Phase 2 DT power system requirements: Actual status

Gruppo di lavoro sulle alimentazioni LHC fase 2 23 Novembre 2017

The DT Actual Low Voltage System

About **1100** LV channels which powers the **chambers Front Ends** (FE), the on detector electronics (MiniCrates) and rack boards which transfers readout and trigger data outside of UXC.

Standard CAEN EASY System:

• USC (S4):

•

• 1 SY4527 with 10 Branch Controller (1 for half wheel)

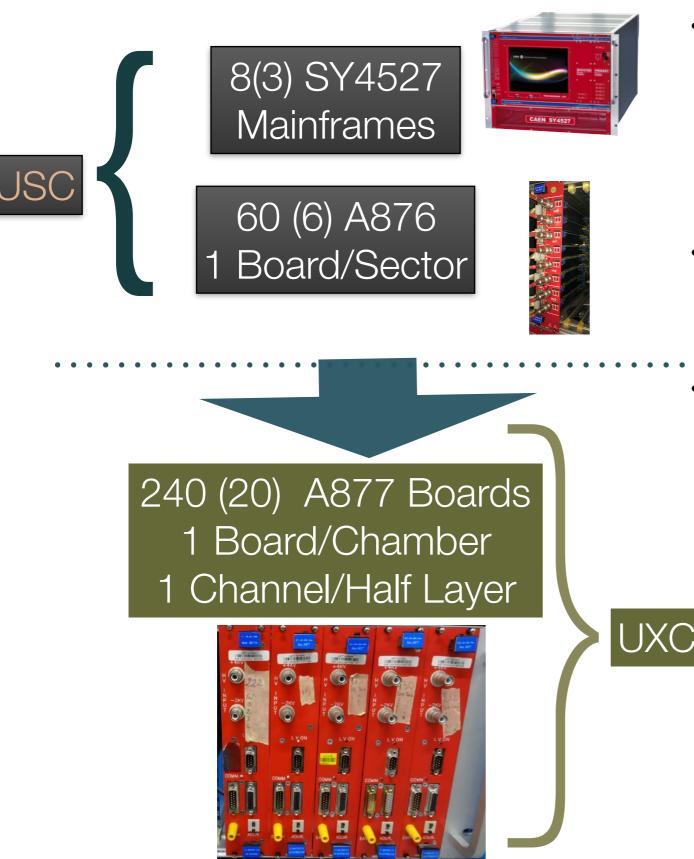
• UXC (in the tower racks)

- 40 MAO (A3486s)
- 70 A3009, for MC (~9 W) and FE (~30 W)
- 160 A3050 for MC (~120 W) and CuOF (~60W)
- It powers also the CMS Alignment LV (22 A3006 boards)

Phase 2 LV requirements status

In Phase 2 on detector trigger and readout electronics will be changed.

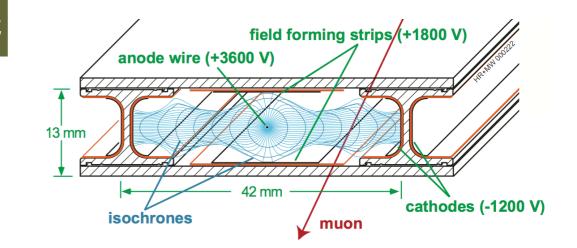
- Starting point is to **to keep the actual powering scheme**:
 - **FE electronics will remain the same** and will require same powering (given by A3009)
 - expected power consumption for new MiniCrate will be lower
 - we would keep the same cabling between USC and UXC and on the detector.


• Main open issues:

- Ageing of the actual Easy System:
 - Expected dose on DT racks at the limit of EASY specifications
- Actual power conversion in the new minicrate still to be decided
 - Lower power, but also lower voltages
 - Linear Regulators (like now) or on detector DC/DC converters (FEAST)

	10 LHC years with factor 3.15	10 HL-LHC years (with factor 3.15 included, assuming 5000 fb ⁻¹)	Actual Easy Declared Tolerances
Neutrons Fluence E>100 eV (cm ⁻²)	8.96E+09	2.83E+11	
Neutrons Fluence 1 MeV equiv (cm ⁻²)	9.91E+09	3.12E+11	2E+12
Neutrons Fluence E >20 MeV (cm ⁻²)	9.04E+08	2.85E+11	2E+11
Charged Hadrons Fluence (cm ⁻²)	1.17E+07	3.69E+08	
Total for SEE (cm ⁻²)	9.16E+08	2.89E+10	
Dose (Gy)	0.4	12.61	150

Radiation Tolerances


DT Actual HV System

- Power Supply system designed by CAEN specifically for the CMS DT in early 2000 with the collaboration of INFN
- It was a prototype for the development of the EASY system

Very large system: ~14K channels

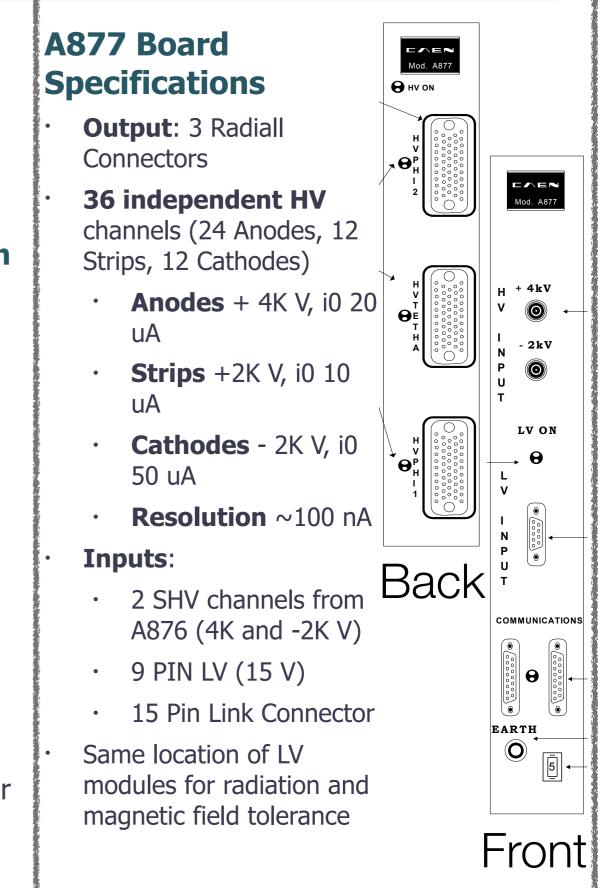
- +3600 V for the anodic wires (with half layer granularity)
- +1800 V for the strips
- -1200 V for the cathodes

Phase 2 HV requirements

DT requirements will not change in Phase 2

 Cabling/granularity/infrastructure are planned to remain the same

Weak point are the A877 boards which operates in UXC:


No equivalent catalogue item

•

- We asked CAEN to develop a new version of the A877 with updated technology
 - An offer has been given for a development cost of 150k CHF and 1 year in time
 - Money has been already allocated in the DT budget

Development could start next year

- Weak point is the manpower in the DT community for testing and radiation tolerance evaluation
- We would gladly share knowledge and testing for common components.

