Searches for "Relativistic" Inelastic Dark Matter

Doojin KimINFN LNF Autumn Institute II, Frascati, Italy

November 28th, 2017

Based on DK, J.-C. Park, S. Shin, PRL119, 161801 (2017) G. Giudice, DK, J.-C. Park, S. Shin, 1711. xxxxx

Searches for "Relativistic" Inelastic Dark Matter at WIMP Detectors

Doojin Kim

INFN LNF Autumn Institute II, Frascati, Italy November 28th, 2017

> Based on DK, J. C. Park, S. Shin, PRL119, 161001 (2017) G. Giudice, DK, J.-C. Park, S. Shin, 1711. xxxxx

Outline

I. Introduction/Motivation

Direct detection experiment current status, boosted dark matter search, ...

II. Model

Benchmark models, expected signatures, ...

III. Signal Detection

Benchmark detectors, detection technology, expected signal features, ...

IV. Phenomenology

Detection prospects, model-independent reach, ...

V. Conclusions

☐ (Mostly) focusing on weakly interacting massive particles (WIMPs) search

☐ (Mostly) focusing on weakly interacting massive particles (WIMPs) search

Non-relativistic,

elastic scattering

of weak-scale DM

with <u>nuclei</u>

☐ (Mostly) focusing on weakly interacting massive particles (WIMPs) search

Non-relativistic,

<u>elastic</u> scattering

of weak-scale DM

with <u>nuclei</u>

 $\checkmark E_{\text{recoil}} \sim 1 - 100$ keV

✓ Detectors

designed to be

sensitive to this

energy scale

☐ (Mostly) focusing on weakly interacting massive particles (WIMPs) search

Non-relativistic,

elastic scattering

of weak-scale DM

with nuclei

- ✓ $E_{\text{recoil}} \sim 1 100$ keV
- ✓ Detectors

 designed to be

 sensitive to this

 energy scale

- ✓ Null observation of WIMP signals
- ✓ A wide range of parameter space already excluded
- ✓ Close to the neutrino "floor"
- ✓ Need new ideas!

☐ (Mostly) focusing on weakly interacting massive particles (WIMPs) search

- $\checkmark E_{\text{recoil}} \sim 1 100$ keV
- ✓ Detectors

 designed to be

 sensitive to this

 energy scale

- ✓ Null observation of WIMP signals
- ✓ A wide range of parameter space already excluded
- ✓ Close to the neutrino "floor"

✓ Need new ideas!

"Relativistic" Dark Matter Search

☐ A way to have "relativistic" DM (at the cosmic frontier) boosted dark matter scenarios [Agashe,

Cui, Necib, Thaler (2014)]

"Relativistic" Dark Matter Search

☐ A way to have "relativistic" DM (at the cosmic frontier) boosted dark matter scenarios [Agashe,

Cui, Necib, Thaler (2014)]

- Overall relic determined by <u>"Assisted" Freeze-out</u> mechanism [Belanger, Park (2011)]
- \star Heavier DM χ_0 : dominant relic, non-relativistic, not directly communicating with SM (hard to detect them due to tiny coupling to SM)
- \star Lighter DM χ_1 : directly communicating with SM, subdominant relic (hard to detect them due to small amount)

"Relativistic" Dark Matter Search

☐ A way to have "relativistic" DM (at the cosmic frontier) boosted dark matter scenarios [Agashe,

Cui, Necib, Thaler (2014)]

- ❖ Overall relic determined by <u>"Assisted" Freeze-out mechanism [Belanger, Park (2011)]</u>
- \star Heavier DM χ_0 : dominant relic, non-relativistic, not directly communicating with SM (hard to detect them due to tiny coupling to SM)
- \star Lighter DM χ_1 : directly communicating with SM, subdominant relic (hard to detect them due to small amount)
- \square χ_1 can be relativistic at the current universe (non-relativistic as a relic): relativistic DM search

Light Boosted DM Detection

 \square Flux of boosted χ_1 near the earth

$$\mathcal{F}_{\chi_1} \sim \frac{\langle \sigma v \rangle_{\chi_0 \chi_0 \to \chi_1 \chi_1}}{m_0^2}$$
 from DM number density

Light Boosted DM Detection

 \square Flux of boosted χ_1 near the earth

$$\mathcal{F}_{\chi_1} \sim \frac{\langle \sigma v \rangle_{\chi_0 \chi_0 \to \chi_1 \chi_1}}{m_0^2}$$
 from DM number density

□ Setting $\langle \sigma v \rangle_{\chi_0 \chi_0 \to \chi_1 \chi_1}$ to be ~10⁻²⁶ cm³s⁻¹ and assuming NFW DM halo profile, one finds

$$\mathcal{F}_{\chi_1} \sim 10^{-7} \text{cm}^{-2} \text{s}^{-1}$$
 for WIMP mass-range χ_0

Light Boosted DM Detection

 \square Flux of boosted χ_1 near the earth

$$\mathcal{F}_{\chi_1} \sim \frac{\langle \sigma v \rangle_{\chi_0 \chi_0 \to \chi_1 \chi_1}}{m_0^2}$$
 from DM number density

□ Setting $\langle \sigma v \rangle_{\chi_0 \chi_0 \to \chi_1 \chi_1}$ to be ~10⁻²⁶ cm³s⁻¹ and assuming NFW DM halo profile, one finds

$$\mathcal{F}_{\chi_1} \sim 10^{-7} \text{cm}^{-2} \text{s}^{-1}$$
 for WIMP mass-range χ_0

 No sensitivity in conventional dark matter direct detection experiments ⇒ largevolume (neutrino) detectors are motivated, e.g., Super-K/Hyper-K, DUNE

- ✓ Elastic scattering [Agashe et al (2014); Berger et al (2014); Kong et al. (2014); Alhazmi et al. (2016)]
- ✓ Inelastic scattering [DK, Park, Shin (2016)]

Pumping up Light DM Flux

 \Box Flux of boosted χ_1

$$\mathcal{F}_{\chi_1} \sim \frac{\langle \sigma v \rangle_{\chi_0 \chi_0 \to \chi_1 \chi_1}}{m_0^2}$$

reduced by 2 - 3 orders of magnitude (i.e., GeV/sub-GeV m_0)

 \Rightarrow flux increased by 4 – 6 orders of magnitude!

Pumping up Light DM Flux

 \square Flux of boosted χ_1

$$\mathcal{F}_{\chi_1} \sim \frac{\langle \sigma v \rangle_{\chi_0 \chi_0 \to \chi_1 \chi_1}}{m_0^2}$$
 reduced by 2 – 3 orders of magnitude (i.e., GeV/sub-GeV m_0) \Rightarrow flux increased by 4 – 6 orders of magnitude!

Conventional DM direct detection experiments may have (boosted) light DM signal!

Note: NOT claiming that WIMP detectors are best; no best detectors exist (each has pros and cons, a quick comparison available later)

Pumping up Light DM Flux

 \square Flux of boosted χ_1

$$\mathcal{F}_{\chi_1} \sim \frac{\langle \sigma v \rangle_{\chi_0 \chi_0 \to \chi_1 \chi_1}}{m_0^2}$$
 reduced by 2 – 3 orders of magnitude (i.e., GeV/sub-GeV m_0) \Rightarrow flux increased by 4 – 6 orders of magnitude!

Conventional DM direct detection experiments may have (boosted) light DM signal!

Note: NOT claiming that WIMP detectors are best; no best detectors exist (each has pros and cons, a quick comparison available later)

□ Elastic nucleon scattering in the context of gauged baryon number/higgs portal models [Cherry, Frandsen, Shoemaker (2015)]: recoil nucleon *NON*-relativistic

Why NOT Electron Scattering!

☐ In conventional DM direct detection experiments, electron recoils (ER) are usually rejected (mostly keV – sub-MeV range) because they aim at DM-nucleon interactions

Why NOT Electron Scattering!

- ☐ In conventional DM direct detection experiments, electron recoils (ER) are usually rejected (mostly keV sub-MeV range) because they aim at DM-nucleon interactions
- ☐ For boosted MeV-range DM,
 - ✓ Expected ER energetic ⇒ MeV sub-GeV range
 - ✓ May leave an appreciable track (will be discussed later)
 - ✓ *e*-scattering cross section may be bigger than *p*/N-scattering (depending on parameter choice)

Why NOT Electron Scattering!

- ☐ In conventional DM direct detection experiments, electron recoils (ER) are usually rejected (mostly keV sub-MeV range) because they aim at DM-nucleon interactions
- ☐ For boosted MeV-range DM,
 - ✓ Expected ER energetic ⇒ MeV sub-GeV range
 - ✓ May leave an appreciable track (will be discussed later)
 - ✓ *e*-scattering cross section may be bigger than *p*/N-scattering (depending on parameter choice)

e-scattering will be excellent in search for (boosted) light dark matter particles!

Outline

I. Introduction/Motivation

Direct detection experiment current status, boosted dark matter search, ...

II. Model

Benchmark models, expected signatures, ...

III. Signal Detection

Benchmark detectors, detection technology, expected signal features, ...

IV. Phenomenology

Detection prospects, model-independent reach, ...

V. Conclusions

Benchmark Model

$$\mathcal{L}_{\rm int} \equiv \left(-\frac{\epsilon}{2} F_{\mu\nu} X^{\mu\nu}\right) + \left(g_{11} \bar{\chi}_1 \gamma^{\mu} \chi_1 X_{\mu} + g_{12} \bar{\chi}_2 \gamma^{\mu} \chi_1 X_{\mu}\right) + \text{h. c.} + (\text{others})$$

- ☐ Vector portal (e.g., dark gauge boson scenario) [Holdom (1986)]
- □ Fermionic DM
 - \star χ_2 : a heavier (unstable) dark-sector state
 - ❖ Flavor-conserving neutral current ⇒ elastic scattering
 - ❖ Flavor-changing neutral current ⇒ inelastic
 scattering [Tucker-Smith, Weiner (2001); Kim, Seo, Shin (2012)]

Outline

I. Introduction/Motivation

Direct detection experiment current status, boosted dark matter search, ...

II. Model

Benchmark models, expected signatures, ...

III. Signal Detection

Benchmark detectors, detection technology, expected signal features, ...

IV. Phenomenology

Detection prospects, model-independent reach, ...

V. Conclusions

Benchmark Detectors

Experiment	Geometry (r, h) or r [cm]	Mass [t]	Target
XENON1T	Cylinder	(38, 76)	1.0	LXe
DEAP-3600	Sphere	72	2.2	LAr
LZ	Cylinder	(69, 130)	5.6	LXe

[Numbers are for fiducial volumes.]

LUX-ZEPLIN(LZ)

projected

☐ Dual phase detection technology

☐ Dual phase detection technology

☐ For a given scattering point,

☐ Dual phase detection technology

- ☐ For a given scattering point,
 - Some Xe excited → de-excited, emitting a characteristic scintillation photon (178 nm) detected by PMTs immediately, \$1 (scintillation),

☐ Dual phase detection technology

- ☐ For a given scattering point,
 - Some Xe excited → de-excited, emitting a characteristic scintillation photon (178 nm) detected by PMTs immediately, \$1 (scintillation),
 - 2) More Xe ionized, releasing free electrons moving upward by the **Drift Field** and hitting gaseous Xe,

☐ Dual phase detection technology

- ☐ For a given scattering point,
 - Some Xe excited → de-excited, emitting a characteristic scintillation photon (178 nm) detected by PMTs immediately, \$1 (scintillation),
 - 2) More Xe ionized, releasing free electrons moving upward by the **Drift Field** and hitting gaseous Xe,
 - 3) Gaseous Xe excited → de-excited, emitting a photon detected by PMTs, S2 (ionization).

☐ Dual phase detection technology

- ☐ For a given scattering point,
 - Some Xe excited → de-excited, emitting a characteristic scintillation photon (178 nm) detected by PMTs immediately, \$1 (scintillation),
 - 2) More Xe ionized, releasing free electrons moving upward by the **Drift Field** and hitting gaseous Xe,
 - 3) Gaseous Xe excited → de-excited, emitting a photon detected by PMTs, S2 (ionization).
- ☐ Time difference between S1 and S2 giving the depth of the scattering point (~0.1mm resolution)

☐ Dual phase detection technology

- ☐ For a given scattering point,
 - Some Xe excited → de-excited, emitting a characteristic scintillation photon (178 nm) detected by PMTs immediately, \$1 (scintillation),
 - 2) More Xe ionized, releasing free electrons moving upward by the **Drift Field** and hitting gaseous Xe,
 - 3) Gaseous Xe excited → de-excited, emitting a photon detected by PMTs, S2 (ionization).
- ☐ Time difference between S1 and S2 giving the depth of the scattering point (~0.1mm resolution)

Cf.) S2 not available at DEAP3600

Detection Technology: XY Plane

☐ **LOW** energy source (²⁴¹AmBe)

Detection Technology: XY Plane

☐ **LOW** energy source (²⁴¹AmBe)

□ Likelihood analysis allowing position resolution in XY plane as good as < 2 cm (may be better with high energy source [LUX collaboration (2017)])

"Disclaimer"

☐ No dedicated detector studies with highenergetic recoil signals

☐ Doing our best to make as reasonable estimate and expectation as possible

High-energetic DM Signal Detection

☐ Point-like scattering position?

High-energetic DM Signal Detection

☐ Point-like scattering position? → Expect a **sizable track**!

[Material property available at NIST (https://physics.nist.gov/PhysRefData/Star/Text/ESTAR.html)]

High-energetic DM Signal Detection

☐ Point-like scattering position? → Expect a **sizable track**!

[Material property available at NIST (https://physics.nist.gov/PhysRefData/Star/Text/ESTAR.html)]

☐ Expect tracks of 2 – 10 cm (with LXe) for energy regime of interest

Expected Pattern: Vertical Track

☐ A given vertical track

Expected Pattern: Vertical Track

☐ A given vertical track

- 1) can be considered as an array of scattering points,
- 2) Free electrons released at each point: more (less) electrons at the starting (ending) point,
- 3) Expect a series of flickerings of a few PMTs by an interval of ~10 ns (1 cycle of charge discharge)

Expected Pattern: Vertical Track

☐ A given vertical track

- 1) can be considered as an array of scattering points,
- 2) Free electrons released at each point: more (less) electrons at the starting (ending) point,
- 3) Expect a series of flickerings of a few PMTs by an interval of ~10 ns (1 cycle of charge discharge)
- ✓ Expect (relatively) easy identification of a lengthy track plus more precise track/energy reconstruction (than the horizontal track in the next slide)

☐ For a given horizontal track

☐ For a given horizontal track

 Expect (almost) simultaneous charging of several PMTs, some of which may saturate

☐ For a given horizontal track

 Expect (almost) simultaneous charging of several PMTs, some of which may saturate

Expect identification of a lengthy track is doable/ achievable

Track/energy recon. may require likelihood analysis with unsaturated PMTs

Saturated PMTs

☐ For a given horizontal track

Positron Signature: Bragg Peak

☐ A given positron track

Positron Signature: Bragg Peak

☐ A given positron track

- stops and gets annihilated with a (nearby) electron,
 creating a characteristic signature of Bragg
 Peak!!!
 - ⇒ Additional handle to identify positrons (or positron tracks)
 - ⇒ Cf.) DEAP having better acceptance for theBragg peak due to its spherical geometry

Expected DM Signals: XY Plane-view

☐ Tracks POP UP inside the fiducial volume, NOT from outside!

• Ordinary elastic scattering: one track

- Three distinguishable tracks
- May show a displaced secondary vertex

- Three overlaid tracks
- Density pattern different from that is the elastic scattering
- Displaced vertex identifiable

- (Relatively) prompt secondary process
- Three overlaid tracks
- Density pattern different from that is the elastic scattering
- Displaced vertex nonidentifiable

Expected DM Signals: XY Plane-view

☐ Tracks POP UP inside the fiducial volume, NOT from outside!

 Ordinary elastic scattering: one track

- Three distinguishable tracks
- May show a displaced secondary vertex

- Three overlaid tracks
- Density pattern different from that is the elastic scattering
- Displaced vertex identifiable

- Density pattern
- different from that is the elastic scattering
- Displaced vertex nonidentifiable
- ☐ Multiple tracks/displaced vertex necessary only for post-discovery (e.g., elastic vs. inelastic)
- Cf.) DEAP3600: displaced vertex ≥ 6.5 cm identifiable with S1 only by likelihood methods

Potential Backgrounds

☐ Any SM backgrounds creating an electron recoil track appearing inside the fiducial volume?

Potential Backgrounds

- ☐ Any SM backgrounds creating an electron recoil track appearing inside the fiducial volume?
 - \Rightarrow Yes, solar neutrinos, in particular, induced by ⁸B.

TABLE II. ⁸B neutrino scattering cross sections. The scattering cross sections for ⁸B solar neutrinos incident on electrons are given for different values of the minimum accepted kinetic energy T_{\min} . The neutrinos are assumed to be pure electron neutrinos (v_e) or muon neutrinos (v_μ) when they reach the Earth. The cross sections were calculated for $\sin^2\theta_W = 0.23$. The quantities $F_{e\cdot v_\mu}$ are the fractional changes in the cross section for a change in $\sin^2\theta_W$ equal to 0.01 [see Eq. (22)].

T_{\min}	σ_{e-v_e}		$\sigma_{e ext{-}v_{\mu}}$	
(MeV)	(10^{-46} cm^2)	$F_{e ext{-}v_e}$	(10^{-46} cm^2)	$F_{e u_{\mu}}$
0.0	6.08×10^{2}	0.029	1.04×10^{2}	-0.040
1.0	5.09×10^{2}	0.029	8.39×10^{1}	-0.046
2.0	4.15×10^{2}	0.028	6.63×10^{1}	-0.052
3.0	3.27×10^{2}	0.028	5.10×10^{1}	-0.056
4.0	2.48×10^{2}	0.028	3.79×10^{1}	-0.060
5.0	1.80×10^{2}	0.028	2.71×10^{1}	-0.063
6.0	1.23×10^{2}	0.027	1.83×10^{1}	0.065
7.0	7.90×10^{1}	0.027	1.16×10^{1}	-0.067
8.0	4.64×10^{1}	0.027	6.76×10^{0}	-0.068
9.0	2.44×10^{1}	0.027	3.53×10^{0}	-0.069
10.0	1.10×10^{1}	0.027	1.58×10^{0}	-0.070
11.0	3.93×10^{0}	0.027	5.64×10^{-1}	-0.070
12.0	9.88×10^{-1}	0.027	1.41×10^{-1}	-0.071
13.0	1.36×10^{-1}	0.027	1.94×10^{-2}	-0.071
13.5	3.60×10^{-2}	0.027	5.13×10^{-3}	-0.071
14.0	7.4×10^{-3}	0.027	1.0×10^{-3}	-0.071

[Rev. Mod. Phys., Vol. 59, No. 2, April 1987]

Potential Backgrounds

- ☐ Any SM backgrounds creating an electron recoil track appearing inside the fiducial volume?
 - \Rightarrow Yes, solar neutrinos, in particular, induced by ⁸B.

TABLE II. ⁸B neutrino scattering cross sections. The scattering cross sections for ⁸B solar neutrinos incident on electrons are given for different values of the minimum accepted kinetic energy T_{\min} . The neutrinos are assumed to be pure electron neutrinos (v_e) or muon neutrinos (v_μ) when they reach the Earth. The cross sections were calculated for $\sin^2\theta_W = 0.23$. The quantities $F_{e\cdot v_\mu}$ are the fractional changes in the cross section for a change in $\sin^2\theta_W$ equal to 0.01 [see Eq. (22)].

T_{\min}	σ_{e-v_e}		$\sigma_{e ext{-} u_{\mu}}$	
(MeV)	(10^{-46} cm^2)	$F_{e ext{-} u_e}$	(10^{-46} cm^2)	$F_{e \cdot v_{\mu}}$
0.0	6.08×10^{2}	0.029	1.04×10^{2}	-0.040
1.0	5.09×10^{2}	0.029	8.39×10^{1}	-0.046
2.0	4.15×10^{2}	0.028	6.63×10^{1}	-0.052
3.0	3.27×10^{2}	0.028	5.10×10^{1}	-0.056
4.0	2.48×10^{2}	0.028	3.79×10^{1}	-0.060
5.0	1.80×10^{2}	0.028	2.71×10^{1}	-0.063
6.0	1.23×10^{2}	0.027	1.83×10^{1}	-0.065
7.0	7.90×10^{1}	0.027	1.16×10^{1}	-0.067
8.0	4.64×10^{1}	0.027	6.76×10^{0}	-0.068
9.0	2.44×10^{1}	0.027	3.53×10^{0}	-0.069
10.0	1.10×10^{1}	0.027	1.58×10^{0}	-0.070
11.0	3.93×10^{0}	0.027	5.64×10^{-1}	-0.070
12.0	9.88×10^{-1}	0.027	1.41×10^{-1}	-0.071
13.0	1.36×10^{-1}	0.027	1.94×10^{-2}	-0.071
13.5	3.60×10^{-2}	0.027	5.13×10^{-3}	-0.071
14.0	7.4×10^{-3}	0.027	1.0×10^{-3}	-0.071

[Rev. Mod. Phys., Vol. 59, No. 2, April 1987]

□ Estimate only ~0.1 events even at LZ-5yr with an energy cut of \geq 10 MeV (Energy resolution at $E_{\text{recoil}} = 10$ MeV is expected to be $\mathcal{O}(10\%)$ [private communications with experimentalists].)

Outline

I. Introduction/Motivation

Direct detection experiment current status, boosted dark matter search, ...

II. Model

Benchmark models, expected signatures, ...

III. Signal Detection

Benchmark detectors, detection technology, expected signal features, ...

IV. Phenomenology

Detection prospects, model-independent reach, ...

V. Conclusions

Benchmark Studies

FIG. 2: Expected energy spectra of the primary (upper-left panel) and secondary (upper-right panel) e^- and/or e^+ for four reference points whose details are tabulated in the lower panel. g_{12} is set to be unity and all mass quantities are in MeV.

- χ_2 long-lived

$$\ell_{2,\text{lab}} = \frac{c\gamma_2}{\Gamma_2} \sim 16.2 \text{ cm} \times \left(\frac{10^{-3}}{\epsilon}\right)^2 \times \left(\frac{1}{g_{12}}\right)^2$$
$$\times \left(\frac{m_X}{30 \text{ MeV}}\right)^4 \times \left(\frac{10 \text{ MeV}}{\delta m}\right)^5 \times \frac{\gamma_2}{10}$$

Two-body decay of χ_2 (no displaced vertex)

Benchmark Studies

FIG. 2: Expected energy spectra of the primary (upper-left panel) and secondary (upper-right panel) e^- and/or e^+ for four reference points whose details are tabulated in the lower panel. g_{12} is set to be unity and all mass quantities are in MeV.

Quite energetic ER and secondary signals as expected

- χ_2 long-lived

$$\ell_{2,\text{lab}} = \frac{c\gamma_2}{\Gamma_2} \sim 16.2 \text{ cm} \times \left(\frac{10^{-3}}{\epsilon}\right)^2 \times \left(\frac{1}{g_{12}}\right)^2$$
$$\times \left(\frac{m_X}{30 \text{ MeV}}\right)^4 \times \left(\frac{10 \text{ MeV}}{\delta m}\right)^5 \times \frac{\gamma_2}{10}$$

Two-body decay of χ_2 (no displaced vertex)

Benchmark Studies: Detection Prospects

)41	eliminary		ref	<u>.</u>	ref	2	ref	. 3	ref	4
	Expecte	d flux	610)	43	3	0.9	08	0.24	4
	Experiments	Run time	multi	single	multi	single	multi	single	multi	single
	XENON1T	1yr	2000	160	220	7.5	0.37	0.37	0.27	0.27
	ALMONTI	5 yr	390	32	43	1.5	0.075	0.075	0.054	0.054
	DEAP-3600	1 yr	450	63	55	3.1	_	0.16	_	0.11
DEAI -3000	5 yr	91	13	11	0.61	_	0.031	_	0.022	
LZ	1 yr	180	27	25	1.3	0.067	0.067	0.048	0.048	
	5 yr	36	5.4	5.0	0.26	0.013	0.013	0.0096	0.0096	

TABLE II: Required fluxes of χ_1 in unit of 10^{-3} cm⁻² s⁻¹ with which our reference points get sensitive to the benchmark experiments. For comparison expected fluxes are shown under the assumptions of $\langle \sigma v \rangle_{\chi_0 \chi_0 \to \chi_1 \chi_1} = 5 \times 10^{-26}$ cm³ s⁻¹ and the NFW DM halo profile.

- □ 3 signal events under the zero background assumption.
- □ Selection criteria: "multi" channel multiple tracks, "single" channel > 1 track or a single track with $E_{\text{recoil}} \ge 10 \text{ MeV}$.
- □ DEAP3600 having no sensitivity to ref3 and ref4 in the "multi" channel: no displaced vertices in ref3 and ref4, it is challenging to identify 3 final state particles with S1 only.

Model-independent Reach

- Non-trivial to find appropriate parameterizations for providing model-independent reaches due to many parameters involved in the model
- \square Number of signal events N_{sig} is

$$N_{\rm sig} = \sigma \cdot \mathcal{F} \cdot A \cdot t_{\rm exp} \cdot N_e$$

- σ : scattering cross section between χ_1 and (target) electron
- \mathcal{F} : flux of incoming (boosted) χ_1
- *A*: acceptance
- t_{\exp} : exposure time
- N_e : total number of target electrons

Controllable!

Model-independent Reach: Displaced Vertex

☐ Acceptance determined by the distance between the primary (ER) and the secondary vertices

⇒ (relatively) conservative limit to require two correlated vertices in the fiducial volumes

(also to be distinguished from elastic scattering)

Evaluated under the assumption of cumulatively isotropic χ_1 flux

Model-independent Reach: Displaced Vertex

- ☐ Acceptance determined by the distance between the primary (ER) and the secondary vertices
 - ⇒ (relatively) conservative limit to require two correlated vertices in the fiducial volumes (also to be distinguished from elastic scattering)

Evaluated under the assumption of cumulatively isotropic χ_1 flux

 ℓ_{lab} different event-by-event, so taking ℓ_{lab}^{max} for more conservative limit

Model-independent Reach: Displaced Vertex

- ☐ Acceptance determined by the distance between the primary (ER) and the secondary vertices
 - ⇒ (relatively) conservative limit to require two correlated vertices in the fiducial volumes (also to be distinguished from elastic scattering)

Evaluated under the assumption of cumulatively isotropic χ_1 flux

 ℓ_{lab} different event-by-event, so taking ℓ_{lab}^{max} for more conservative limit

Model-independent Reach: "Prompt" Decay

□ No measurable/appreciable displaced vertex \Rightarrow *A* \approx 1, limit relevant to signals with overlaid vertices or elastic scattering signals

$$\sigma \geq \frac{2.3}{\mathcal{F} \cdot A \cdot t_{\mathrm{exp}} \cdot N_e}$$
 with
$$\mathcal{F} \sim \frac{\langle \sigma v \rangle_{\chi_0 \chi_0 \to \chi_1 \chi_1}}{m_0^2}$$
 set to be $5 \times 10^{-26} \ \mathrm{cm}^3 \mathrm{s}^{-1}$

Model-independent Reach: "Prompt" Decay

□ No measurable/appreciable displaced vertex \Rightarrow *A* \approx 1, limit relevant to signals with overlaid vertices or elastic scattering signals

Dark Photon Parameter Space: Invisible X Decay

- \square Case study 1: mass spectra for which dark photon decays into DM pairs, i.e., $m_X > 2m_1$
- ☐ Same selection criteria imposed

Preliminary

Caused by the position resolution of 6.5 cm at DEAP

Dark Photon Parameter Space: Visible X decay

- \square Case study 2: mass spectra for which dark photon decays into lepton pairs, i.e., $m_X < 2m_1$
- ☐ Same selection criteria imposed

Preliminary

Final Remark: Detector Comparison

Ex	periments	Fiducial volume	Pros	Cons
Liquid Xe/Ar	Xenon1T, DEAP, LZ, etc.	1 – 5 tons	 (Relatively) good angular/position resolution Decent size of fiducial volume, hence less suffering from background 	• Relatively poor energy resolution (due to the saturation issue)
Neutrino-related	Borexino, KamLAND, etc.	~100 tons	Good energy resolution (in the range of interest)Larger fiducial volume	 Relatively poor at identifying the secondary vertex (S1 only) More background
Array-type	CUORE, COSINE, etc.	< 1 ton	 Better for signal events with displaced vertices Essentially no background 	• Smaller fiducial volume (i.e., probing less parameter space)

Conclusions

- Boosted light dark matter searches are **promising**.
- □ Conventional dark matter direct detection experiments possess sensitivities to MeV-range (heaviest light?) DM.
- ☐ They can provide an **alternative avenue** to probe dark photon parameter space.

Back-up

Boosted DM from the Sky: Semi-annihilation

 \square In DM models where relevant DM is stabilized by e.g., Z_3 symmetry, one may have a process like

Under the circumstance in which the mass of SM here is lighter (i.e., $m_A > m_{SM}$), the outgoing χ_A can be boosted and its boost factor is given by

$$\gamma_A = \frac{5m_A^2 - m_{\rm SM}^2}{4m_A^2}$$

Boosted DM Signal Detection

Expecting a long track by an energetic electron/positron

2.45 MeV neutron beam source

Backgrounds for Xenon1T

Table 2 Summary of the sources contributing to the background of XENON1T in a fiducial target of 1.0 t and a NR energy region from 4 to 50 keV (corresponding to 1 to 12 keV ER equivalent). The expected rates are taken from the Monte Carlo simulation-based study [18] and assume no ER rejection. CNNS stands for "coherent neutrino nucleus scattering".

Background Source	Type	Rate $[(t \times y)^{-1}]$	Mitigation Approach
²²² Rn (10 µBq/kg)	ER	620	material selected for low Rn-emanation; ER rejection
solar pp- and ⁷ Be-neutrinos	ER	36	ER rejection
⁸⁵ Kr (0.2 ppt of ^{nat} Kr)	ER	31	cryogenic distillation; ER rejection
$2\nu\beta\beta$ of ¹³⁶ Xe	ER	9	ER rejection
Material radioactivity	ER	30	material selection; ER and multiple scatter rejection; fiducialization
Radiogenic neutrons	NR	0.55	material selection; multiple scatter rejection; fiducialization
CNNS (mainly solar ⁸ B-neutrinos)	NR	0.6	_
Muon-induced neutrons	NR	< 0.01	active Cherenkov veto [43]; multiple scatter rejection; fiducialization

[Xenon Collaboration (2017)]

All are smaller than ~100 keV, hence irrelevant to our signals