Applicazioni della Fisica in ambito medico: Rivelatori

Pasquale Delogu Università di Siena e INFN, sez. di Pisa pasquale.delogu@unisi.it

indice

- introduzione
- principio di funzionamento dei rivalatori
- imaging a raggi X
- dispositivi di imaging
- caratterizzazione dei rivelatori
- esempio di rivelatore a conteggio di fotoni

rivelatori in diagnostica medica

• ecografia

 Sorgente e rivelatore di ultrasuoni (2-10 MHz): cristalli piezoelettrici

• MRI

 Sorgente e rivelatore di segnali elettromagnetici a radiofrequenza (42.58 MHz/T): bobine

T. BUSHBERG: The Essential Physics of Medical Imaging

Medicina Nucleare

- Sorgente: radiofarmaco (140 keV-511 keV)
- Rivelatore: scintillatori accoppiati con fotorivelatori

Radiologia

Projectional radiography

- Sorgente: tubi a raggi X (40-150 kV)
- Rivelatore: scintillatori, riv. a stato solido

• CT

- Sorgente: tubi a raggi X (80-150 kV)
- Rivelatore: scintillatori, riv. a stato solido

ionizzazione della materia

Il fotone (primario) interagisce per effetto fotoelettrico o compton, liberando un elettrone di alta energia

An Imaginary Path of a β particle in a Medium

L'elettrone cede la sua energia al mezzo eccitando e ionizzando gli atomi. In questo caso vengono create coppie di elettroni-ioni in numero proporzionale all'energia dell'elettrone

semiconduttori

Property	Si	Ge	GaAs	CdTe	CdZnTe
Crystal structure	Cubic	Cubic	Cubic (ZB)	Cubic (ZB)	Cubic (ZB)
Growth method*	С	С	CVD	THM	HPB, THM
Atomic number	14	32	31,33	48,52	48,30,52
Density (g/cm³)	2.33	5.33	5.32	6.20	5.78
Band gap (ev)	1.12	0.67	1.43	1.44	1.57
Pair creation energy (ev)	3.62	2.96	4.2	4.43	4.6
Resistivity (Ω cm)	104	50	107	10°	1010
μ _s τ _s (cm²/V)	>1	>1	10-5	10-3	10-3-10-2
$\mu_{\rm b}\tau_{\rm b}$ (cm ² /V)	~]	>1	10-6	10-4	10-5

*The common growth methods - C: Czochralski; CVD: Chemical vapor deposition; THM: Traveler heater method; GaAs: Gallium arsenide; BM: Bridgman method; HPB: High-pressure Bridgman; Si: Silicon; Ge: Germanium; VAM: Vertical ampoule method (used with permission from the author)

Cammino libero medio dei fotoni da 40 keV: in Si 7 mm ; in CdTe 90 micron

scintillatori

Properties	Nal(TI)	CsI(TI)	BGO	LSO:Ce	LaBr ₃ :Ce	YAP:Ce
Density (g/cm³)	3.76	4.5	7.13	7.35	5.29	5.37
Atomic number (Z _{eff})	51	54	74	66	46.9	34
Energy resolution ¹³⁷ Cs (%)	7	9	9.5	12	-	11
Decay/ns	230	1000	300	42	16	25
Light output (photons/Mev)	38,000	60,000	8000	25,000	63,000	16,000
Hygroscopic	Strong	Slight	No	No	No	No

Nal(TI): Thallium-activated sodium iodide; Csl(TI): Thallium-activated cesium iodide; BGO: Bismuth germinate; LSO:Ce: Cesium-activated Lithium orthophosphate; LaBr3:Ce: Lanthanum bromide activated by cerium; YAP:Ce: Cesium-activated yttrium aluminum garnet (used with permission from the author)

Cammino libero medio dei fotoni da 40 keV: in CsI: 96 micron

modello di sensore a stato solido

- la particella interagisce nel mezzo e lo ionizza (ps nei solidi)
- nel volume attivo è presente la carica generata Q
- nel volume attivo è presente un campo elettrico che separa le cariche
- le cariche sono raccolte dagli elettrodi (ns nei semiconduttori)
- il segnale elettrico viene elaborato dall'elettronica

interazioni multiple a rate basso

- le larghezze dei segnali dipendono dal tempo di raccolta della carica
- le altezze dei segnali dipendono dalla carica totale prodotta nel volume attivo nel singolo evento
- gli intervalli temporali tra un evento e l'altro seguono la distribuzione temporale della sorgente (tipicamente eventi random, statistica di Poisson)

current mode

Se *T* è l'intervallo di tempo di risposta (fisso) del dispositivo, la corrente misurata al tempo *t* (corrente istantanea) è:

$$I(t) = \frac{1}{T} \int_{t-T}^{t} i(t') dt$$

Nel caso stazionario (sorgente a rate costante), la corrente media è

$$I_0 = rQ = r\frac{E}{W}q$$

con:

 $\begin{aligned} r &= rate \; di \; eventi \\ Q &= carica \; prodotta \; nel \; singolo \; evento \\ E &= energia \; media \; depositata \; in \; un \; evento \\ W &= energia \; media \; richiesta \; per \; la \; produzione \; di \; una \; coppia \; el - lac \\ q &= carica \; dell'elettrone \; = \; 1.6 \cdot 10^{-19} \; C \end{aligned}$

integrazione

Se *T* è l'intervallo di tempo in cui il dispositivo è attivo (gate, durata dello "sparo"), la carica totale raccolta è:

$$Q_{tot} = \int_{t-T}^{t} i(t')dt'$$

Nel caso stazionario (sorgente a rate costante):

$$Q_{tot} = TI_0 = TrQ = Tr\frac{E}{W}q$$

con:

 $r = rate\ di\ eventi$ $Q = carica\ prodotta\ nel\ singolo\ evento$ $E = energia\ media\ depositata\ in\ un\ evento$ $W = energia\ media\ richiesta\ per\ la\ produzione\ di\ una\ coppia\ el\ -\ lac$ $q = carica\ dell'elettrone = 1.6\cdot 10^{-19}\ C$

pulse mode: contatori

V(t)Detector С rivelatore: in questo circuito di misura dispositivo i quanti di (preamplificatore): è segnale radiazione producono caratterizzato dalla la carica Q resistenza d'ingresso e dalla capacità equivalente (capacità del rivelatore+ capacità dei cavi + capacità di ingresso del circuito)

forma del segnale

Il tempo caratteristico del circuito di misura (preamplificatore) è:

 $\tau = RC$

A seconda del valore di τ rispetto a t_c (tempo di raccolta di carica), il segnale in tensione V(t) assume diverse forme.

Ampiezza di impulso

Caso $\tau \gg t_c$

In questo caso il tempo necessario a raggiungere il massimo del segnale è uguale al tempo di integrazione della carica. Inoltre abbiamo:

$$V_{max} = \frac{Q}{C}$$

e, se *C* è fissa, l'ampiezza del segnale è proporzionale alla carica generata nel rivelatore. Quindi se misuriamo V_{max} per ogni evento otteniamo le corrispondenti cariche e abbiamo una misura indiretta dell'energia depositata nel rivelatore in quell'evento (eventualmente proporzionale all'energia della particella ionizzante incidente).

catena di elettronica

- **Preamplicatore:** primo stadio di amplificazione dell'impulso, produce alla sua uscita un segnale in tensione proporzionale al numero di portatori di carica.
- Amplificatore: ha la funzione di formare il segnale e di amplificarlo massimizzando il rapporto segnale-rumore.
- **Discriminatore:** seleziona gli eventi corrispondenti a energie sopra una soglia fissata. Permette di rigettare il rumore elettronico.
- MCA (multi Channel Analizer) : permette di visualizzare lo spettro differenziale delle ampiezze dei segnali in entrata

risposta temporale

<u>**Risposta temporale**</u> = tempo impiegato dal rivelatore per formare il segnale dopo l'arrivo della radiazione.

Per una buona temporizzazione (timing) è necessario che il segnale venga formato molto velocemente ed abbia un **tempo di salita breve**.

Anche la <u>durata del segnale</u> è importante, in quanto determina il tempo morto del rivelatore, ossia il tempo durante il quale il rivelatore rimane insensibile alla rivelazione di un nuovo evento o lo rivela distorto (fenomeno dell'impilamento, o "pile-up")

tempo morto

- Tempo morto: il minimo intervallo di tempo che deve intercorrere fra due eventi successivi affinché siano visti come eventi separati.
- Il tempo morto può dipendere dal rivelatore vero e proprio o dall'elettronica ad esso associata.
- Esiste una probabilità non nulla che qualche evento buono venga perso se capita troppo vicino al precedente.
- Queste perdite dovute al tempo morto diventano più elevate al crescere del rate

grafici di m in funzione di n

Pile up

Si verifica quando si misura l'altezza dell'impulso e due o più eventi sono temporalmente parzialmente o totalmente sovrapposti

informazioni spettrometriche

il Threshold scan permette di costruire lo spettro integrale dal quale si può ricavare lo spettro differenziale

il segnale formato dall'amplificatore ha lunghezza temporale proporzionale all'altezza: misurando la durata del segnale (time over threshold) si misura indirettamente l'energia

tubo a raggi X

Gli elettroni, prodotti per effetto termoionico, sono accelerati da un campo elettrico e collidono con un anodo (alto z, alto punto di fusione, Mo, W, Rh).

-Collisioni (calore) -Scattering (elastico, anelastico) -Bremsstrahlung

produzione dei fotoni

La generazione dei fotoni è un processo casuale con bassa probabilità ($p \ll 1$) ed è descritto dalla distribuzione di Poisson. Se per esempio N_0 è il numero medio di fotoni prodotti nell'unità di tempo, la probabilità, che in un intervallo di tempo unitario ne vengano prodotti N è:

$$P_P(N) = \frac{(N_0)^N \cdot e^{-N_0}}{N!}$$

La varianza di questa distribuzione è:

$$\sigma^2 = N_0$$

e per la standard deviation:

$$\sigma = \sqrt{N_0}$$

interazione dei fotoni

Consideriamo l'interazione di fotoni monocromatici con un materiale omogeneo di spessore t e coefficiente di attenuazione lineare μ . La probabilità che un fotone venga trasmesso (successo) è:

$$p_{tr} = e^{-\mu t}$$

la probabilità che il fotone interagisca (insuccesso) è:

$$1 - p_{tr} = 1 - e^{-\mu t}$$

Il processo di trasmissione dei fotoni attraverso un materiale è descritto da una distribuzione binomiale con probabilità di singolo evento p.

Se N è il numero di fotoni incidenti sul materiale, la probabilità che ne vengano trasmessi n è:

$$P_B(n) = \binom{N}{n} (p_{tr})^n (1 - p_{tr})^{N-n} = \binom{N}{n} (e^{-\mu t})^n \cdot (1 - e^{-\mu t})^{N-n}$$

distribuzione in uscita dal materiale

Poiché i fotoni prodotti dalla sorgente e in ingresso al materiale sono distribuiti Poissonianamente e la trasmissione attraverso il materiale è descritta da una distribuzione binomiale, la distribuzione dei fotoni in uscita dal materiale sarà data dalla composizione delle distribuzioni (Poisson + Binomiale). Si può dimostrare che questi seguono la statistica di Poisson:

$$P_P(n) = \frac{(p_{tr}N_0)^n \cdot e^{-p_{tr}N_0}}{n!} = \frac{(N_0e^{-\mu t})^n \cdot e^{-N_0e^{-\mu t}}}{n!}$$

Con media:

$$\bar{n} = N_0 e^{-\mu t}$$

e varianza:

$$\sigma^2 = N_0 e^{-\mu t}$$

Imaging radiografico

X-ray source patient

X-ray detector

10 keV-100 keV

Oggetto disomogeneo, spessore ~ 10cm, densità ~ 10^3 kgm⁻³

Rivelatore 2D fino a 30 cm x 40 cm

immagine radiografica

contrasto e SNR

Contrasto

Se indichiamo con $n_b = Ne^{-\mu_b t}$ il numero medio di fotoni nel background e $n_d = Ne^{-\mu_b(t-s)}e^{-\mu_d s}$ il numero medio di fotoni nel dettaglio:

$$C_{q} = \left|\frac{n_{b} - n_{d}}{n_{b}}\right| = \left|\frac{Ne^{-\mu_{b}t} - Ne^{-\mu_{b}(t-s)}e^{-\mu_{d}s}}{Ne^{-\mu_{b}t}}\right| = \left|1 - e^{-\Delta\mu s}\right|$$

Rapporto segnale/rumore (SNR)

Indichiamo con $\sigma_b = \sqrt{n_b}$ la standard deviation nel background:

$$SNR_q = \left|\frac{n_b - n_d}{\sigma_b}\right| = C_q \frac{n_b}{\sigma_b} = C_q \frac{n_b}{\sqrt{n_b}} = C_q \sqrt{n_b} = C_q \sqrt{Ne^{-\mu_b t}}$$

Figure 2.1: Image quality is dependent on the number of quanta used to create an image as illustrated in this example. The average detector x-ray exposure per image is approximately: a) 0.16 μ R, b) 1.6 μ R, c) 16 μ R, and d) 24 μ R.

SNR e dose

Criterio di Rose

Un dettaglio è visibile se SNR > k = numero di Rose

Supponiamo il dettaglio cubico di lato x e ricaviamo *n* (numero di fotoni per unità di superficie) fissato *k*:

$$k = C_q \sqrt{Ne^{-\mu_b t}} = (1 - e^{-\Delta \mu x}) \sqrt{nx^2 e^{-\mu_b t}} \Rightarrow$$
$$\Rightarrow n = k^2 \cdot \frac{e^{\mu_b t}}{(1 - e^{-\Delta \mu x})^2 x^2} = \frac{costante}{\Delta \mu^2 x^4}$$

Poiché *n* e la dose rilasciata nel campione sono proporzionali, otteniamo la relazione tra dose e dimensione lineare del dettaglio:

$$Dose = \frac{costante}{x^4}$$

cosa registra il rivelatore?

- numero di fotoni, fluenza, flusso (contatore)
- energia dei fotoni, fluenza di energia, flusso di energia (integratore)

• nel caso ideale, ogni fotone che arriva su un punto è rivelato e registrato in quel punto (efficienza unitaria, risoluzione spaziale arbitraria)

 nel caso del contatore ideale, la risposta è proporzionale al <u>NUMERO DI</u> <u>FOTONI</u> (e indipendente dall'energia dei fotoni): se per N fotoni di energia E la risposta è *I*, allora per N fotoni di energia 2E la risposta sarà *I (I=N)*

• nel caso dell'integratore ideale, la risposta è proporzionale all'<u>ENERGIA TOTALE</u> (numero di fotoni x energia dei fotoni): se per N fotoni di energia E la risposta è *l*, allora per N fotoni di energia 2E la risposta sarà 2*l*

pixel, array, matrice

meccanismo di rivelazione

conversione indiretta

Conversione diretta

Integrazione vs Photon counting

Integrazione vs Photon counting

	Photon Counting	Integrazione
S/N		
Rate capability		
Linearità di conteggio		
Capacità spettroscopiche		

effetto del rivelatore

Rispetto all'immagine quantica, la presenza del rivelatore determina:

- Perdita di eventi (efficienza < 1)
- Degrado della risoluzione spaziale
- Aumento del rumore (readout, termico, disomogeneità)
- Degrado del contrasto (non linearità)

efficienza

Limiti: .

- densità e spessore del materiale
- raccolta di carica (semiconduttori)
- charge sharing (semiconduttori)
- raccolta di luce (scintillatori)
- fluorescenze

- Soluzioni: .
 - alto Z, grande spessore
 - ridurre la soglia di discriminazione
 - no fluorescenze nel range di interesse _

risoluzione spaziale

- Limiti:
 - dimensione del pixel
 - spessore del materiale
 - Charge sharing(semiconduttori)
 - diffusione di luce (scintillatori)

- Soluzioni:
 - Pixel piccolo
 - Piccolo spessore
 - Aumentare la soglia di discriminazione (photon counters)
 - Cristallo con struttura colonnare (scintillatori)

compromesso risoluzione spazialeefficienza

Figure 4.5: Intrinsic sources of blurring common in all x-ray imaging detectors (a)–(c). Those sources of blurring specific to photoconductors (d)–(f), and those specific to phosphors (g)–(l). For details see text.

rumore e disomogeneità

soluzione: circuiti a basso rumore di lettura (integratori), cristalli omogenei (semiconduttori), post processing

tabella photon counters

		Channel						
		size	Energy	Peaking	Buttable	Technology		
Name	Matrix	(μm²)	thresholds t	time (ns)	sides	(µm)	Specific information	References
							Fine Pitch mode, Single Pixel mode, Compatibility	
Medipix3 (1)	256x256	55x55	2	120	3	0.13	with Through Silicon Vias (TSVs)	[33,34,35,36]
	256-256		2	120	2	0.12	Fine Pitch mode, Charge summing and hit allocation	[22.24.25.26]
Medipix3 (2)	256x256	55x55	2	120	3	0.13	algorithm, ISVs	[33,34,35,36]
							mode, Time-over-Threshold (ToT) energy	
Timoniv3 (3)	256v256	55755	10 hits	30	3	0.13	off-chip	[27]
	230x230	22,00	TODICS	50	5	0.13		[37]
Pixirad Pixie II (4)	512x476	52x60	2	300	2	0.18	Hexagonal pixels, equivalent pixel pitch of 55.6µm	[38]
Sameung PC (E)	170,170	60,60	2	NC	0	0.12	On-pixel successive approximation Analog to Digital	[20]
Samsung PC (S)	1208120	00,00	3	113	0	0.15	Large area ASIC (31 7x25mm ²) Charge summing	[39]
Pivirad Pivia III (6)	512×402	62×62	2	125	2	0.16	algorithm	[40]
	5121402	02.02	2	125	2	0.10	algorithm	[40]
Eiger (7)	256x256	75x75	1	30	3	0.25	Radiation hard electronics design	[41]
PXD23K (AGH)								
(8)	128x184	75x75	2	48	3	0.13		[42]
X-Counter PC (9)	256x256	100x100	2	NS	3	NS	Charge summing algorithm	[43]
PXD18K (AGH)								
(10)	96x192	100x100	2	30	3	0.18		[44]
FPDR90 (AGH)								
(11)	40x32	100x100	2	28	3	0.09		[45]
AGH_Fermilab								
(12)	18x24	100x100	2	48	0	0.04	Charge summing algorithm	[46]
Medipix3 (13)	128x128	110x110	8	120	3	0.13	Spectroscopic mode, Single Pixel mode, TSVs	[33.34.35.36]
					_		Spectroscopic mode, Charge summing algorithm,	[/- ///]
Medipix3 (14)	128x128	110x110	8	120	3	0.13	TSVs	[33,34,35,36]
XPAD3 (15)	80x120	130x130	2	150	3	0.25		[47,48]
Pilatus 2 (16)	60x97	172x172	1	110.00	3	0.25	Radiation hard design	[49,50]
Pilatus 3 (17)	60x97	172x172	1	110.00	3	0.25	Radiation hard design, instant retrigger technology	[51]
Telesystems (18)	40x40	200x200	4	300-500	3	0.25		[52]
Dosepix (19)	16x16	220x220	16	300	3	0.13	ToT energy measurement, 16 digital thresholds	[53]
Siemens PC (20)	64x64	225x225	2	20	NS	NS	Pile-up trigger method	[54,55,56,57]
							Digitization of pulse amplitude with off-chip ADC,	
Hexitec (21)	80x80	250x250	14bits	2000	3	0.35	TSVs	[58]
							Simultaneous charge integration and photon	
CIX 0.2 (22)	8x8	500x250	1	NS	1	0.35	counting measurement	[59,60]
Philips Chromaix								
(23)	16x16	300x300	4	20	2	0.18		[61]
Ajat-0.35 (PC)	22.464	250.250	4	1000	2	0.25		[(2) (2)]
(24) Aist 0.25 (ADC)	32x64	350X350	1	1000	3	0.35		[62,63]
Ajat-0.55 (ADC)	32v64	350,350	64	1000	2	0.25	On pixel ADC	[62 62]
DxBay-Interon	52,04	330x350	04	1000	5	0.55	On-pixer ADC	[02,03]
(26)	16x16	500x500	4	10	NS	NS		[2.64]
	10,10	200,000	-	1000-	113	113		[2,04]
Ajat-0.5 (27)	44x22	500x500	2	2000	3	0.35		[65]

Review of hybrid pixel detector readout ASICs for spectroscopic X-ray imaging

R. Ballabriga,^{a,1} J. Alozy,^a M. Campbell,^a E. Frojdh,^a E.H.M. Heijne,^{a,b} T. Koenig,^c X. Llopart,^a J. Marchal,^d D. Pennicard,^c T. Poikela,^a L. Tlustos,^a P. Valerio,^a W. Wong^a and M. Zuber,^c

CARATTERIZZAZIONE DEI RIVELATORI

Point Spread Function

Quando l'input a un sistema è un impulso: $\delta(x-x_0)$ localizzato in $x=x_0$

In uscita avremo: $\inf(x, x_0) = S\{\delta(x - x_0)\}$ impulse response function

Input Point Stimulus

Output: PSF(x, y)

Stationary Imaging System

Non-stationary Imaging System

Modulation Transfer Function

Per sistemi lineari e invarianti per shift:

$$d(x) = S\left\{e^{i2\pi ux}\right\} = T(u)e^{i2\pi ux}$$

PSF e MTF

La funzione T(u) è la trasformata di Fourier della funzione irf(x): $T(u) = F\{irf(x)\}$

$$MTF(u) = \frac{|T(u)|}{T(0)}$$

In generale MTF è una funzione bidimensionale e può essere espressa come funzione di due coordinate (frequenze) ortogonali *u* e *v*:

Line Spread Function

Descrive la risposta del sistema a una linea di impulsi.

Se la linea passa da $x=x_0$ e si estende lungo y, la risposta del sistema lungo una retta parallela a x è:

$$\operatorname{lsf}(x - x_0) = \frac{\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \delta(x - x_0) \operatorname{psf}(x, y) \, \mathrm{d}x \, \mathrm{d}y}{\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \operatorname{psf}(x, y) \, \mathrm{d}x \, \mathrm{d}y} = \frac{\int_{-\infty}^{\infty} \operatorname{psf}(x - x_0, y) \, \mathrm{d}y}{\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \operatorname{psf}(x, y) \, \mathrm{d}x \, \mathrm{d}y}$$

Nel caso di sistemi invarianti per shift:

$$lsf(x) = \frac{\int_{-\infty}^{\infty} psf(x, y) \, dy}{\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} psf(x, y) \, dx \, dy}$$

y, x,

Proprietà della LSF

Se consideriamo la *lsf* normalizzata, allora T(0) = 1 e:

 $T(u) = F\{lsf(x)\}$

e

 $MTF(u) = |F\{lsf(x)\}|$

Con *u* frequenza spaziale lungo *x*. Inoltre la MTF ottenuta a partile da LSF è tale che:

$$MTF(u) = MTF(u, v)|_{v=0}$$

Dato che l'integrazione lungo y corrisponde alla valutazione di MTF con v=0.

Misura: metodo della slit

Si misura direttamente l'LSF dall'immagine di una fessura molto sottile, per simulare l'esposizione radiante a una linea di impulsi.

Orientando la slit è possibile ottenere la LSF orizzontale, verticale e diagonale. Inoltre se il sistema è sotto-campionato, è possibile misurare la LSF di precampionamento orientando la slit con una leggera inclinazione (qualche grado) rispetto alle righe o colonne o diagonali

Misura: metodo dell'edge

metodo del gradino

Si calcola l'LSF dall'immagine di un edge. Questa immagine, derivata in direzione perpendicolare allo spigolo, fornisce l'LSF del sistema.

Rumore: SNR e NEQ

Consideriamo un'immagine di flat field (fascio imperturbato, caratterizzato da un numero medio di fotoni N_{fotoni}). Definiamo il rapporto segnale/rumore quantico:

$$SNR_q = \frac{N_{fotoni}}{\sigma_{fotoni}} = \sqrt{N_{fotoni}} \implies N_{fotoni} = (SNR_q)^2$$

Il fascio viene rivelato e il detector conta mediamente $N_{conteggi}$. Il rapporto segnale/rumore rivelato è:

$$SNR_{rivelato} = \frac{N_{conteggi}}{\sigma_{conteggi}}$$

Definiamo *NEQ* (Noise Equivalent number of Quanta), il numero di fotoni che, nel caso quantico, danno lo stesso rapporto segnale/rumore:

$$NEQ = (SNR_{rivelato})^2$$

Efficienza e rumore: DQE

Nelle ipotesi del caso precedente, definiamo la *DQE* (Detective Quantum Efficiency):

$$DQE = \frac{NEQ}{N_{fotoni}}$$

Esempio 1: il rivelatore ha efficienza ε e non aggiunge rumore:

$$SNR_{rivelato} = \frac{N_{conteggi}}{\sigma_{conteggi}} = \sqrt{N_{conteggi}} = \sqrt{\varepsilon N_{fotoni}}$$

$$NEQ = (SNR_{rivelato})^2 = \varepsilon N_{fotoni}$$
; $DQE = \frac{\varepsilon N_{fotoni}}{N_{fotoni}} = \varepsilon$

Esempio 2: il rivelatore ha efficienza 1 e aggiunge rumore:

$$SNR_{rivelato} = \frac{N_{conteggi}}{\sigma_{conteggi}} = \frac{N_{fotoni}}{\sigma_{conteggi}} < \sqrt{N_{fotoni}}$$
$$NEQ = (SNR_{rivelato})^2 < N_{fotoni} ; \quad DQE < 1$$

Noise Power Spectrum (NPS)

Uncorrelated Noise

Correlated Noise

$$NPS(f_x, f_y) = \left| \int_x \int_y \left[I(x, y) - \overline{I} \right] e^{-2\pi i (xf_x + yf_y)} dx dy \right|$$

$$\sigma^2 = \int_{f_x} \int_{f_y} NPS(f_x, f_y) \, df_x \, df_y$$

NEQ e DQE in funzione della frequenza

E' possibile dimostrare che:

$$NEQ(u) = \frac{MTF^{2}(u)}{NPS(u)} \cdot N_{conteggi}^{2} = \frac{MTF^{2}(u)}{NNPS(u)}$$

con NNPS (Normalised Noise Power Spectrum):

$$NNPS(u) = \frac{NPS(u)}{N_{conteggi}^2}$$

Inoltre:

$$DQE(u) = \frac{MTF^{2}(u)}{NPS(u)} \cdot \frac{N_{conteggi}^{2}}{N_{fotoni}} = \frac{1}{N_{fotoni}} \cdot \frac{MTF^{2}(u)}{NNPS(u)}$$

confronto rivelatori

Detector	Detector technology	X-ray absorber material	Radiation quality	pMTF 50% (x;y – lp/mm)	DQE peak (x;y) at specific DAK level
FUJIFILM AMULET	a-Se TFT	200 µm a-Se	W/Rh (28 kV)	4.4	0.75 at 103 µGy
Sectra MicroDose	Direct photon counting	Crystalline Si wafer	W/Al (28 kV)	6.2; 3.3	0.63; 0.61 at 113 μGy
Fischer Senoscan	CCD	180 µm CsI:Tl	W/Al (28 kV)	5.5	0.24 at 131 µGy
GE Senographe 2000D	a-Si:H TFT	100 µm CsI:Tl	Mo/Mo (28 kV) (RQA-M 2)	4	0.53 at 131 µGy
Hologic Lorad Selenia	a-Se TFT	200 µm a-Se	Mo/Mo (28 kV) (RQA-M 2)	5.8	0.59 at 92.5 μGy
LAS	CMOS APS	150 µm CsI:Tl	W/Al (28 kV)	1.5	0.73 at 60.3 µGy
Hamamatsu C9732DK	CMOS PPS	160 µm CsI:Tl	W/Al (28 kV)	3.3	0.48 at 120.5 μGy
Dexela 2932	CMOS APS	150 µm CsI:Tl	W/Rh (25 kV)	2.7	0.59 at 105.7 μGy (HFW mode)
Dexela 2932	CMOS APS	150 µm CsI:Tl	W/Rh (25 kV)	2.7	0.61 at 57.8 μGy (LFW mode)
Dexela 2932	CMOS APS	150 µm CsI:Tl	W/Al (28 kV)	3.3	0.55 at 121.6 µGy (HFW mode)
Dexela 2932	CMOS APS	150 µm CsI:Tl	W/Al (28 kV)	3.3	0.55 at 59.7 μGy (LFW mode)
Anrad SMAM	a-Se TFT	200 µm a-Se	W/Al (28 kV)	6.1; 5.3	0.67; 0.66 at 108.6 μGy
<i>Remote</i> RadEve <i>HR</i>	CMOS APS	85 μm Gd ₂ O ₂ S:Tb	W/Al (28 kV)	4.3	0.33 at 120.5 µGy

Alcuni rivelatori per mammografia

esempio di rivelatore

Pixirad-1

Singolo modulo di PIXIRAD. Architettura ibrida

- CdTe (30 × 25 mm²)
- CMOS ASIC a pixel (512×476 pixels, con passo es. 60 μ m)

Caratteristiche principali:

- 2 contatori per ogni pixel
- più grande chip ASIC mai costruito
- Assemblabile su entrambi i lati
- Soglie energetiche basse
- Compensazione automatica offset per ogni pixel

Il sensore CdTe

CdTe semiconductor ch	naracteristics:
Atomic numbers	48, 52
Effective atomic number	50
Density ρ(g/cm³)	5.85
Band energy (eV)	1.5
Dielectric constant	11
lonizing energy (eV)	4.43
Resistivity ρ(Ωcm)	10 ⁹
Electron mobility μ_e (cm ² /Vs)	1100
Electrons mean lifetime $\tau_{_{e}}$ (s)	3x10 ⁻⁶
Hole mobility μ_h (cm ² /Vs)	100
Holes mean lifetime $\tau_{h}^{}(s)$	2x10⁵
(μτ) _e (cm²/V)	3.3x10 ⁻³
(μτ) _h (cm²/V)	2x10⁴

- ✓ Il sensore a pixel di CdTe (ACRORAD Co., Ltd) è un diodo di tipo Schottky a raccolta di elettroni sui pixel
- ✓ Grande area $30.96 \times 24.98 \times 0.65 \text{ mm}^3$
- $\checkmark~$ Matrice esagonale con passo di 60 μm
- ✓ Corrente di leakage estremamente bassa: 5nA/cm²
 @ 400-500 V

ASIC CMOS a grande area

Pixel characteristics	
Shaped pulse duration (at the base)	1 μs (adjustable)
Linear range	> 3000 electrons
Saturation level	> 6000 electrons (>30 keV for CdTe)
Equivalent noise (ENC)	50 electrons (rms)
Residual offset after auto-calibration	± 30 electrons
Maximum number of counts before reading	32768
Input signal	positive or negative
Possibility to disable, swap, by pass, pixels	user selectable
Pixel reading	
Serialization of columns for best readout time	16, 32, 64, 128
Typical readout clock frequency	50 MHz
Readout time for 32 data outputs = 16 columns serialized (16 columns × 476 pixels × 15 bits × 20 ns)	2.3 ms
Readout time for 16 data outputs = 32 columns serialized	4.6 ms
Readout time for 8 data outputs = 64 columns serialized	9.2 ms

Modalità di acquisizione dati:

- ✓ Lettura a 2 colori (2 soglie, 2 contatori)
- ✓ dead-time free (DTF), mentre un contatore acquisisce, l'altro legge

Pixirad-1

Sensor specs:	CdTe, 650 μm, 30.9 × 25.0 mm² Schottky type diode Electron collection at pixel
ASIC+CdTe base block	512 × 476 pixels
Number of blocks	1
Global active area	31 x 25 mm ²
Total number of pixels	243712
Total number of counters	487424
Pixel size	60 μm hexagonal arrangement
Pixel density	323 pixels/mm ² , equivalent to 55 µm on square arrangement
Pixel rate capability	10 ⁶ counts/pixel/s (after dead-time correction)
Global rate capability	2.4x10 ¹¹ counts/s
Pixel dead-time	300 ns
Position resolution	11 line pairs/mm at MTF 50%
Reading while taking data	possible
Energy range	1-100 keV
Detection efficiency @10 keV, 25 keV, 50 keV	100%, 100%, 98%
Counters depth	15 bits
Read-out time @50 MHz clock	5 ms/counter
Frame rate	200 readouts/s
Minimum applicable global threshold	200 electrons
Sensor bias voltage	200 ÷ 400 V
Leakage current density	5 nA /cm² at 400 V, -20 °C
Typical number of defective pixels	less than 1%
Number of independent thresholds (colors)	2 set of two (swappable in real time)
Camera specs:	
Size (W×L×H)	14×14×7 cm ³
Weight	< 2Kg
Power consumption	60 Watts (typical)
TCda01/03/2014	liquid or forced air 65
Operating temperature	+40 -40 °C

PIXIRAD-8

Complete module includes;

- 8 unit sensor
- 25×2.5 cm² active are
- 2 M pixel 4M counters
- 2 pixel inter-modules
 spacing
- almost edge less toward
 the breast
- DAQ electronics
- Cooling system
- 1 Gbit Ethernet

Linearità

d)

Grafico di linearità

Dipendenza da E e th

Risposta (conteggi in funzione del numero di fotoni)

Noise

spettro differenziale

D= full energy peak a 38 keV

C=picco di fluorescenza del Cd a 23 keV

B= picco a 15 keV (38keV-23keV) è l'energia totale rilasciata in seguito all'assorbimento di un fotone primario e all'emissione di un fotone di fluorescenza che interagisce in un altro sito

A= picco a 11 keV (38keV-27keV) è l'energia rilasciata dal fotoelettrone prodotto per ionizzazione della k shell del Cd (kedge 27 keV)
Risoluzione spaziale

LSF

15 keV, vertical LSF

NNPS

If N is the number of counts, the expected noise is $\sigma = \sqrt{N}$. Multiple counts lead to deviations from this 'ideal' behavior.

NEQ per l'ottimizzazione

