Origine degli elementi pesanti nell'Universo: prime evidenze nell'evento di neutron star merger GW170817 (parte II)

Sergio Cristallo

INAF- Osservatorio Astronomico d'Abruzzo INFN – Sezione di Perugia

Astronomy Picture of the Day

The Origin of the Solar System Elements

1 - H	big bang fusion					cosmic ray fission 🛛 🔫										2 He	
3 Li	4 Be	merging neutron stars?					exploding massive stars 🔯					5 B	0 0	Z	8 0	9 F	10 Ne
11 Na	12 Mg	dying low mass stars 🛛 🕥					exploding white dwarfs 🙍					13 Al	14 Si	15 P	16 S	17 CI	18 Ar
19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 	54 Xe
55 Os	56 Ba		72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 TI	82 Pb	83 Bi	84 Po	85 At	86 Rn
87 Fr	88 Ra																
			57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
La Ce Pr No 89 90 91 92					Nd 92	93	94	Eu Ga To Dy Ho Er Thy Yb Lu Very radioactive isotopes: nothing left from stars									
crosto	d by las	nifor k	Ac	Th	Pa	U	Np	Pu	ve	iy luu	oucer	e isote	Astro	nomi	cal Im	nage C	redits

Graphic created by Jennifer Johnson http://www.astronomy.ohio-state.edu/~jaj/nucleo/ Astronomical Image Credits: ESA/NASA/AASNova

Where your elements come from

https://apod.nasa.gov/apod/ap171024.html

GW170817

Una rivoluzione paragonabile a quella galileiana

Galassia ospitante: NGC 4993 (distanza ≈44 Mpc)

GW170817

Una rivoluzione paragonabile a quella galileiana

Arcavi+ 2017

Galassia ospitante: NGC 4993 (distanza ≈44 Mpc)

Le fasi di un NS-NS merger

Perchè non potrebbe essere una Supernova?

 $\begin{array}{l} \mathsf{M}_{\mathsf{SUN}} \sim + \, 4.\, 5 \\ \mathsf{M}_{\mathsf{VENUS}} \sim - \, 4.\, 5 \end{array}$

Sono due cose completamente distinte!!!!

Curca bolometrica di GW170817

Tiene conto dell'energia emessa a tutte le lunghezze d'onda

Osservazioni a diverse bande spettrali

U = 365 nm g = 477 nm r = 623 nm i = 762 nm z = 913 nm y = 1005 nm J = 1220 nm H = 1630 nm K = 2190 nm

Reddening di GW170817

Equazione del Trasferimento Radiativo

$$\frac{\mathrm{d}I_{\nu}}{\mathrm{d}\tau_{\nu}} = S_{\nu} - I_{\nu}$$
Intensità della radiazione
$$\int \int \int F_{\mathrm{Unzione \ sorgente}} F_{\mathrm{Unzione \ sorgente}} (\mathrm{rapporto \ tra \ emissività \ ed \ assorbimento)}$$

$$\tau_{\nu}(D) = \int_0^D \alpha_{\nu}(s) \, \mathrm{d}s$$

 $\alpha_{\nu} = \kappa_{\nu} \rho \longleftarrow K_{\nu} e l'opacita del materiale$

Come è avvenuto il merger?

UN PO' DI FISICA

1. ESPANSIONE ADIABATICA: gran parte del riscaldamento iniziale (cosi' come il calore dallo stesso merger) è perso adiabaticamente perché il materiale è altamente opaco. La pressione compie lavoro per espandere e, di conseguenza, l'energia interna viene convertita in energia cinetica. Questa fase avviene PRIMA che parta il processo r:

TV<sup>$$\gamma$$
-1</sup>=cost $\gamma = C_P/C_V$

2. Un segnale elettromagnetico (EM) significativo è possibile solo quando la densità è scesa abbastanza affinchè i fotoni possano sfuggire dal materiale. Il picco di emissione si raggiunge in un tempo:

$$t_{\rm peak} \approx 0.5 \, {\rm d} \left(\frac{v}{0.1c} \right)^{-1/2} \left(\frac{M_{\rm ej}}{10^{-2} \, {\rm M_{\odot}}} \right)^{1/2} \label{eq:tpeak}$$

 C'è però da considerare l'apporto energetico dato dagli isotopi radioattivi creati dal processo r. Questi depositano energia (attraverso decadimenti β e prodotti di fissione) nel materiale in espansione, il quale a sua volta emette termicamente:

$$dQ/dt \approx t^{-\alpha}$$
 con $\alpha < 2$

EFFETTO «COPERTA» DELLE LINEE SPETTRALI (LINE BLANKETING)

Line blanketing: processo per cui i fotoni assorbiti (che formao linee di assorbimento spettrali) vengono termalizzati e riemessi ad altre lunghezze d'onda, in particolare nel continuo (le linee si comportano come una "coperta" che causa il riscaldamento degli strati interni). L'energia del decadimento viene assorbita e riemessa così tante volte negli strati opachi ricchi di lantanidi da essere ridistribuita secondo uno spettro di corpo nero con picco nell'infrarosso.

SPEZZIAMO UNA LANCIA PER QUESTI POVERI BISTRATTATI TEORICI (DI OGNI GENERE)

...This assumes that radioactive r-process transients exist and that we can find them. Admittedly, we test dangerous waters any time that, lacking observational input, we attempt to describe a new astrophysical phenomenon on purely theoretical grounds. (METZGER+ 2010)

The situation here is a step more treacherous; not only must we rely on simulations of a complex macroscopic system, even the microscopic structures of our ions are model-based. (KASEN+ 2003)

Il meccanismo più studiato in letteratura: il vento neutrinico nelle SN II

©ARCONES

vp-process T < 3 GK

$$e^{+} + e^{-} \rightarrow Z^{0} \rightarrow v_{e} + \overline{v}_{e}$$
$$e^{+} + e^{-} \rightarrow Z^{0} \rightarrow v_{\mu} + \overline{v}_{\mu}$$
$$e^{+} + e^{-} \rightarrow Z^{0} \rightarrow v_{\tau} + \overline{v}_{\tau}$$

Piccolo problema:

NON HA MAI FUNZIONATO!

(Magneto Rotational Instability, MRI)

Lo shock viene «spinto» dalla pressione magnetica

Burrows+ 2007 Mosta+ 2015 Saway&Yamada 2014

Necessarie per ovviare al problema connesso alla tempistica dei NS mergers: questi eventi richiedono almeno 100 milioni di anni per evolvere (troppo tempo per riprodurre l'alone galattico, a meno che la galassia non si sia formata attraverso un processo gerarchico di dwarf spheroidal galaxies (e.g. Hirai+ 2015).

Evidenze di elementi r nello spettro di SNII

SN 2005cs (d=8 Mpc)

SN 1987A (d=0,05 Mpc)

Tracce di bario e stronzio: processo r o s?

Evidenze del process r a basse metallicità

Sneden, Cowan & Gallino 2008

- CS 22892-052: Sneden et al. (2003)
- HD 115444: Westin et al. (2000)
- BD+17°324817: Cowan et al. (2002)
- * CS 31082-001: Hill et al. (2002)
- HD 221170: Ivans et al. (2006)
- HE 1523-0901: Frebel et al. (2007)

Evidenze del process r a basse metallicità

Sneden, Cowan & Gallino 2008

Dipendenza del processo r dai parametri fisici

Te-Ba

<u>Weak</u> r-process: A<≈130 <u>Main</u> r-process: sino ai transuranici

r-process

s-process (path secondario) τ(¹³⁵Cs)=2.0 Myr

s-process (path principale)

 $\tau(^{129}I) = 15.7 \text{ Myr}$

L'importanza dell'astrofisica nucleare Un caso emblematico: il ¹³⁵Cs

s-process (path secondario)

s-process (path principale)

τ(¹²⁹I)=15.7 Myr τ(¹³⁵Cs)=2.0 Myr

L'importanza dell'astrofisica nucleare Un caso emblematico: il ¹³⁵Cs

Come si determina il contributo del processo r alla distribuzione solare?

$r = \frac{2}{3}$

Una dettagliata conoscenza del processo s e' condizione imprescindibile per calcolare l'evoluzione chimica della Galassia

Come si determina il contributo del processo r alla distribuzione solare?

Una dettagliata conoscenza del processo s e' condizione imprescindibile per calcolare l'evoluzione chimica della Galassia

I contributi s ed r alla distribuzione osservata nel Sole

Main s-process

Weak s-process

Main r-process

NEUTRON STARS MERGERS

Weak r-process

FASE ESPLOSIVA DELLE STELLE MASSICCE??

Main s-process

ASYMPTOTIC GIANT BRANCH STARS

Weak s-process

QUIESCENT BURNINGS OF MASSIVE STARS

Main r-process NEUTRON STARS MERGERS

Weak r-process FASE ESPLOSIVA DELLE STELLE MASSICCE??

Earth-Sun

CO Core He-shell H-shell

Earth radius (~10⁻² R_{SUN})

s-process [hs/ls]

Ba & CH stars
Post-AGBs
Intrinsic C-rich
Intrinsic O-rich

Cristallo et al. 2011

[ls/Fe]=([Sr/Fe]+[Y/Fe]+[Zr/Fe])/3

[hs/Fe]=([Ba/Fe]+[La/Fe]+[Nd/Fe] +[Sm/Fe])/4

Allende (Mexico, 1969)

Granuli pre-solari

Meteoriti

Murchison (Australia, 1969)

Il processo weak s e l'evoluzione delle stelle massicce

Come si può testare la robustezza dei modelli s?

La distribuzione solare degli s-only

Prantzos+ 2018, MNRAS

The end

