Dark Flavored Sector possible searches in Belle II From Heidelberg Workshop

Michael De Nuccio

University of Pisa - INFN - Belle II

01 December 2017

• • = • • = •

Heavy/Sterile Neutrinos (HNL) Motivations

Many complex models trying to explain:

- Neutrino masses;
- Matter antimatter asymmetry;
- Dark matter.

Particle contents of the vMSM

→ neutrino-minimal SM

- addition of 3 right-handed (i.e. sterile) massive neutrinos
 - low LH ν masses generated via See-Saw mechanism:

$$m_{\nu} \sim \frac{m_D^2}{M}$$

- N₁: keV mass range
 - Iong-lived
 - dark matter candidate
- N_{2,3}: GeV mass range
 short-lived
 - nearly degenerate masses

Heavy/Sterile Neutrinos (HNL) Possible channels at Belle II

Dominant N decay modes for $m_N < 500$ MeV: $N \rightarrow \pi^0 \nu$, $N \rightarrow \pi \mu$, $N \rightarrow \pi e^-$, $N \rightarrow \nu \nu \nu$.

Search for the heaviest new neutrino ($N_{2,3}$, aka "4th" neutrino):

•
$$K \to IN, K \to \pi^0 IN \ (I = \mu, e).$$

 $\Gamma(K \to IN) = \Gamma(K \to I\nu_I) \cdot kinematic \cdot |U_{I4}|^2$

- HNL production + decay:
 - $\mathcal{K}^{\pm} \rightarrow \pi^{\mp} \mu^{\pm} \mu^{\pm}$, LNV (basically no SM bkg);
 - $K^{\pm} \rightarrow \pi^{\pm} \mu^{+} \mu^{-}$, LNC: di-muon resonance search. Main bkg: $K^{\pm} \rightarrow \pi^{\pm} \pi^{-} \pi^{+}$.
- HNL production:
 - $K^+ \rightarrow \mu^+ N$, looking to **missing mass** in 300 \div 375 MeV;
 - $K^+ \rightarrow e^+ N$, looking to **missing mass** in 170 \div 448 MeV.

Heavy/Sterile Neutrinos (HNL) And Now for Something Completely Different: Katrin, 1/2

Katrin wants to directly measure neutrino mass through spectrum distortion in β decay (electric field acts as filter):

4/19

Heavy/Sterile Neutrinos (HNL) And Now for Something Completely Different: Katrin, 2/2

Flavor eigenstates \neq mass eigenstates $\Rightarrow m_{\beta}^2 = \sum_i |U_{ei}|^2 m_{\nu_i}^2$. The existence of a 4th sterile neutrino could be deduced by further distortion in the spectrum: "automatic" if $m_{\nu_s} = O(eV)$, otherwise a new dedicated detector is needed (Tristan).

SOX would have been able to solve this doubt, but ...

Axion, Axiflavon, ALP Motivations

Hierarchies problem: quark and lepton masses are highly hierarchical; CKM too:

Non-violation of CP by Strong Interaction seems to be a fine-tuning problem that can be solved introducing an ad hoc particle (Peccei-Quinn Axion):

$$\mathcal{L}_{\text{QCD}} = \sum_{q} \overline{q} \left(i D - m_{q} e^{i \theta_{q}} \right) q - \frac{1}{4} G_{a}^{\mu\nu} G_{a\nu}^{a} - \theta \frac{\alpha_{s}}{8\pi} G_{a}^{\mu\nu} \tilde{G}_{a}^{a} \qquad \left(\tilde{G}_{\mu\nu}^{a} = \frac{1}{2} \epsilon_{\mu\nu\rho\sigma} G^{a,\rho\sigma} \right)$$

$$(\vec{G}_{\mu\nu}^{a} = \frac{1}{2} \epsilon_{\mu\nu\rho\sigma} G^{a,\rho\sigma})$$

Axion, Axiflavon, ALP Axion-Like Particles (ALP), 1/3

An ALP is any pseudoscalar neutral massive particle. Possible searches:

• $B \rightarrow KA$ (almost like my analysis: in my case $A \rightarrow \gamma \gamma$);

•
$$K \to \pi A$$
;

•
$$b
ightarrow s$$
A, $A
ightarrow \mu^+ \mu^-$:

< A > <

B decay mode with invisible particle(s) in final state:

- $B \rightarrow h^{(*)}X$, X invisible:
 - semileptonic tag-side and hadronic tag-side;
 - select $h^{(*)}$ in a certain momentum range, taking in account $B \to h^{(*)} \nu \nu$ expectation;
 - veto any additional track.

•
$$B^+ \rightarrow I^+ \nu$$
, $I = \tau, \mu, e$:

- due to helicity suppression, au branching fraction is the highest;
- on the other hand τ decays early in neutrinos, therefore imprecise momentum knowledge.

• $B \rightarrow D^* \tau \nu$:

直 ト イヨ ト イヨト

Axion, Axiflavon, ALP Axion-Like Particles (ALP), 3/3

B decay mode with invisible particle(s) in final state:

• $B \rightarrow D^* \tau \nu$: 4σ discrepancy between world average and SM prediction:

Dark Sector FCNC, 1/2

Some of the cleanest FCNC-induced decays produce neutrinos:

But neutrinos are undetected, only missing energy is reconstructed.

Could there be something else? Some new dark state X?

	SM (×10 ⁻¹¹)	Experiment	Z
$K_L \to \pi^0 \nu \overline{\nu}$	$2.57^{+0.37}_{-0.37}$	< 2.6 · 10 ⁻⁸ E391a	s u,c,t s
$K^+ \rightarrow \pi^+ \nu \overline{\nu}(\gamma)$	$8.22^{+0.75}_{-0.75}$	$17.3^{+11.5}_{-10.5} \cdot 10^{-11}$ E787 E949	and d

æ

<ロ> <同> <同> <同> <同> < 同>

SM leptons or Dark Matter

A ≥ ►

Belle II: Dark Photons to invisible (``Single photon search")

Belle II: ALPs decaying into Dark Matter

- ALP decays can be invisible because the ALP decays outside of the detector or because the ALP decays into an invisible final state: Dark Matter.
- We re-interpreted BaBar's Dark Photon analysis in terms of ALPs decaying into Dark Matter.
- We studied the Belle II sensitivity for ALPs decaying into Dark Matter.

| 4 同 🕨 🛛 🖃 🕨 🤘

Belle II: Other planned Dark Sector and exotic searches

- Search for Dark Photons decaying into pseudo-Dirac DM: ***
 - $\blacktriangleright A' \rightarrow \chi_1 \chi_{2,} \chi_{2 \rightarrow} \chi_1 A', A' \rightarrow e^+ e^-.$
- Off-shell A' decays. ***
- Long-lived neutral particle decays.
- Visible Dark Photon decays.
- ▶ Dark Scalar: $e^+e^- \rightarrow \tau^+\tau^-S$, $S \rightarrow \ell^+\ell^-$
- Magnetic monopoles with small magnetic charges. ***

- Invisible Y(1S) decays via
 Y(3S)→ Y(1S)π⁺π⁻ (Requires beam energies at Y(3S)).
- Muonic Dark Force:
 - $e^+e^- \rightarrow \mu^+\mu^- Z', Z' \rightarrow \mu^+\mu^-$
 - e⁺e⁻ →µ⁺µ⁻Z', Z'→Invisible ***
- Dark Higgs
- **)** ...

*** Possible during Phase 2 (2018 data)

э

$$\pi^0
ightarrow \gamma A'$$
, $A'
ightarrow e^+e^-$

æ

< ロ > < 回 > < 回 > < 回 > < 回 >

Possible investigated Lepton Flavor Violation processes:

• $\mu \rightarrow 3e$: Current limit: $BR(\mu \rightarrow 3e) < 1.0 \times 10^{-12} (90\% CL)$.

•
$$\mu
ightarrow e\gamma$$
: $BR(\mu
ightarrow e\gamma) \sim 10^{-54}$

・ 同 ト ・ ヨ ト ・ ヨ ト

- From angular analysis of B⁰ → K^{0*}μμ it comes out an anomaly in the P'₅ form factor (seen by both LHCb and Belle);
- Differences in branching fractions for $b \rightarrow sll$ processes, particularly at low q^2 ;
- There are 2 ÷ 3σ differences between data and theory for the following ratios of branching fractions (where due to the ratio any hadronic uncertainties should rule out):

•
$$R_{K^{+/0^*}} = \frac{BR(B^{+/0} \to K^{+/0^*} \mu^+ \mu^-)}{BR(B^{+/0} \to K^{+/0^*} e^+ e^-)};$$

• $R_{D^*} = \frac{BR(B^0 \to D^{+^*} \nu_\tau \tau^-)}{BR(B^0 \to D^{+^*} \nu_\mu \mu^-)}.$

B anomalies

æ

<ロ> (日) (日) (日) (日) (日)