into $K^-\pi^+\pi^-, \ldots$

$1^{++} 0^+ \rho(770) \pi S$ Wave Components

[arXiv:1802.05913]

$a_1(1260)$

- Shape and position of peak changes significantly with *t*'
- Fair agreement of model with data
- Large non-resonant component
 - Large model dependence

• Our result $m_0 = (1299^{+12}_{-28}) \text{ MeV}/c^2$ $\Gamma_0 = (380 \pm 80) \text{ MeV}/c^2$ • PDC actimate

$1^{++} 0^+ \rho(770) \pi S$ Wave Components

[arXiv:1802.05913]

$a_1(1260)$

- Shape and position of peak changes significantly with *t*'
- Fair agreement of model with data
- Large non-resonant component
 - Large model dependence

- Our result $m_0 = (1299 \frac{+12}{-28}) \text{ MeV}/c^2$ $\Gamma_0 = (380 \pm 80) \text{ MeV}/c^2$
- PDG estimate
 m₀ = (1230 ± 40) MeV/c²
 Γ₀ = 250 to 600 MeV/c²

Boris Grube, TU München

[arXiv:1802.05913]

Model for Non-resonant Component $1^{++} 0^+ \rho(770) \pi S$ Wave

- *Dashed curves:* partial-wave projection of Deck model used as non-resonant component
 - Good description of data
 - Different $a_1(1260)$ yields

$1^{++} 0^+ \rho(770) \pi S$ Components: *t*' Spectra

[arXiv:1802.05913]

- For each t' bin: integrate intensity of wave components over fitted $m_{3\pi}$ range
- Fit *t*' spectrum with simple model: $\mathcal{I}_j(t') = A_j \cdot (t')^{|M|} \cdot e^{-b_j t'}$

• Slope parameter *b_j*

$1^{++} 0^+ \rho(770) \pi S$ Components: t' Spectra

[arXiv:1802.05913]

- For each t' bin: integrate intensity of wave components over fitted $m_{3\pi}$ range
- Fit *t*' spectrum with simple model: $\mathcal{I}_j(t') = A_j \cdot (t')^{|M|} \cdot e^{-b_j t'}$

• Slope parameter *b_j*

non-resonant

$1^{++} 0^+ \rho(770) \pi S$ Components: t' Spectra

[arXiv:1802.05913]

- For each t' bin: integrate intensity of wave components over fitted $m_{3\pi}$ range
- Fit *t*' spectrum with simple model: $\mathcal{I}_j(t') = A_j \cdot (t')^{|M|} \cdot e^{-b_j t'}$

• Slope parameter *b_j*

$1^{-+} 1^+ \rho(770) \pi P$ Components: t' Spectra

[arXiv:1802.05913]

- For each t' bin: integrate intensity of wave components over fitted $m_{3\pi}$ range
- Fit *t'* spectrum with simple model: $\mathcal{I}_j(t') = A_j \cdot (t')^{|M|} \cdot e^{-b_j t'}$

Deck model used for non-resonant

$1^{-+}1^+\rho(770) \pi P$ Components: t' Spectra

[arXiv:1802.05913]

- For each t' bin: integrate intensity of wave components over fitted $m_{3\pi}$ range
- Fit *t'* spectrum with simple model: $\mathcal{I}_j(t') = A_j \cdot (t')^{|M|} \cdot e^{-b_j t'}$

Relative Phases of Wave Components

