Evidence for ttH production with the ATLAS DETECTOR

AUTUMN INSTITUTE - NOVEMBER 28TH, 2017 GIUSEPPE SALAMANNA, MARCO SESSA, <u>VALENTINA VECCHIO</u>

Istituto Nazionale di Fisica Nucleare SEZIONE DI ROMA TRE

- The Yukawa coupling

- The measurement of the Hings properties is the most important challenge alter its discovery
- Fermion masses arise in the SM only as consequence of the EWSB through the Yukawa interaction

- Experimentally observations:
 - Tau Yukawa coupling observed in $H \rightarrow \tau\tau$ decays
 - Evidence of bottom-quark Yukawa coupling through H \rightarrow bb decay

horizontal horizontal

 $\sqrt{2}\frac{m_f}{d}$

H

MOTIVATION - Top-quark coupling to

- Since the top-quark is the heaviest particle in the SM, it has the largest Yukawa coupling $\rightarrow \lambda_{top} \sim 1$
- Indirect constraints on λ_{top} comes from loops interactions of the Higgs boson:
 - gluon-gluon fusion production (ggF) of the Higgs boson
 - di-photon decay of the Higgs boson

(HIGLU, iHixs,

Production process 340

Production process

ÍO

q

 μ_{ggF}

Restur

(H)

Higg

NNLO

(HqT,

•Jet-

A

1.00

ttH production at LHC

- ttH production cross-section at 13 TeV represents only the 1% of the total Higgs cross-section
- It is a complex final states involving many objects coming from the decay of both top and Higgs

ttH final states

- Since t \rightarrow Wb with a branching ratio of ~ 100% we define:
 - leptonic decay of top quark the case in which the W boson produced in the top quark decay goes in lepton+neutrino (lv)
 - hadronic decay of the top quark the case in which $W \rightarrow qq'$
- So lepton+jets decay of top quark pair is the case in which ttbar \rightarrow WWbb \rightarrow (lv)(qq')bb
- The dilepton decays is the case in which ttbar \rightarrow WWbb \rightarrow (lv)(lv)bb

ttH final states

- A complex final states involving many objects:
 - hadronic jets and b-hadron initiated jets (b-tagged jets)
 - light leptons l (electrons and muons)
 - hadronic taus (τ_{had})
 - photons (γ)
- The search analysis are thus characterized depending on the decay modes of the Higgs boson:
 - ttH \rightarrow tt+ $\gamma\gamma$, clear signature but low statistics due to the BR(H $\rightarrow\gamma\gamma$) = 0.2%
 - ttH \rightarrow tt+bb, high statistics BR(H \rightarrow bb) = 58% but high uncertainty
 - ttH \rightarrow leptons + X, where H \rightarrow WW/ZZ/ $\tau\tau$ mainly, called multilepton final state: is a good compromise between the previous two

Summary of ttH searches at LHC

- Most recent result by ATLAS and CMS (significance is the one on the signal strength $\mu)$

	ATLAS					
Run-1 combination	JHEP 1608 (2016) 045 4.4 σ (exp: 2.0 σ) $\mu_{t\bar{t}H} = 2.3^{+0.7}_{-0.6}$					
$t\overline{t}H(b\overline{b})$	ATLAS-CONF-2017-076 1.4σ (exp: 1.6σ) μ = 0.8±0.6	CMS-PAS-HIG-16-038 (13 fb ⁻¹) $\mu_{t\bar{t}H} = -0.19 \pm 0.8$				
<i>tTH</i> multilepton	ATLAS-CONF-2017-077	$\begin{array}{l} \mbox{CMS-PAS-HIG-17-004} \ (\ell \ {\rm only}) \\ 3.3\sigma \ ({\rm exp:} \ 2.5\sigma) \\ \mu_{t\bar{t}H} = 1.5 \pm 0.5 \\ \mbox{CMS-PAS-HIG-17-003} \ (\tau_{\rm had}) \\ 1.4\sigma \ ({\rm exp:} \ 1.8\sigma) \\ \mu_{t\bar{t}H} = 0.72^{+0.62}_{-0.53} \end{array}$				
$t\overline{t}H(ZZ ightarrow 4\ell)$	$\begin{array}{l} ATLAS\text{-}CONF\text{-}2017\text{-}043 \\ \mu_{t\overline{t}H} < 7.7 \end{array}$	arXiv:1706.09936 $\mu_{t\bar{t}H} < 1.18$				
$t\overline{t}H(\gamma\gamma)$	$\begin{array}{l} \text{ATLAS-CONF-2017-045} \\ 1.0\sigma \; (\text{exp: } 1.8\sigma) \\ \mu_{t\bar{t}H} = 0.5 \pm 0.6 \end{array}$	CMS-PAS-HIG-16-040 $3.3\sigma \text{ (exp: } 1.5\sigma\text{)}$ $\mu_{t\bar{t}H} = 2.2^{+0.9}_{-0.8}$				

ATLAS EXPERIMENT

- 2015-2016: more than 36 fb⁻¹ of LHC pp collision data recorded in ATLAS after beam and data quality requirements
- ATLAS data acquisition efficiency: 92.1%(2015) 92.4% (2016)
- Peak luminosity of 1.4×10^{34} cm⁻²s⁻¹
 - Pile-up of ~25 average (~45 maximum) collisions per crossing \Rightarrow Up to more than 20-25 pile-up vertices per event!
- more than 40 fb⁻¹ of data already collected in 2017, at even higher peak luminosities

Jets reconstruction performance

- Jets are reconstructed combining the tracks in the inner detector to clusters of energy deposits in the hadronic calorimeter (anti-kt algorithm)
- Well-understood jet calibration, using $\gamma+jet,\,Z+jet$ and multijet data
- Jet energy scale uncertainty:
 - Below 1% for $p_T > 150 \text{ GeV}$
 - ~5% for $p_T \approx 25 \text{ GeV}$

• Exploiting their kinematical properties it is possibile to identify jets initiated from b-quark wrt jets initiated from light quark

- Large improvement in b-tagging performance in Run-2 due to the additional Insertable B-Layer (radius: 3.3 cm)
- Calibration derived from data:
 - b-jet efficiency: dileptonic ttbar (2-10% uncert.)
 - c-jet mistag: semileptonic ttbar (W \rightarrow cs), W +c (5-20% uncert.)
 - Light-flavour mistag: dijet events (10-50% uncert.)

ttH multilepton

ttH multilepton: strategy

- Targeting H \rightarrow WW, ZZ, $\tau\tau$ decay modes, combined with leptonic decays of the ttbar pair
- Seven different channel depending on the number of light prompt leptons (electrons and muon) and τ_{had}

- 100 ion [%] ATLAS Simulation 90 Preliminary. $\sqrt{s} = 13 \text{ TeV}$ 100 Signal Fraction [%] **ATLAS** Simulation 90 Preliminary, $\sqrt{s} = 13 \text{ TeV}$ 80 $H \rightarrow other$ 70 $H \rightarrow \tau \tau$ 60 $H \rightarrow ZZ$ 50 $H \rightarrow WW$ 40 30 20 10 0 2ISS+ trhad 210S+trhad 11+2Thad 4I Z-enriched 31+ trhad 41 Z-depleted 2155 ³/SR
- Each channel's signal region (SR) is given by selections on event level variables
- These SRs are orthogonal between the different channels in order to make the final combination easier

ttH multilepton: strategy

MVA techniques to increase the sensitivity of each channel!

- 2LSS uses the combination od two BDTs (ttH vs ttbar, ttH vs ttV)
- 3l uses 5-dimensional multinomial BDTs mappe to 5 categories (ttH, ttW, ttZ, ttbar, VV)
- 4l (Z-enriched) uses BDT of ttH vs tty
- + 2lSS+1 τ_{had} , 2lOS+1 τ_{had} , 1l+2 τ_{had} uses BDT of ttH vs ttbar

ttH multilepton: background processes

Main background processes are:

- Prompt leptons same experimental signature as signal → irreducible
 - these processes have real prompt leptons and τ_{had}
 - estimated from Monte Carlo simulation
- Electron charge mis-identification
 - estimated from data events using mis-id rates from the Z → e+e-
- Non-prompt and fake leptons: leptons not coming from the primary interaction or jets mis-identified as leptons
 - Mainly coming from the semileptonic decay of heavy quarks hadrons
 - sizable contribution also from photon conversion
 - estimated from data events
- Fake tau leptons:
 - mainly from light flavor jets or electrons misidentified as τ_{had}

ttH multilepton: background processes

Main background processes are:

- Prompt leptons same experimental signature as signal → irreducible
 - these processes have real prompt leptons and τ_{had}
 - estimated from Monte Carlo simulation
- Electron charge mis-identification
 - estimated from data events using mis-id rates from the Z → e+e-
- Non-prompt and fake leptons: leptons not coming from the primary interaction or jets mis-identified as leptons
 - Mainly coming from the semi-leptonic decay of heavy quarks hadrons
 - sizable contribution also from photon conversion
 - estimated from data events
- Fake tau leptons:
 - mainly from light flavor jets or electrons misidentified as τ_{had}

Background estimation: prompt leptons

- Largest irreducible backgrounds: ttW, ttZ, diboson
- Estimated using NLO MC samples, with theory/modelling uncertainties:
 - Cross-section uncertainties
 - Scale variations
 - Generator comparisons
- Validated in several regions enriched by these processes
- Rare SM processes also included: 4tops, 3tops, tZ, tWZ, ttWW, rare top radiative decays t \rightarrow Wby(ll)

ttH multilepton: background processes

Main background processes are:

- Prompt leptons same experimental signature as signal → irreducible
 - these processes have real prompt leptons and τ_{had}
 - estimated from Monte Carlo simulation
- Electron charge mis-identification
 - estimated from data events using mis-id rates from the Z → e+e-
- Non-prompt and fake leptons: leptons not coming from the primary interaction or jets mis-identified as leptons
 - Mainly coming from the semileptonic decay of heavy quarks hadrons
 - sizable contribution also from photon conversion
 - estimated from data events
- Fake tau leptons:
 - mainly from light flavor jets or electrons misidentified as τ_{had}

Ad-hoc improvements for ttH multilepton

- Important improvements on the performance of leptons reconstruction have been introduced in ttH analysis
- BDT to reduce the electron charge mis-identification
 - Using electron calorimeter and track variables
 - Factor 17 rejection for 95% efficiency

- BDT to reduce non prompt e/µ
 - Input variables: isolation variables, jet reco and b-tag algorithms using tracks around leptons
 - Factor 20 rejection for leptons originating from b-hadrons
 - Efficiency for prompt e/µ: ~70% (60%) at low $p_{_{T}}$, >95% at high $p_{_{T}}$
 - Calibration performed in Z→ll events

Background estimation: Fake/non-prompt leptons

2lss/3l channels:

- Fully data-drive estimate with loose-to-tight <u>matrix method</u>
- Real and fake efficiencies meaning data
- Validated in various regions

4l channels:

- Semi data-driven method
- MC split between prompt, heavy and light flavor
- Normalization in factors for each component determined in 3l low jet multiplicity CR, then applied to MC predictions for 4l

21

ttH multilepton: background processes

Main background processes are:

- Prompt leptons same experimental signature as signal → irreducible
 - these processes have real prompt leptons and τ_{had}
 - estimated from Monte Carlo simulation
- Electron charge mis-identification
 - estimated from data events using mis-id rates from the Z → e+e-
- Non-prompt and fake leptons: leptons not coming from the primary interaction or jets mis-identified as leptons
 - Mainly coming from the semileptonic decay of heavy quarks hadrons
 - sizable contribution also from photon conversion
 - estimated from data events
- Fake tau leptons:
 - mainly from light flavor jets or electrons misidentified as τ_{had}

Background estimation: Fake hadronic taus

- + Fake τ_{had} background from ttbar or ttV relevant for all SRs includi
- Negligible fake/non-prompt l, expects for 2lSS+1 τ_{had}
- $1l+2\tau_{had}$ channel:
- + Using CR with two same-sign τ_{had} extrapolated to SR using MC

 $2lOS+1\tau_{had}$ channel:

- Fake factors measured in a CR, inverting part of the τ_{had} identifical requirements

lata agreement for $2lOS+1\tau_{had}$

milar fake τ_{had} origin in the 2lOS/2lSS/3l+1 τ_{had} Ita-driven estimates from 2lOS+1 τ_{had} as tion factor for the fake τ_{had} +prompt l MC in l+1 τ_{had}

in 2lSS+1τ_{had}: estimated from data using fake

entries correspond to the Z-enriched and the Z-depleted categories.

Fit setup culation

	2ℓSS	3ℓ	4ℓ	1ℓ + $2\tau_{had}$	$2\ell SS+1\tau_{had}$	$2\ell OS+1\tau_{had}$	$3\ell+1\tau_{had}$
BDT trained against	Fakes and $t\bar{t}V$	$t\bar{t}, t\bar{t}W, t\bar{t}Z, VV$	tī̄Z / -	tī	all	tī	-
Discriminant	2×1D BDT	5D BDT	Event count	BDT	BDT	BDT	Event count
Number of bins	6	5	1/1	2	2	10	1
Control regions	-	4	-	-	-	-	-

ATLAS Preliminary

10⁵

- Maximum-tikelihood fit to extract ttH signal The fit uses templates constructed from the strength µ 614 erna the bins of the input distribution in each reg 615
- Statistical analysis of the data tuses ha binned emplate t likelihood function which is constructed for a functuation product of Foisson regions. Systematic uncertainties that hav find probability terms to estimate u improve the speed of the fit. A normalisation
- Simultane ous fit to the 12 SR and CR which reduces the 1
- BDT shape zused as edis criminate with respect to Rs nom
- Single bin used for SRs with lower statistics: 41 and $/3l+1\tau_{had}$ and in combination. 625

🔶 Data

tīH

Single bin also used hom the 31 ORS systematic uncertainty parameter fixed to its fitted value up or dowi

⁶²⁸ to vary and calculating the Δμ to the baseline fit. The ranking obtained for those nuisance parameters $2\ell SS$ 3ℓ 4ℓ $1\ell+2\tau_{had}$ $2\ell SS+1\tau_{had}$ $2\ell OS+1\tau_{had}$ $3\ell+1\tau_{had}$ $3\ell+1\tau_{had}$ $3\ell+1\tau_{had}$ BDT trained against here are another to the uncertainty in the signal strength is shown in Fig. 9. The NP with the largest poly with respect to non-inalial use iso the uncertainty in the mon-promptilapton estimate due to Discriminan680 Number of bins the non-coosure in the 3ℓ channel. This is mainly due to the slight deficit observed in the 3ℓ tr control Control regions region with respect to the background prediction. The correlations between the nuisance parameters were

checked and no unexpected correlations were observed. The impact of the most important groups of 633 • The test statistic q_{μ}^{st} is the statistic q_{μ}^{st} i light lepton estimate. The signal uncertainty is separated in Gatavia componentiated show the uncertainty 636 due to the acceptance and Aquone due to the cross, be to for the concertainties in the non-prompt light 637 lepton estimates, the fake τ_{had} estimates and the charge missassignment have large statistical components 638 ⁶³⁹ due to the data statistics. The large impact of the luminosity uncertainty is due to its effect on both signal • where 0 are nuisance parameter this predictions. Although the individual groups are initially largely incontrated,

Signal Region distributions

BDT output

0.8

Category

2ℓSS

Category

Category

3ℓ

Uncertainties

Uncertainty Source	Δ	μ
$t\bar{t}H$ modelling (cross section)	+0.20	-0.09
Jet energy scale and resolution	+0.18	-0.15
Non-prompt light-lepton estimates	+0.15	-0.13
Jet flavour tagging and τ_{had} identification	+0.11	-0.09
$t\bar{t}W$ modelling	+0.10	-0.09
$t\bar{t}Z$ modelling	+0.08	-0.07
Other background modelling	+0.08	-0.07
Luminosity	+0.08	-0.06
$t\bar{t}H$ modelling (acceptance)	+0.08	-0.04
Fake τ_{had} estimates	+0.07	-0.07
Other experimental uncertainties	+0.05	-0.04
Simulation statistics	+0.04	-0.04
Charge misassignment	+0.01	-0.01
Total systematic uncertainty	+0.39	-0.30

- Most relevant uncertainties on the signal strength:
 - Signal modelling (dominated by scale uncertainties)
 - Jet energy scale and resolution
 - Non-prompt l estimation (with large contribution from limited CR statistics)
- Very small nuisance parameters constraints
 - Largest pull: 3l fake method non-closure (slight deficit in 3l ttbar CR)

• ttV in agreement with SM $\mu_{t\bar{t}W} = 0.92 \pm 0.32$, $\mu_{t\bar{t}Z} = 1.17^{+0.25}_{-0.22}$

CMS multilepton status

CMS ttH multilepton: strategy

- CMS performed an explorative analysis of 2015+2016 data searching for ttH in a multilepton final state (presented during Moriond2017)
- Cut & count + MVA technique to enhance the sensitivity
- Separate analyses for the tau channels

CMS ttH multilepton: uncertainties

- ttH modeling +5/-9%
- ttW/Z theoretical uncert. on cross section 12% and 10%
- VV backgrounds:
 - statistical uncertainty due to the limited sample size in the control region (30%)
 - the residual background in the control region (20%)
 - the uncertainties on the b-tagging rate (between 10–40%) (WZ enters in the SR if high mis-tag rate not well known)
 - from the knowledge of PDFs and the theoretical uncertainties of the extrapolation (up to 10%)
- Non-prompt leptons estimates:
 - from the statistical uncertainty in the measurement of the tight-to-loose ratios, and from a systematical uncertainty derived by comparing alternative methods of subtracting prompt lepton backgrounds and from testing the closure of the method in simulated background events (20-40%)

CMS ttH multilepton: strategy tau channels

- Tau channel same as ATLAS (no 2l0S+1tau)
- Uncert. on charge mis-measurement in 2lSS+1tau 30% (mainly stat.)
- ttW and ttZ background are 12% and 11% respectively
- Rate of WZ+jets background is assigned uncert. up to 100% depending on the categories
- Rate of small irreducible background 50%
- b-tagging efficiency 3-10%

31

35.9 fb⁻¹ (13 TeV)

Electroweak

Uncertainty

 $1I+2\tau_h$

∣tīZ

tīW

Rares

ATLAS and CMS results: comparison

Channel	Significance					
	Observed	Expected				
$2\ell OS+1\tau_{had}$	0.9σ	0.5σ				
1ℓ + $2\tau_{had}$	-	0.6σ				
4ℓ	-	0.8σ				
$3\ell + 1\tau_{had}$	1.3σ	0.9σ				
$2\ell SS+1\tau_{had}$	3.4σ	1.1σ				
3ℓ	2.4σ	1.5σ				
2ℓSS	2.7σ	1.9σ				
Combined	4.1 <i>o</i>	2.8σ				

ttH(bb): strategy

tt + b

tt + bb

tt + B

tt + ≥3b

4-flavours scheme (massive b-quarks, $g \rightarrow bb$ from ME)

b-tagging:

- Considering 4 working points: loose, medium, tight, very-tight
- Efficiency from b-jets: 85% to 60%
- Rejection factor for c-jets (light jets): 3 to 35 (30 to 1500)

	none	loose	medium	tight	very-tight
Efficiency	-	85%	77%	70%	60%
Discriminant value	1	2	3	4	5

Channel classification:

- Two separate channels depending on the number of light leptons (e/ μ): 1l, 2l
- 2l opposite-sign (OS) with $p_T > 27$, 25 GeV (<u>fraction of total ttH(bb) = 2.5</u>%)
 - at least 3 jets of which at least two medium b-tagged
 - veto mll~mZ and events with τ_{had}
- 1l with p_T>27 GeV
 - veto events with $\geq 2\tau_{had}$
 - **Boosted high pT category** (<u>fraction of total ttH(bb) = 0.1%</u>):
 - boosted Higgs and top candidates (large R jets, reclustered from R = 0.4 jets), plus a loose b-tagged jet
 - **Resolved** (if failing boosted selections, <u>fraction of total ttH(bb) = 8.7%</u>)
 - Require \geq 5 jets and \geq 2 very tight b-tagged jets or \geq 3 medium b-tagged jets

Background composition

- Three 2ℓ SR (\geq 4j)
- Six 1ℓ SR (boosted, 5j, \geq 6j)
- Ten CRs for the different $t\bar{t}$ +HF components

MVA analysis

- Sensitivity enhanced using multivariate techniques to discriminate signal from backgrounds
- 'Reconstruction' BDT (all resolved SRs):
 - Combination of jets as originating from H/top decays to reconstruct the $t\bar{t}H(b\bar{b})$ system
- Likelihood discriminator (LHD) (1 ℓ resolved SRs only):
 - Probability for signal/background $(t\overline{t}+\geq 2b, t\overline{t}+1b)$ hypotheses using 1D distributions of discriminating variables (invariant mass, angular distributions, etc.)
- Matrix Element Method (MEM) (SR $_1^{\geq 6j}$ only):

Reconstuction BDT

Signal/background probability using matrix element calculations at parton level

Likelihood discriminant

MEM discriminant

MVA analysis

- Final discriminant: 'Classification BDT'
 - Trained to separate signal from background
 - Only variables with good modelling in the MC are considered
- Input variables:
 - General kinematic variables
 - Discrete *b*-tagging discriminant
 - 'Reconstruction BDT' output (resolved SRs only), and variables associated to its *H*/top candidates
 - Likelihood and Matrix Element Methods discriminants (where available)
 - Boosted SR: Properties of the large-R jets and their sub-jets

Fit model

Uncertainties

- Normalization factors for *tt*+≥1*b*/≥1*c* constrained in the fit, no prior uncertainty: *tt*+≥1*b*: 1.24 ± 0.10 *tt*+≥1*c*: 1.63 ± 0.23
- Analysis already dominated by systematics
- Most relevant uncertainties:
 - $t\bar{t}+\geq 1b$ background modelling
 - Limited MC statistics
 - *b*-tagging uncertainties
 - Jet uncertainties

Uncertainty source	$\Delta \mu$		
$t\bar{t} + \ge 1b$ modelling	+0.46	-0.46	
Background model statistics	+0.29	-0.31	
Jet flavour tagging	+0.16	-0.16	
Jet energy scale and resolution	+0.14	-0.14	
$t\bar{t}H$ modelling	+0.22	-0.05	
$t\bar{t} + \ge 1c$ modelling	+0.09	-0.11	
Jet-vertex association, pileup modelling	+0.03	-0.05	
Other background modelling	+0.08	-0.08	
$t\bar{t}$ + light modelling	+0.06	-0.03	
Luminosity	+0.03	-0.02	
Light lepton (e, μ) ID, isolation, trigger	+0.03	-0.04	
Total systematic uncertainty	+0.57	-0.54	
$t\bar{t} + \ge 1b$ normalisation	+0.09	-0.10	
$t\bar{t} + \geq 1c$ normalisation	+0.02	-0.03	
Statistical uncertainty	+0.29	-0.29	
Total uncertainty	+0.64	-0.61	

ttH bb - Results

- Signal strength: $\mu_{t\bar{t}H} = 0.84^{+0.64}_{-0.61}$
 - Sensitivity dominated by the single lepton channel
- Significance w.r.t background-only hypothesis: 1.4σ (exp: 1.6σ)
- Can exclude $\mu_{t\bar{t}H} > 2.0$ at 95% CL

Combination

- Combining $b\overline{b}$, multilepton, $\gamma\gamma$ and $ZZ \rightarrow 4\ell$ channels
 - Only $t\bar{t}H$ enhanced categories in $\gamma\gamma$ and 4ℓ included
- tHjb and tWH treated as backgrounds and fixed to the SM prediction
- Non- $t\bar{t}H$ production mechanisms also fixed to the SM predictions
- Correlating almost all signal, background and detector uncertainties
- Best-fit value:

Combination

 $\mu_{t\bar{t}H} = 1.17 \pm 0.19(stat) \stackrel{+0.27}{_{-0.23}}(syst)$ $\sigma_{\rm t\bar{t}H} = 590^{+160}_{-150}$ fb

Significance: 4.2 σ (exp: 3.8 σ)

ttH ML

-2

ttH combined

Channel	Significance					
	Observed Expected					
Multilepton	4.1σ	2.8σ				
$H \rightarrow b\bar{b}$	1.4σ	1.6σ				
$H \rightarrow \gamma \gamma$	0.9σ	1.7σ				
$H \rightarrow 4\ell$		0.6σ				
Combined	4.2σ	3.8 <i>o</i>				

H-e-H

2

HeH

0

10

<u>(tot.)</u> (stat. , syst.)

< 1.9 (68% CL)

1.6 $^{+0.5}_{-0.4}$ ($^{+0.3}_{-0.3}$, $^{+0.4}_{-0.3}$)

1.2 $^{+0.3}_{-0.3}$ ($^{+0.2}_{-0.2}$, $^{+0.3}_{-0.2}$

best fit μ_{H} for m_H=125 GeV

8

6

4

- Compatibility between μ from the individual analyses and combination: 38%
- Dominant systematic uncertainties:
 - $t\bar{t}$ modelling systematics in $t\bar{t}H(b\bar{b})$
 - $t\overline{t}H$ signal modelling
 - Fake/non-prompt ℓ/τ_{had} from $t\bar{t}H$ multilepton

Uncertainty Source	Δ	μ
$t\bar{t}$ modelling in $H \rightarrow bb$ analysis	+0.15	-0.14
$t\bar{t}H$ modelling (cross section)	+0.13	-0.06
Non-prompt light-lepton and fake τ_{had} estimates	+0.09	-0.09
Simulation statistics	+0.08	-0.08
Jet energy scale and resolution	+0.08	-0.07
$t\bar{t}V$ modelling	+0.07	-0.07
$t\bar{t}H$ modelling (acceptance)	+0.07	-0.04
Other non-Higgs boson backgrounds	+0.06	-0.05
Other experimental uncertainties	+0.05	-0.05
Luminosity	+0.05	-0.04
Jet flavour tagging	+0.03	-0.02
Modelling of other Higgs boson production modes	+0.01	-0.01
Total systematic uncertainty	+0.27	-0.23
Statistical uncertainty	+0.19	-0.19
Total uncertainty	+0.34	-0.30

Combination: interpretation

- $H \rightarrow WW, \tau \tau$ contribution to $0/\ge 1\tau_{had}$ categories in multilepton
- $H \rightarrow b\overline{b}, \gamma\gamma$ dominated by their dedicated analyses
- WW/ZZ ratio set to the SM prediction
- Results in agreement with the SM predictions

- Results from search fro ttH in multilepton final state using ATLAS 2015+2016 data @ 13 TeV
- Very challenging and complex analysis that uses multivariate analysis techniques
- Found evidence for ttH production with a leading contribution from the multilepton channel
- SM prediction is consistent with the extrapolated cross section
- ATLAS and CMS analyses very similar
- STAY TUNED FOR THE RESULTS FROM THE FULL RUN2 ANALYSIS

 Considering all current analyses and same level of systematics without any improvements : 5σ discovery with ~80 fb⁻¹ !

Integrated luminosity [fb⁻¹]

Other possible scenarios:

- 5σ@~100 fb⁻¹ if no bb update
 with lumi (keep 36 fb⁻¹)
- 5σ@~70 fb⁻¹ if keep bb with
 36 fb⁻¹ and improve γγ analysis sensitivity by 30-40%
- 5σ@~60 fb⁻¹ if all systematics are cut in half

Remarks:

- 1σ error on the projections lead to 80 ± 40 fb⁻¹

What's next?

ttH multilepton: channels definition

Table 3: Selection criteria applied in all channels. Same-flavour, opposite-charge lepton pairs are referred to as SFOC pairs. The common selection criteria for all channels is listed in the first line under the title "Common".

Channel	Selection criteria
Common	$N_{\text{jets}} \ge 2 \text{ and } N_{b-\text{jets}} \ge 1$
2ℓSS	Two very tight light leptons with $p_{\rm T} > 20 \text{ GeV}$
	Same charge light leptons
	Zero medium τ_{had} candidates
	$N_{\text{jets}} \ge 4$; $N_{b-\text{jets}} < 3$
3ℓ	Three light leptons with $p_T > 10$ GeV; sum of light lepton charges ± 1
	Two same-charge leptons must be very tight and have $p_T > 15 \text{ GeV}$
	The opposite-charge lepton must be loose, isolated and pass the non-prompt BDT
	Zero medium τ_{had} candidates
	$m(\ell^+\ell^-) > 12 \text{ GeV and } m(\ell^+\ell^-) - 91.2 \text{ GeV} > 10 \text{ GeV for all SFOC pairs}$
	$ m(3\ell) - 91.2 \text{ GeV} > 10 \text{ GeV}$
48	Four light leptons; sum of light lepton charges 0
	Third and fourth leading leptons must be tight
	$m(\ell^+\ell^-) > 12 \text{ GeV and } m(\ell^+\ell^-) - 91.2 \text{ GeV} > 10 \text{ GeV for all SFOC pairs}$
	$ m(4\ell) - 125 \text{ GeV} > 5 \text{ GeV}$
	Split 2 categories: Z-depleted (0 SFOC pairs) and Z-enriched (2 or 4 SFOC pairs)
$1\ell + 2\tau_{had}$	One tight light lepton, with $p_T > 27 \text{ GeV}$
	Two medium τ_{had} candidates of opposite charge, at least one being tight
	$N_{\text{jets}} \ge 3$
$2\ell SS+1\tau_{had}$	Two very tight light leptons with $p_T > 15 \text{ GeV}$
	Same charge light leptons
	One medium τ_{had} candidate, of opposite charge to that of the light leptons
	$N_{\rm jets} \ge 4$
	m(ee) - 91.2 GeV > 10 GeV for ee events
$2\ell OS+1\tau_{had}$	Two loose and isolated light leptons, with $p_T > 25$, 15 GeV
	One medium τ_{had} candidate
	Opposite charge light leptons
	One medium τ_{had} candidate
	$m(\ell^+\ell^-) > 12 \text{ GeV and } m(\ell^+\ell^-) - 91.2 \text{ GeV} > 10 \text{ GeV for all SFOC pairs}$
	$N_{\rm jets} \ge 3$
$3\ell + 1\tau_{had}$	3ℓ selection, except:
	One medium τ_{had} candidate, of opposite charge to the total charge of the light leptons
	The two same-charge leptons must be tight and have $p_T > 10 \text{ GeV}$
	The opposite-charge lepton must be loose and isolated

- The matrix method estimates the number of non-prompt leptons in the SR by selecting events passing all selection requirements expect the tight-lepton and splitting the events into four categories (tight-tight, loose but not tight-tight...)
- The probabilities for loose prompt and non-prompt leptons to be tight are measured in CR independent from the SR

$$f_{SR} = w_{TT} N^{TT} + w_{\bar{T}T} N^{\bar{T}T} + w_{T\bar{T}} N^{T\bar{T}} + w_{\bar{T}\bar{T}} N^{\bar{T}\bar{T}}$$

- where w weighted depend on the measured prompt and non-prompt lepton efficiencies
- defined CRs to measure the prompt (ϵ_{real}) and non-prompt (ϵ_{fake}) leptons efficiencies
 - electrons from conversion have higher efficiency than electron from HF
 - non-prompt muons mainly come from HF semileptonic decay

	2ℓSS	3ℓ	4ℓ	1ℓ + $2\tau_{had}$	$2\ell SS+1\tau_{had}$	$2\ell OS+1\tau_{had}$	$3\ell + 1\tau_{had}$
Non-prompt lepton strategy	DD DD		semi-DD	MC	DD	MC	MC
	(MM)	(MM)	(SF)		(FF)		
Fake tau strategy	-	_	_	DD	semi-DD	DD	semi-DD
				(SS data)	(SF)	(FF)	(SF)
	•	С	Control Region S	election			
Light lepton	1T*	, 1L	3L	1T	1T*, 1L	$2L^{\dagger}$	_
$ au_{ m had}$		ON	1	1T, 1M	$\leq 1M$	1L	_
N _{jets}	$2 \leq N_{\rm f}$	$j_{ets} \le 3$	$1 \leq N_{\text{jets}} \leq 2$	≥ 3	$2 \le N_{\text{jets}} \le 3$	≥ 3	_
N _{b-jets}			≥ 1			= 0	—

Category	Non-prompt	Fake τ_{had}	q mis-id	tŦW	$t\bar{t}Z$	Diboson	Other	Total Bkgd.	tĪH	Observed
2ℓSS	211 ± 26	_	28.3 ± 9.4	127 ± 18	42.9 ± 5.4	20.0 ± 6.3	28.5 ± 5.7	459 ± 24	67 ± 18	514
3ℓ SR	13.2 ± 3.1	_	—	5.8 ± 1.2	12.9 ± 1.6	1.2 ± 1.1	5.9 ± 1.3	39.0 ± 4.0	17.7 ± 4.9	61
$3\ell t\bar{t}W$ CR	11.7 ± 3.0	_	_	20.4 ± 3.0	8.9 ± 1.0	< 0.2	4.54 ± 0.88	45.6 ± 4.0	6.6 ± 1.9	56
$3\ell t\bar{t}Z CR$	3.5 ± 2.1	_	_	2.82 ± 0.56	70.4 ± 8.6	7.1 ± 3.0	13.6 ± 4.2	97.4 ± 8.6	5.1 ± 1.4	107
3ℓ VV CR	22.4 ± 5.7	_	_	5.05 ± 0.94	22.0 ± 3.0	39 ± 11	18.1 ± 5.9	106.8 ± 9.4	2.61 ± 0.82	109
$3\ell t\bar{t} CR$	56.0 ± 8.1	_	—	10.7 ± 1.4	8.1 ± 1.0	5.9 ± 2.7	7.1 ± 1.8	87.8 ± 7.9	6.3 ± 1.8	85
4ℓ Z-enr.	0.10 ± 0.07	_	—	< 0.01	1.60 ± 0.22	0.37 ± 0.15	0.22 ± 0.10	2.29 ± 0.28	1.65 ± 0.47	2
4ℓ Z-dep.	0.01 ± 0.01	—	_	< 0.01	0.04 ± 0.02	< 0.01	0.07 ± 0.03	0.11 ± 0.03	0.32 ± 0.09	0
1ℓ + $2\tau_{\rm had}$	_	58.0 ± 6.8	_	0.11 ± 0.11	3.31 ± 0.90	0.98 ± 0.75	0.98 ± 0.33	63.4 ± 6.7	6.5 ± 2.0	67
$2\ell SS+1\tau_{had}$	1.86 ± 0.91	1.86 ± 0.27	0.05 ± 0.02	0.97 ± 0.26	1.96 ± 0.37	0.15 ± 0.20	1.09 ± 0.24	7.9 ± 1.2	5.1 ± 1.3	18
$2\ell OS + 1\tau_{had}$	_	756 ± 28	_	6.6 ± 1.3	11.5 ± 1.7	1.64 ± 0.92	6.1 ± 1.5	782 ± 27	21.7 ± 5.9	807
3ℓ + $1\tau_{had}$	—	0.75 ± 0.14	—	0.04 ± 0.04	1.42 ± 0.22	0.002 ± 0.002	0.40 ± 0.10	2.61 ± 0.30	2.41 ± 0.68	5

ttH multilepton: systematics

Systematic uncertainty	Туре	Components
Luminosity	Ν	1
Pile-Up reweighting	SN	1
Physics Objects		
Electron	SN	6
Muon	SN	15
Tau	SN	10
Jet energy scale and resolution	SN	28
Jet vertex fraction	SN	1
Jet flavour tagging	SN	126
$E_{\mathrm{T}}^{\mathrm{miss}}$	SN	3
Total (Experimental)	_	191
Data-driven non-prompt/fake leptons and charge misassignment		
Control region statistics	SN	38
Light-lepton efficiencies	SN	22
Non-prompt light-lepton estimates: non-closure	Ν	5
γ -conversion fraction	Ν	5
Fake τ_{had} estimates	N/SN	12
Electron charge misassignment	SN	1
Total (Data-driven reducible background)	_	83

t <i>t</i> H modelling		
Cross section	Ν	2
Renormalisation and factorisation scales	S	3
Parton shower and hadronisation model	SN	1
Higgs boson branching ratio	Ν	4
Shower tune	SN	1
$t\bar{t}W$ modelling		
Cross section	Ν	2
Renormalisation and factorisation scales	S	3
Matrix-element MC generator	SN	1
Shower tune	SN	1
$t\bar{t}Z$ modelling		
Cross section	Ν	2
QCD scale	S	3
Matrix-element MC generator	SN	1
Shower tune	SN	1
Other background modelling		
Cross section	Ν	15
Shower tune	SN	1
Total (Signal and background modelling)	_	41
Total (Overall)	_	315

Event yields

October 27th 2017

Marco Sessa - CERN Università & INEN Roma Tre

Total

Total

+ 0.6

-0.6

= 0.5

= 0.80

= 0.99

= 1.17

4

 μ_{VH}

 μ_{VBF}

 $\mu_{\text{Run-1}}$

3

μ_{top} μ_{VH} μ_{VBF} μ_{ggH}

 μ_{Run-2}

 $\mu_{_{Run-1}}$

m_e [GeV]

√s = 13 TeV, 36.1 fb

m, = 125.09 GeV

In(1+S/B) weighted sum

ttH+tH Categories

Statistically dominated analysis

ttH(yy)

2 channels studied:

Data

anights

2

fitted bits

weights

6

Background

Signal + Background

ATLAS Preliminary

 $\sqrt{s} = 13 \text{ TeV}, 36.1 \text{ fb}^{-1}$

He

1

2

◎ N³LO

0

maximise the significance (in Run1 was cut-based!). ATLAS Preliminary

• leptonic: 2 isolated γ , ≥ 1 lepton, ≥ 2 jets, ≥ 1 b-tags (@70%)

Systematic model:

- signal and background modelling unc.;
- all the detector uncertainties considered;

(included in the H->yy analysis)

Stat

Stat Syst Theo

-0.5 -0.1 -0.0

+0.1 +0.1

+ 0.6

 $= 0.7 \begin{array}{c} ^{+0.9}_{-0.8} \begin{bmatrix} ^{+0.8}_{-0.8} & ^{+0.2}_{-0.2} & ^{+0.2}_{-0.1} \end{bmatrix}$

 $= 2.1 \begin{array}{c} +0.6 \\ -0.6 \end{array} \begin{bmatrix} +0.5 & +0.3 & +0.3 \\ -0.5 & -0.2 & -0.2 \end{bmatrix}$

+0.19 +0.16 +0.07 +0.06

-0.18 -0.16 -0.06 -0.05

 $\begin{array}{c} + \ 0.14 \\ - \ 0.14 \end{array} \left[\begin{array}{c} + \ 0.12 \\ - \ 0.11 \end{array} \right. + 0.06 \\ - \ 0.05 \end{array} \right. + 0.06$

+0.28 [+0.23 +0.10 +0.12

6

Signal Strength

-0.26 -0.23 -0.08 -0.08

 spurious signal for ttH/tH has significant impact: 2 control regions for the datadriven technique (dependent on the choice of the background parametrisation in all the SRs).

ggH 🚺 VBF 🔤 WH 🚾 ZH 🔤 ggZH 🚾 ttH 🚾 bbH 🔤 tHqb 🔤 tHW

ATLAS Simulation Preliminary $H \rightarrow \gamma \gamma$, $m_{H} = 125.09$ GeV

ATLAS-CONF-2017-045

Signal/Control regions for 2l channel

- Signal and control regions defined varying the requirements on the b-tagging discriminate
- Three separate SRs defined with $2l + \ge 4$ jets:
 - ttH signal purity: 1.8%-5.4%
- Separate CRs for $tt + \ge 1b$, $tt + \ge 1c$ and tt + light built with looser b-tagging requirements

Signal/Control regions for 1l channel

 Events with high-pT category are not classified

56

- Events in the resolved category are classified in SR/CR similarly to the 2l channel
- Five SRs defined with 1l+5/≥6 jets:
 - ttH signal purity: 1.6%-5.3%
 - Highest purity (SR1≥6jets) 4 very-tight b-tags
- CRs defined for tt+b, tt+≥1c and tt +lighr separatey for 5/≥6 jets loosening the b-tagging requirements

$t\overline{t}$ modelling uncertainties

Systematic source	Description	<i>tī</i> categories
$t\bar{t}$ cross-section	Up or down by 6%	All, correlated
$k(t\bar{t} + \ge 1c)$	Free-floating $t\bar{t} + \ge 1c$ normalisation	$t\bar{t} + \ge 1c$
$k(t\bar{t} + \ge 1b)$	Free-floating $t\bar{t} + \ge 1b$ normalisation	$t\bar{t} + \ge 1b$
SHERPA5F vs. nominal	Related to the choice of the NLO generator	All, uncorrelated
PS & hadronisation	Powheg-Box+Herwig 7 vs. Powheg-Box+Pythia 8	All, uncorrelated
ISR / FSR	Variations of $\mu_{\rm R}$, $\mu_{\rm F}$, $h_{\rm damp}$ and A14 Var3c parameters	All, uncorrelated
$t\bar{t} + \ge 1c$ ME vs. inclusive	MG5_aMC@NLO+HERWIG++: ME prediction (3F) vs. incl. (5F)	$t\bar{t} + \ge 1c$
$t\bar{t} + \geq 1b$ Sherpa4F vs. nominal	Comparison of $t\bar{t} + b\bar{b}$ NLO (4F) vs. Powheg-Box+Pythia 8 (5F)	$t\bar{t} + \ge 1b$
$t\bar{t} + \ge 1b$ renorm. scale	Up or down by a factor of two	$t\bar{t} + \ge 1b$
$t\bar{t} + \ge 1b$ resumm. scale	Vary μ_Q from $H_T/2$ to μ_{CMMPS}	$t\bar{t} + \ge 1b$
$t\bar{t} + \ge 1b$ global scales	Set μ_Q , μ_R , and μ_F to μ_{CMMPS}	$t\bar{t} + \ge 1b$
$t\bar{t} + \ge 1b$ shower recoil scheme	Alternative model scheme	$t\bar{t} + \ge 1b$
$t\bar{t} + \geq 1b \text{ PDF} (\text{MSTW})$	MSTW vs. CT10	$t\bar{t} + \ge 1b$
$t\bar{t} + \geq 1b$ PDF (NNPDF)	NNPDF vs. CT10	$t\bar{t} + \ge 1b$
$t\bar{t} + \geq 1b$ MPI	Up or down by 50%	$t\bar{t} + \ge 1b$
$t\bar{t} + \ge 3b$ normalisation	Up or down by 50%	$t\bar{t} + \ge 1b$

- Many sources of modelling uncertainty considered:
 - Generator: Powheg+Pythia8 vs. Sherpa (5F)
 - Parton shower: Powheg+Pythia8 vs. Powheg+Herwig7
 - 5F vs. 4F in Sherpa+OpenLoops
 - Scale variations in Sherpa+OpenLoops
- All $t\bar{t}$ +jets modelling uncertainties uncorrelated between $t\bar{t}$ + $\geq 1b/\geq 1c/light$
- Scale variation uncertainties correlated across each $t\bar{t}+\geq 1b$ sub-component