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diagnosEca	
  medica	
  per	
  immagini	
  
•  ecografia	
  

•  Sorgente	
  e	
  rivelatore	
  di	
  ultrasuoni	
  (2-­‐10	
  MHz):	
  
cristalli	
  piezoeleFrici	
  



diagnosEca	
  medica	
  per	
  immagini	
  

•  MRI	
  	
  

•  Sorgente	
  e	
  rivelatore	
  di	
  segnali	
  eleFromagneEci	
  a	
  
radiofrequenza	
  (42.58	
  MHz/T):	
  bobine	
  



 
Chapter 2

Radiation and the A
tom

 
19

man’s height

football field
wavelength

l (m)

Si
ze

re
fe

re
nc

e
baseball

paperclip

paper
thickness

blood
cells

bacteria

viruses atom

atomic
nucleusDNA

thickness

1 ft 1 cm 1 mm 1 µm 1 nm 1 A 1 pm

103 102 102 1 10–1 10–2 10–3 10–4 10–5 10–6 10–7 10–8 10–9 10–10 10–11 10–12

electron volt
(eV) 10–9 10–8 10–7 10–6 10–5 10–4 10–3 10–2 10–1 10 102 103 104 105 106

105 106 107 108 109 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021

1

frequency
(Hz)

1 MHz 1 GHz 1 THz 1 PHz 1 EHz 1 ZHz

Radio Spectrum

B
an

ds

Broadcast and Wireless Microwave
X-rays & Gamma RaysTerahertz Infrared Ultraviolet

Baggage Screen
160 keV

electronics
op

tic
s

70
0

62
5

54
0

47
0

44
0

57
5

Soft X-ray

(nm)Visible wavelengths

Hard X-ray

“mm wave”
“sub-mm”

AM radio
600kHz-1.6MHz

FM radio
88-108 MHz

TV Broadcast
54-700 MHz

MRI (1.5T)
63.86 MHz

SmallMeter
0.9 & 2.45 GHz

S
ou

rc
es

 a
nd

 U
se

s 
of

Fr
eq

ue
nc

y 
B

an
ds

Microwave Oven
2.4 GHz

Wireless Data
~2.4 GHz

RADAR
1-100 GHz

Mobile Phones
900MHz-2.4GHz

Dental Curing
200-350nm

Fiber telecom
0.7-1.4 µm

Visible Light
700-400nm

Night Vision
10-0.7 µm

Remotes
850 nm

Screening
0.2-4.0 THz

Cosmic
Gamma Rays

>10Bev

PET
511 kev

Bone Scan
140 keV

Medical X-ray
80 kev

Suntan
400-290nm

ELECTROMAGNETIC RADIATION SPECTRUM

Biological
Effect Induced Currents

Non-ionizing Radiation Ionizing Radiation
Ionization – DNA DamageHeating Ex & Phcm

FIGURE 2-1 The EM spectrum.
T.	
  BUSHBERG:	
  The	
  Essen0al	
  Physics	
  of	
  Medical	
  Imaging	
  	
  



diagnosEca	
  medica	
  per	
  immagini	
  

•  Medicina	
  Nucleare	
  

•  Sorgente:	
  radiofarmaco	
  (140	
  keV-­‐511	
  keV)	
  
•  Rivelatore:	
  scinEllatori	
  accoppiaE	
  con	
  fotorivelatori	
  



diagnosEca	
  medica	
  per	
  immagini	
  
•  Radiologia	
  

•  Sorgente:	
  tubi	
  a	
  raggi	
  X	
  (40-­‐150	
  kV)	
  
•  Rivelatore:	
  scinEllatori,	
  riv.	
  a	
  stato	
  solido	
  



diagnosEca	
  medica	
  per	
  immagini	
  
•  CT	
  

•  Sorgente:	
  tubi	
  a	
  raggi	
  X	
  (80-­‐150	
  kV)	
  
•  Rivelatore:	
  scinEllatori,	
  riv.	
  a	
  stato	
  solido	
  



ionizzazione	
  della	
  materia	
  
2.3 Photon–Matter Interaction 

Fig. .. Principles of photon–matter interaction. For the Rayleigh process the dipole an-
tenna characteristic is illustrated. For pair production the successive process of pair annihi-
lation is illustrated as well

the model does not take into account the quantum aspects of light and, therefore,
for energies being considered here, this classical scattering model yields results in
disagreement to what is found by experiments.

Il	
  fotone	
  (primario)	
  interagisce	
  
per	
  effeFo	
  fotoeleFrico	
  o	
  
compton,	
  liberando	
  un	
  eleFrone	
  
di	
  alta	
  energia	
  

! 6!

!!"#$#!% =
800
! !!!"#!

!
!
Range1degli1elettroni1
!
Riferiamoci!alla!figura!in!cui!si!presenta!la!misura!del!range!delle!particelle!alfa.!
Supponiamo!che!ora!la!sorgente!produca!un!fascio!monocromatico!di!elettroni.!Il!
moto!di!questi!nello!spessore!del!materiale!non!è!rettilineo!e!in!conseguenza!di!
questo,!differenti!elettroni!avranno,!in!stessi!spessori,!perdite!di!energia!che!
possono!essere!molto!diverse.!La!conseguenza!è!che!il!rapporto!tra!numero!di!
particelle!trasmesse!e!numero!di!particelle!incidenti!in!funzione!dello!spessore!è!
una!curva!monotonamente!decrescente:!!
!

!
!
Positroni1
!
Nel!loro!cammino!nel!mezzo,!i!positroni!perdono!energia!secondo!i!meccanismi!
visti!sopra.!Oltre!a!questo,!nella!collisione!con!un!elettrone,!può!verificarsi!un!
evento!di!annichilazione!.!Se!l’annichilazione!avviene!tra!particelle!con!energia!
cinetica!trascurabile!(ad!esempio!quando!il!positrone!ha!perso!la!sua!energia),!
possiamo!scrivere:!
!

!! + !! = ! + !!
!
Dove!i!due!!!sono!fotoni!di!uguale!energia!ℎ! = 0.511!!"#!emessi!con!stessa!
direzione!e!verso!opposto.!
!
!
!

L’eleFrone	
  	
  cede	
  la	
  sua	
  energia	
  al	
  mezzo	
  
eccitando	
  e	
  ionizzando	
  gli	
  atomi.	
  In	
  questo	
  
caso	
  vengono	
  create	
  coppie	
  di	
  eleFroni-­‐ioni	
  
in	
  numero	
  proporzionale	
  all’energia	
  
dell’eleFrone	
  



semiconduFori	
  In un atomo isolato gli elettroni possono assumere solo livelli discreti di energia.  
 
In un materiale cristallino I livelli atomici si uniscono a formare delle bande di energia. 
  
Nei metalli la banda di valenza e quella di conduzione si sovrappongono, mentre negli isolanti e nei semiconduttori questi 
due bande sono separate da una banda proibita (band gap). Negli isolanti la band gap è larga. 

 A causa della band gap relativamente bassa, nei semiconduttori a temperatura ambiente gli elettroni occupano la banda di 
conduzione 

 
 Gli elettroni nella banda di conduzione possono ricombinarsi con le lacune 

 
 Si raggiunge un equilibrio termico fra l’eccitazione e la ricombinazione 

 
 La concentrazione di portatori di carica è: ne = nh = ni 











kT
E

Tn g
i 2

exp2
3

 Nel silicio puro ni=1.45·1010cm-3.  
Con una densità di 1022 atomi/cm3, 
circa 1 atomo di Si su 1012 è ionizzato  

ni: concentrazione intrinseca di portatori 
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Cammino	
  libero	
  medio	
  dei	
  fotoni	
  da	
  40	
  keV:	
  	
  in	
  Si	
  7	
  mm	
  ;	
  in	
  CdTe	
  	
  90	
  micron	
  	
  



scinEllatori	
  

Cammino	
  libero	
  medio	
  dei	
  fotoni	
  da	
  40	
  keV:	
  	
  in	
  CsI:	
  96	
  micron	
  	
  



modello	
  di	
  sensore	
  a	
  stato	
  solido	
  

•  la	
  parEcella	
  interagisce	
  nel	
  mezzo	
  e	
  lo	
  
ionizza	
  (ps	
  nei	
  solidi)	
  

•  nel	
  volume	
  a_vo	
  è	
  presente	
  la	
  carica	
  
generata	
  Q	
  

•  nel	
  volume	
  a_vo	
  è	
  presente	
  un	
  
campo	
  eleFrico	
  che	
  separa	
  le	
  cariche	
  

•  le	
  cariche	
  sono	
  raccolte	
  dagli	
  eleFrodi	
  
(ns	
  nei	
  semiconduFori)	
  

•  il	
  segnale	
  eleFrico	
  viene	
  elaborato	
  
dall’eleFronica	
  



interazioni	
  mulEple	
  a	
  rate	
  basso	
  

•  le	
  larghezze	
  dei	
  segnali	
  dipendono	
  dal	
  tempo	
  di	
  raccolta	
  della	
  carica	
  

•  le	
  altezze	
  dei	
  segnali	
  dipendono	
  dalla	
  carica	
  totale	
  prodoFa	
  nel	
  volume	
  a_vo	
  nel	
  
singolo	
  evento	
  

•  gli	
  intervalli	
  temporali	
  tra	
  un	
  evento	
  e	
  l’altro	
  seguono	
  la	
  distribuzione	
  temporale	
  
della	
  sorgente	
  (Epicamente	
  evenE	
  random,	
  staEsEca	
  di	
  Poisson)	
  



current	
  mode	
  



integrazione	
  
Se	!	è	l’intervallo	di	tempo	in	cui	il	dispositivo	è	attivo	(gate,	durata	dello		
“sparo”),	la	carica	totale	raccolta	è:	
	

!!"! = ! !! !!!
!

!!!
	

	
Nel	caso	stazionario	(sorgente	a	rate	costante):	
	
	

!!"! = !"! = !"# = !" !! !	
	
con:	
	

! = !"#$ !" !"!#$%
! = !"#$!" !"#$#%%& !"# !"#$%&% !"!#$%

! = !"!#$%& !"#$% !"#$%&'('( !" !" !"!#$%
! = !"!#$%& !"#$% !"#ℎ!"#$% !"# !" !"#$%&'#() !" !"# !"##$% !" − !"#

! = !"#$!" !"#!!!"!##$%&! = 1.6 ∙ 10!!" !

	



pulse	
  mode:	
  contatori	
  

rivelatore:	
  in	
  questo	
  
disposiEvo	
  i	
  quanE	
  di	
  
radiazione	
  producono	
  
la	
  carica	
  Q	
  

circuito	
  di	
  misura	
  
(preamplificatore):	
  è	
  
caraFerizzato	
  dalla	
  
resistenza	
  d’ingresso	
  e	
  
dalla	
  capacità	
  equivalente	
  
(capacità	
  del	
  rivelatore+	
  
capacità	
  dei	
  cavi	
  +	
  capacità	
  
di	
  ingresso	
  del	
  circuito)	
  

segnale	
  



forma	
  del	
  segnale	
  
Il#tempo#caratteristico#del#circuito#di#misura#(preamplificatore)#è:#
#

! = !"#
#
A#seconda#del#valore#di#!#rispetto#a#!! #(tempo#di#raccolta#di#carica),#il#segnale#in#
tensione#!(!)#assume#diverse#forme.#

in	
  ingresso	
  al	
  
preamplificatore	
  

in	
  uscita	
  dal	
  
preamplificatore	
  



Ampiezza	
  di	
  impulso	
  



catena	
  di	
  eleFronica	
  
•  Preamplicatore:	
  primo	
  stadio	
  di	
  

amplificazione	
  dell’impulso,	
  produce	
  alla	
  sua	
  
uscita	
  un	
  segnale	
  in	
  tensione	
  	
  proporzionale	
  
al	
  numero	
  di	
  portatori	
  di	
  carica.	
  

•  Amplificatore:	
  ha	
  la	
  funzione	
  di	
  formare	
  il	
  
segnale	
  e	
  di	
  amplificarlo	
  massimizzando	
  il	
  
rapporto	
  segnale-­‐rumore.	
  	
  

•  Discriminatore:	
  	
  seleziona	
  gli	
  evenE	
  
corrispondenE	
  a	
  energie	
  sopra	
  una	
  soglia	
  
fissata.	
  PermeFe	
  di	
  rigeFare	
  il	
  rumore	
  
eleFronico.	
  

•  MCA	
  (mul0	
  Channel	
  Analizer)	
  :	
  permeFe	
  di	
  
visualizzare	
  lo	
  speFro	
  differenziale	
  delle	
  
ampiezze	
  dei	
  segnali	
  in	
  entrata	
  



risposta	
  temporale	
  

Risposta	
  temporale	
  =	
  	
  tempo	
  impiegato	
  dal	
  rivelatore	
  per	
  
formare	
  il	
  segnale	
  dopo	
  l’arrivo	
  della	
  radiazione.	
  
	
  	
  
Per	
  una	
  buona	
  temporizzazione	
  (Eming)	
  è	
  necessario	
  che	
  il	
  
segnale	
  venga	
  formato	
  molto	
  velocemente	
  ed	
  abbia	
  un	
  
tempo	
  di	
  salita	
  breve.	
  
	
  	
  
Anche	
  la	
  durata	
  del	
  segnale	
  è	
  importante,	
  in	
  quanto	
  
determina	
  il	
  tempo	
  morto	
  del	
  rivelatore,	
  ossia	
  il	
  tempo	
  
durante	
  il	
  quale	
  il	
  rivelatore	
  rimane	
  insensibile	
  alla	
  
rivelazione	
  di	
  un	
  nuovo	
  evento	
  o	
  lo	
  rivela	
  distorto	
  (fenomeno	
  
dell’impilamento,	
  o	
  “pile-­‐up”)	
  



tempo	
  morto	
  

sono	
  rivelaE	
  3	
  evenE	
  su	
  6	
  

sono	
  rivelaE	
  4	
  evenE	
  su	
  6	
  

•  Tempo	
  morto:	
  il	
  minimo	
  intervallo	
  di	
  tempo	
  che	
  deve	
  intercorrere	
  fra	
  due	
  evenE	
  
successivi	
  affinché	
  siano	
  visE	
  come	
  evenE	
  separaE.	
  	
  

	
  
•  Il	
  tempo	
  morto	
  può	
  dipendere	
  dal	
  rivelatore	
  vero	
  e	
  proprio	
  o	
  dall'eleFronica	
  ad	
  esso	
  

associata.	
  	
  
	
  
•  Esiste	
  una	
  probabilità	
  non	
  nulla	
  che	
  qualche	
  evento	
  buono	
  venga	
  perso	
  se	
  capita	
  troppo	
  

vicino	
  al	
  precedente.	
  	
  
	
  
•  Queste	
  perdite	
  dovute	
  al	
  tempo	
  morto	
  diventano	
  più	
  elevate	
  al	
  crescere	
  del	
  rate	
  



grafici	
  di	
  m	
  in	
  funzione	
  di	
  n	
  



Pile	
  up	
  
Si	
  verifica	
  quando	
  si	
  misura	
  l’altezza	
  dell’impulso	
  e	
  due	
  o	
  più	
  evenE	
  sono	
  

temporalmente	
  parzialmente	
  o	
  totalmente	
  sovrapposE	
  
Amptek Inc.  Amptek Inc. 
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Figure 3.  Illustration of pulse pile-up.  This plot shows five incident pulses, which occur at random time 
intervals since nuclear decay is a stochastic process.  The individual pulses are the black lines, while the 
blue dots represent the sum, which is what is measured. 

The first pulse, on the left, is isolated in time and so is counted at the correct pulse height measured.  
The next two overlap partially, with a valley between the peaks.  Two pulses will be recorded, and the first 
will have the correct pulse height, but an incorrect amplitude is measured for the second.  The final two 
overlap enough that there is no valley.  This looks like a single pulse to the electronics (they are not 
resolvable) with an incorrect height.  If the two occur close enough in time, the resulting amplitude is the sum 
of the individual pulses. 

 

fenomeno	
  del	
  pile	
  up	
  

risultato	
  su	
  uno	
  speFro	
  



informazioni	
  speFrometriche	
  

il	
  Threshold	
  scan	
  
permeFe	
  di	
  costruire	
  lo	
  
speFro	
  integrale	
  dal	
  
quale	
  si	
  può	
  ricavare	
  lo	
  
speFro	
  differenziale	
  

il	
  segnale	
  formato	
  
dall’amplificatore	
  ha	
  
lunghezza	
  temporale	
  
proporzionale	
  all’altezza:	
  
misurando	
  la	
  durata	
  del	
  
segnale	
  (Eme	
  over	
  
threshold)	
  si	
  misura	
  
indireFamente	
  l’energia	
  



tubo	
  a	
  raggi	
  X	
  

 2 Fundamentals of X-ray Physics

sources, the radiation is generated by the deceleration of fast electrons entering
a solid metal anode, and consists of waves with a range of wavelengths roughly
between −m and −m. &us, the radiation energy depends on the electron
velocity, ν, which in turn depends on the acceleration voltage, Ua, between cathode
and anode so that with the simple conservation of energy

eUa = 

meν

 (.)

the electron velocity can be determined.

2.2.1
X-ray Cathode

In medical diagnostics acceleration voltages are chosen between kV and kV,
for radiation therapy they lie between kV and kV, and for material testing
they can reach up to kV. Figure . shows a schematic drawing of an X-ray

Fig. .. Schematic drawing of an X-ray tube.&ermal electrons escape from a cathode fila-
ment that is directly heated to approximately ,K. &e electrons are accelerated in the
electric field between cathode and anode. X-ray radiation emerges from the deceleration of
the fast electrons following their entry into the anode material

 Charge of electrons: e = . ċ −C; mass of electrons:me = . ċ − kg.
 &ere is no clear definition of the X-ray wavelength interval. &e range overlaps with
ultraviolet and γ-radiation.

 Acceleration energy is measured in units called electron volts (eV). eV is the energy that
an electronwill gain if it is acceleratedby an electrical potential of one volt.&e same unit
is used to measure X-ray photon energy.

Gli elettroni, prodotti per effetto termoionico, sono accelerati 
da un campo elettrico e collidono con un anodo (alto z, alto 
punto di fusione, Mo, W , Rh). 
 
- Collisioni (calore) 
- Scattering (elastico, anelastico) 
- Bremsstrahlung 

2.2 X-ray Generation 

more strongly attenuated when passing through matter than high-energy X-ray.
As a consequence, the center of the polychromaticX-ray is shi#ed to higher energies
or harder radiation respectively.$is is the origin of what is called beam hardening,
which produces artifacts in the reconstructed images, because today it is standard to

Fig. .. Beam hardening of an X-ray spectrum produced by a tungsten anode (anode angle
!, acceleration voltage Ua = kV) due to filtering by a flat, .-mm source side-mounted
aluminum filter and a .-mm copper filter respectively.$e amount of intensity reduction
depends on the wavelength.$e intensity of the high-energy bremsstrahlung of the copper-
filtered spectrum is even higher than the intensities of the characteristic Kα and Kβ lines
(courtesy of B. David, Philips Research Labs)

 Low energy quanta are generally undesired in X-ray imaging. $ey increase the dose to
the patient, but do not contribute to imaging, because they are almost totally absorbed by
the human body.

flussi:	
  
fino	
  a	
  109	
  fotoni	
  al	
  mm2	
  al	
  s	
  



produzione	
  dei	
  fotoni	
  



interazione	
  dei	
  fotoni	
  



distribuzione	
  in	
  uscita	
  dal	
  materiale	
  

Poiché	i	fotoni	prodotti	dalla	sorgente	e	in	ingresso	al	materiale	sono	distribuiti	
Poissonianamente	e	la	trasmissione	attraverso	il	materiale	è	descritta	da	una	
distribuzione	binomiale,	la	distribuzione	dei	fotoni	in	uscita	dal	materiale	sarà	
data	dalla	composizione	delle	distribuzioni	(Poisson	+	Binomiale).	Si	può	
dimostrare	che	questi	seguono	la	statistica	di	Poisson:	
	

!! ! = !!"!! ! ∙ !!!!"!!
!! = !!!!!" ! ∙ !!!!!!!"

!! 	
	
Con	media:	
	

! = !!!!!" 	
	
e	varianza:	
	

!! = !!!!!" 	
	
	



10 keV-100 keV Oggetto disomogeneo, 
spessore ~ 10cm, 
densità ~103 kgm-3 

Rivelatore 2D 
fino a 30 cm x 40 cm 

Imaging	
  radiografico	
  



15Diagnostic Radiology with X-Rays

In view of this place in history as well as the vast application of X-rays, it is appropri-
ate to begin the discussion of the physics of medical imaging by considering diagnostic 
radiology with X-rays. In later chapters, we shall see how many of the concepts formed 
for describing radiography with X-rays are also useful for other modalities. In a sense, 
the language of imaging was framed for X-radiology, including concepts such as image 
contrast and noise and spatial resolution, and it has subsequently been taken across to 
describe these other techniques for imaging the human body. This chapter covers both the 
essential physics of the design of X-ray imaging equipment and the quality control of the 
equipment. Quality control is an important component of modern radiographic practice, 
facilitating the maintenance of the quality of the image and the radiation protection of 
patients and staff.

The radiographic image is formed by the interaction of X-ray photons with a photon 
detector and is therefore a distribution of those photons, which are transmitted through 
the patient and are recorded by the detector. These photons can be either primary pho-
tons, which have passed through the patient without interacting, or secondary photons, 
which result from an interaction in the patient (Figure 2.1). The secondary photons will 
in general be de!ected from their original direction and, for our purposes, can be consid-
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without interacting and this probability will itself depend upon the sum of the X-ray 
attenuating properties of all the tissues the photon traverses. The image is therefore a 
projection of the attenuating properties of all the tissues along the paths of the X-rays. It is 
a two-dimensional projection of the three-dimensional distribution of the X-ray attenuating 
properties of tissue.

* The development of X-ray imaging systems that make use of the information contained in scattered photons 
is (at the time of writing) an active research area.
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FIGURE 2.1
The components of the X-ray imaging system and the formation of the radiographic image. B and E represent 
photons that have passed through the patient without interacting. C and D are scattered photons. D has been 
stopped by an anti-scatter grid. Photon A has been absorbed.
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2.1 Introduction

Awide variety of both digital and nondigital medical-imaging systems are now
in clinical use and many new system designs are under development. These are all
complex systems, with multiple physical processes involved in the conversion of
an input signal (e.g., x rays) to the final output image viewed by the interpreting
physician. For every system, a high-quality image is obtained only when all pro-
cesses are properly designed so as to ensure accurate transfer of the image signal
and noise from input to output.

An important aspect of imaging science is to understand the fundamental
physics and engineering principles of these processes, and to predict how they
influence final image quality. For instance, it has been known since the work of
Rose [1–4], Shaw [5], and others that the image signal-to-noise ratio (SNR) is
ultimately limited by the number of quanta used to create the image. This is illus-
trated in Figure 2.1, showing the improvement in image quality as the number of
x-ray quanta used to produce images of a skull phantom is increased from 45 to
6720 quanta/mm2. Negligible image noise was added by the imaging system.

The view that an imaging system must faithfully transfer the input image sig-
nal to the output suggested the use of foundations laid out by scientists and en-
gineers studying communications theory, and in particular, use of the Fourier-

Figure 2.1: Image quality is dependent on the number of quanta used to create an image
as illustrated in this example. The average detector x-ray exposure per image is approxi-
mately: a) 0.16 µR, b) 1.6 µR, c) 16 µR, and d) 24 µR.
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Figure 2.27: The detector array consists of an array of detector elements. Each element
produces a signal proportional to the number of quanta interacting in the element.

Figure 2.28: Integration of quanta in detector elements of width ax is represented as con-
volution of q(x) with k!(x/ax) in the spatial domain, and multiplicationwith kax sinc(πaxu)

in the frequency domain.

“aperture MTF” in the spatial-frequency domain. This is illustrated in Figure 2.28,
where a sample distribution of X-ray quanta q(x) are incident on a detector. The
left column shows q(x) in one dimension, and the right column shows |Q(u)|
where Q(u) is the Fourier transform of q(x).

In the following it is assumed that each detector element has unity quantum
efficiency and a width of ax . The signal from the nth element centered at x = nx0,

 2 Fundamentals of X-ray Physics

Fig. .a–d.Detector parts used for multi-slice detector technology – courtesy of Siemens
Medical Solutions (a, c), General Electric Medical Systems (b), and Philips Medical Sys-
tems (d)

terfaces, potentially producing imaging artifacts, is not required. !e final coat-
ing with cesium iodide (CsI) is the required scintillator layer of the detector. !e
CsI layer is applied directly onto the pixel matrix by a physical deposition pro-
cess.

!e production technique is known from semiconductor production. Phys-
ical and chemical processing steps, i.e., the combination of photolithography and
further etching phases, are applied to produce these finely structured detector

 2 Fundamentals of X-ray Physics

Fig. .a–d.Detector parts used for multi-slice detector technology – courtesy of Siemens
Medical Solutions (a, c), General Electric Medical Systems (b), and Philips Medical Sys-
tems (d)

terfaces, potentially producing imaging artifacts, is not required. !e final coat-
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CsI layer is applied directly onto the pixel matrix by a physical deposition pro-
cess.

!e production technique is known from semiconductor production. Phys-
ical and chemical processing steps, i.e., the combination of photolithography and
further etching phases, are applied to produce these finely structured detector

2.5 X-ray Detection 

Fig. .. Realization of a cm ! cm flat-panel detector integrating , ! , pixels.
a Pre-assembly panel with ribbon cable for read-out electronics. b Complete flat-panel sys-
tem ready for use (courtesy of General Electric Medical Systems: Brunst [])

dide grows anisotropically, forming needles on the matrix. In Fig. ., the needle
structure of CsI is demonstrated in an electron microscope picture. If X-ray quanta
are converted into visible light inside the CsI structure , the emerging photons are,
in all likelihood, traveling along the needles, because they act as a fiber-optical ca-
ble. In this way photons are guided directly onto the photodiode or in the opposite
direction. 'e photons that are traveling in the opposite direction face a mirror on
the top side of the CsI layer that ensures that eventually almost all photons find
their way to the photodiode. 'is light guidance effect of the CsI fiber structure is
the reason for the high quantum efficiency of the digital flat-panel detectors. 'e
X-ray-sensitive CsI coating can be made very thick to obtain a high quantum effi-
ciency and to also suppress broad photon scattering, whichwould reduce the spatial
resolution. 'e scintillation light is bundled by the CsI fibers onto a small point on
the photodiodematrix. However, an isotropic CsI layer must always find a compro-
mise between high quantum efficiency and high spatial resolution.

 Typically, a cloud of about , optical photons, each with energy of approximately eV,
is generated by an X-ray quantum of several tens of keV.
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 2 Fundamentals of X-ray Physics

Fig. .. Comparison of dynamic characteristics between a film detector system (le!) and
a digital scintillation detector (right). Besides a desired linearity of the digital detector, the
dynamic range of the scintillation detector of –,: (compared with –: of the
film detector) is also superior (Brunst )

Fig. ..&e cesium iodide scintillation layer of a flat-panel detector element (picture taken
with an electron microscope, courtesy of General Electric Medical Systems: Brunst [])
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1.5.3.1 Thickness

Thicker screens absorb more x-ray photons and have higher QDEs, but the light
emitted in a thicker screen has a longer propagation pathlength to reach the surface
of the screen. Light that diffuses through thicker layers of screen will spread out
more, reducing spatial resolution (Figure 1.52). In addition to the larger blur pattern
found with thicker screens (Figure 1.52(b)), light photons are absorbed more with
a greater diffusion pathlength, and thus the number of photons will be reduced and
the conversion efficiency may be lower.

A thick screen can be modeled as a number of layered thin screens. Each layer
in the screen will contribute its own conversion efficiency and its own modulation
transfer function (MTF, a spatial frequency description of resolution). Layers close
to the photodetector will have higher conversion efficiencies and sharper MTFs,
layers away from the photodetector will have slightly lower conversion efficiencies
(due to light attenuation) and poorer MTFs.

1.5.3.2 Reflective layers

If increasing the speed of a screen is a very important design goal, a reflecting
layer can be placed against the screen to reflect light initially directed away from
the photodetector back toward it (Figure 1.52(c)). The addition of a reflection layer
results in a broadened point-spread function and reduced spatial resolution, but a
faster screen.

Figure 1.52: (a) A thin intensifying screen reduces the pathlength of visible-light diffusion,
and thus restricts the amount of lateral spread that can occur, improving spatial resolution.
(b) A thicker screen is capable of attenuatingmore x-ray photons; however, the pathlength of
light diffusion is greater and more lateral spread of the optical signal will occur, broadening
the point-spread function and reducing spatial resolution. (c) The addition of a reflective
layer on the surface opposite the photodetector causes light which is emitted away from the
photodetector to be reflected back and be recorded, increasing the conversion efficiency of
the screen, but reducing spatial resolution.
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Figure 4.5: Intrinsic sources of blurring common in all x-ray imaging detectors (a)–(c).
Those sources of blurring specific to photoconductors (d)–(f), and those specific to phos-
phors (g)–(l). For details see text.
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Table 2. Hybrid pixel detector photon counting chips. The indexes (in italics and inside curly brackets) in
the table identify the chips in the following plots (they should not be confused with the references). (NS
means that the data was not specified in the reference).

to compare the di�erent designs but should be rather used to identify trends and performance
envelopes.

5.1 Digitization methods

Various methods have been used for the digitization of the amplified signal. Most of the pho-
ton counting ASICs implement n discriminators to compare the energy-proportional signal with
n thresholds. The thresholds are usually implemented as global signals that are distributed to all
detection channels. There is a local on-pixel Digital-to-Analog (DAC) converter associated to each
comparator to compensate for the intrinsic channel-to-channel o�set mismatch. Threshold com-
parison with a given number of discriminator circuits working in parallel is the fastest digitization
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2.3 Introduction to linear-systems theory

In this section, linear-systems theory is introduced including a description
of important principles and relationships required to characterize system perfor-
mance in the spatial-frequency domain. While most results are expressed in one-
dimensional geometry in terms of the position x and spatial frequency u, similar
relationships hold true using two-dimensional geometry in terms of the position
vector r and spatial-frequency vector k.

2.3.1 Linear systems

A linear-system response is generally necessary before a linear-systems ap-
proach can be used to analyze or characterize system performance. Thus, the first
step in any analysis is to ensure the system under study is indeed linear. Essen-
tially, this means the output must be proportional to the input. Thus, if a system
has a transfer characteristic described by S{ } such that an input h(x) produces an
output S{h(x)}, then for any two inputs h1(x) and h2(x), the system is linear if and
only if

S
{
h1(x) + h2(x)

} = S{h1(x)
} + S{h2(x)

}
(2.18)

and

S
{
ah(x)

}
= aS

{
h(x)

}
(2.19)

for any real constant a. Many systems that are not linear can be linearized with an
appropriate calibration, or exhibit small-signal linearity. For instance, radiographic
film-screen systems are not linear in their response, but can be linearized if the
H&D curve (the relationship between film optical density and X-ray exposure) is
known. See references [5], [9], and [20] for further discussions on using linear-
systems theory for modeling radiographic systems. In general, no system is com-
pletely linear, and as such the linear-systems approach is always an approximation.
The analysis of non-linear systems may be limited to their behavior with small am-
plitude signals [21]. In the following, we will assume a linear system except where
specifically noted.

2.3.1.1 Impulse-response function, IRF

When a linear system is presented with the input δ(x − x0), an impulse lo-
cated at x = x0, the corresponding output will be S{δ(x − x0)} which is called the
impulse-response function (IRF), i.e.,

irf(x, x0) = S
{
δ(x − x0)

}
(2.20)

The real utility of using the IRF is that for any input expressed as a superposition
of many such impulse functions, the output of a linear system will consist of the
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are acquired and viewed in the spatial domain. The spatial domain refers to the two 
dimensions of a single image, or to the three dimensions of a set of tomographic 
images such as computed tomography (CT) or magnetic resonance imaging (MRI). 
A number of metrics that are measured in the spatial domain and that describe the 
spatial resolution of an imaging system are discussed below.

The Point Spread Function, PSF

The point spread function (PSF) is the most basic measure of the resolution proper-
ties of an imaging system, and it is perhaps the most intuitive as well. A point source 
is input to the imaging system, and the PSF is (by definition) the response of the 
imaging system to that point input (Fig. 4-1). The PSF is also called the impulse 
response function. The PSF is a two-dimensional (2D) function, typically described 
in the x and y dimensions of a 2D image, PSF(x,y). Note that the PSF can be rota-
tionally symmetric, or not, and an asymmetrical PSF is illustrated in Figure 4-2. The 
diameter of the “point” input should theoretically be infinitely small, but practically 
speaking, the diameter of the point input should be five to ten times smaller than the 
width of the detector element in the imaging system being evaluated.

To produce a point input on a planar imaging system such as in digital radiogra-
phy or fluoroscopy, a sheet of attenuating metal such as lead, with a very small hole 
in it*, is placed covering the detector, and x-rays are produced. High exposure levels 
need to be used to deliver a measurable signal, given the tiny hole. For a tomographic 

Input Point Stimulus Output: PSF(x, y)

FIGURE 4-1 A point stimulus to an imaging system is illustrated (left), and the response of the imaging 
system, the point spread function (PSF) is shown (right). This PSF is rotationally symmetric.

FIGURE 4-2 A PSF which 
is not rotationally symmet-
ric is shown.

*In reality, PSF and other resolution test objects are precision-machined tools and can cost over a thou-
sand dollars.
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system, a small-diameter wire or fiber can be imaged with the wire placed normal to 
the tomographic plane to be acquired.

An imaging system with the same PSF at all locations in the field of view is called 
stationary or shift invariant, while a system that has PSFs that vary depending on the 
position in the field of view is called nonstationary (Fig. 4-3). In general, medical 
imaging systems are considered stationary—even if some small nonstationary effects 
are present. Pixelated digital imaging systems have finite detector elements (dexels), 
commonly square in shape (but not always), and in some cases, the detector element 
is uniformly sensitive to the signal energy across its surface. This implies that if there 
are no other factors that degrade spatial resolution, the digital sampling matrix will 
impose a PSF, which is square in shape (Fig. 4-4) and where the dimensions of the 
square are the dimensions of the dexels.

The PSF describes the extent of blurring that is introduced by an imaging system, 
and this blurring is the manifestation of physical events during the image acquisition 

Stationary Imaging System

Non-stationary Imaging System
FIGURE 4-3 A stationary or shift-invariant imaging system is one in which the PSF remains constant over 

the field of view of the imaging system. A nonstationary system has a different PSF, depending on the location 
in the field of view.

FIGURE 4-4 A 2D RECT function is shown, illustrating the PSF of a digital imaging system with square 
detector elements of width a, in the absence of any other blurring phenomenon. This PSF is the best possible 
for a digital imaging system.
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Figure 2.12: A sinusoidal signal at the input of an LSI system will produce a sinusoidal
output signal with the same frequency, scaled by the frequency-dependent factor T(u) which
is complex in general. This illustration is approximate as the input is not a pure sine wave.

position, expressed in terms of the complex exponential

h(x) = ei2πux = cos(2πux) + i sin(2πux) (2.27)

where u is the “spatial” frequency (cycles/mm). The output d(x) is given by the
convolution integral

d(x) =
∫ ∞

−∞
irf(x′)ei2πu(x−x′) dx′ (2.28)

= ei2πux

∫ ∞

−∞
irf(x′)e−i2πux′

dx′ (2.29)

where the final integral is recognized as being the Fourier transform of irf(x),
which we call T(u). Therefore,

d(x) = S{ei2πux
} = T(u)ei2πux (2.30)

showing that the output is identical to the input scaled by the frequency-dependent
factor T(u). That is, a sinusoidal input will produce a sinusoidal output at the same
frequency, scaled by T(u), as illustrated in Figure 2.12. Complex exponentials of
the form ei2πux are called eigenfunctions of the imaging system, and T(u), which is
complex in general, describes the eigenvalues. The factor T(u) is called the char-
acteristic function of the system. The impulse-response function and the system
characteristic function are Fourier pairs:

T(u) = F
{
irf(x)

}
(2.31)
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FIGURE 4-13 A. Sinusoidal input signals are incident on a detector (intensity as a function of position), and 
three different frequencies are shown as input functions (left). The signals measured by the imaging system are 
shown on the right—the frequency is the same as the inputs in all cases, but the amplitude of the measured sig-
nal is reduced compared to that of the input signal. This reduction in amplitude is a result of resolution losses in 
the imaging system, which are greater with signals of higher frequencies. For the input at 1 cycle/mm, the original  
100% amplitude was attenuated to 87%, and with the 2- and 4-cycle/mm input functions, the resulting signal 
amplitudes were reduced to 56% and 13%, respectively. B. This figure shows the amplitude reduction as a func-
tion of spatial frequency shown in A. At 1 cycle/mm, the system reduced the contrast to 87% of the input. For 
2 mm 1 and 4 mm 1, the signal was modulated as shown. This plot shows the MTF, which illustrates the spatial 
resolution of an imaging system as a function of the spatial frequency of the input signal.

individually acquired (and then Fourier transformed) signals. The amplitude of the 
peak at each frequency reflects the contrast transfer (retained) at that frequency, with 
contrast losses due to resolution limitations in the system. Interestingly, due to the 
characteristics of the Fourier transform, the three sinusoidal input waves shown 
in Figure 4-13A could be acquired simultaneously by the detector system, and the  
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showing that the output is identical to the input scaled by the frequency-dependent
factor T(u). That is, a sinusoidal input will produce a sinusoidal output at the same
frequency, scaled by T(u), as illustrated in Figure 2.12. Complex exponentials of
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convolution with irf(x) in the spatial domain, or equivalently as multiplication with
T(u) in the spatial-frequency domain. This relationship is illustrated graphically in
Figure 2.13. In many situations it is more convenient to express imaging problems
in the spatial-frequency domain than in the spatial domain, and the ability to move
fluently between the two domains is critical to being able to easily solve many
imaging problems.

2.3.2.3 Modulation-transfer function, MTF

As shown previously, the contrast-transfer factor, Tc, is not very useful for the
description of imaging systems because it is not explicitly related to the size of
image structures or to the spatial resolution characteristics of the system. However,
the situation changes when we consider the transfer of sinusoidal signals. Consider
the input h(x) where

h(x) = a + bei2πux (2.36)

and where the real component of h(x) corresponds to the real (measurable) input
signal. Because of the sinusoidal nature of this input, it is more meaningful to
characterize it in terms of its modulation than its contrast. The modulation of h(x)
in Figure 2.14 is given by

Min = |hmax | − |hmin|
|hmax | + |hmin|

= (a + b) − (a − b)

(a + b) + (a − b)
= b

a
(2.37)

The output signal d(x) is given by

d(x) = S
{
h(x)

} = S{a + bei2πux
}

(2.38)
= S{a} + S{bei2πux} (2.39)
= aS

{
ei2π(u=0)x} + bS

{
ei2πux

}
(2.40)

= aT(0) + bT(u)ei2πux (2.41)

where T(u) is complex in general but T(0), which is equal to the area under the
IRF, must be real only. The output modulation is therefore given by

Mout = |dmax| − |dmin|
|dmax| + |dmin|

= b

a

|T(u)|
T(0)

= Min
|T(u)|
T(0)

(2.42)

Similar to our definition above of the contrast-transfer factor, the ratio Mout/Min

is defined here as the modulation transfer function (MTF), given by

MTF(u) = |T(u)|
T(0)

(2.43)
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Figure 2.14: A sinusoidal signal expressed in complex exponential form as h(x) = a +
bei2πux . The sinusoidal waveform is the real component of h(x).

TheMTF is not as complete a description of a system as the characteristic func-
tion T(u) because phase information and a scaling constant have been discarded.
However, if irf(x) is real only (i.e., has no imaginary component), which is gen-
erally true for X-ray imaging systems, both T(u) and MTF(u) are even functions
and can be expressed in terms of positive frequencies only without loss of general-
ization. If irf(x) is real and even, T(u) is also real and even, and no phase-transfer
information is lost going to the MTF. The MTF is always real.

The function OTF(u) given by

OTF(u) = T(u)

T(0)
(2.44)

is sometimes called the optical transfer function (OTF). It is related to the MTF as
MTF(u) = |OTF(u)|, and is similar to the MTF although it retains phase-transfer
information.

In general the MTF is a two-dimensional function, expressed in terms of either
a two-dimensional frequency vector k as MTF(k), or orthogonal frequencies u and
v as MTF(u, v).

2.3.2.4 Line-spread function, LSF

The LSF describes the response of the system to a “line” delta function, normal-
ized to unity area. This is seen if we consider a line impulse positioned at x = x0
extending forever in the y direction as the line delta function δ(x −x0). The system
response along a line in the perpendicular x direction is therefore the LSF given by

lsf(x − x0) =

∫ ∞

−∞

∫ ∞

−∞
δ(x − x0)psf(x, y)dx dy

∫ ∞

−∞

∫ ∞

−∞
psf(x, y)dx dy
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Figure 2.14: A sinusoidal signal expressed in complex exponential form as h(x) = a +
bei2πux . The sinusoidal waveform is the real component of h(x).
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tion T(u) because phase information and a scaling constant have been discarded.
However, if irf(x) is real only (i.e., has no imaginary component), which is gen-
erally true for X-ray imaging systems, both T(u) and MTF(u) are even functions
and can be expressed in terms of positive frequencies only without loss of general-
ization. If irf(x) is real and even, T(u) is also real and even, and no phase-transfer
information is lost going to the MTF. The MTF is always real.

The function OTF(u) given by
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(2.44)

is sometimes called the optical transfer function (OTF). It is related to the MTF as
MTF(u) = |OTF(u)|, and is similar to the MTF although it retains phase-transfer
information.

In general the MTF is a two-dimensional function, expressed in terms of either
a two-dimensional frequency vector k as MTF(k), or orthogonal frequencies u and
v as MTF(u, v).

2.3.2.4 Line-spread function, LSF

The LSF describes the response of the system to a “line” delta function, normal-
ized to unity area. This is seen if we consider a line impulse positioned at x = x0
extending forever in the y direction as the line delta function δ(x −x0). The system
response along a line in the perpendicular x direction is therefore the LSF given by
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=

∫ ∞

−∞
psf(x − x0, y)dy

∫ ∞

−∞

∫ ∞

−∞
psf(x, y)dx dy

(2.45)

For shift-invariant systems this relationship simplifies to

lsf(x) =

∫ ∞

−∞
psf(x, y)dy

∫ ∞

−∞

∫ ∞

−∞
psf(x, y)dx dy

(2.46)

where lsf(x) is the LSF in the x direction. The LSF describes the response of a
system in one direction when details of the response in the orthogonal direction
have been “integrated out” as shown by Eq. (2.46).

The one-dimensional OTF in Eq. (2.44) and the line-spread function are Fourier
pairs [5]:

OTF(u) = F
{
lsf(x)

}
(2.47)

where u is the spatial frequency in the x direction. Integration of psf(x, y) in the
y direction in Eq. (2.46) corresponds to evaluation of MTF(u, v) along the v = 0
axis. Therefore,

MTF(u) =MTF(u, v)|v=0 (2.48)

For systems with a rotationally symmetric IRF, MTF(u, v) is also rotationally sym-
metric and can be expressed in terms of a single radial spatial frequency u without
loss of generality.

2.3.2.5 The correlation integral

A quantity closely related to the convolution integral that will also be used
later is the correlation integral, not to be confused with the statistical correlation
function described in Section 2.5. The correlation integral of two functions f (x)
and h(x) is given as

d(x′, x′ + x) =
∫ ∞

−∞
f (x′)h(x′ + x)dx′ (2.49)

When f (x) and h(x) are stationary in x, then this relationship simplifies to

d(x) =
∫ ∞

−∞
f (x′)h(x′ + x)dx′ (2.50)
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4.6 Noise Texture: The Noise Power Spectrum

The measurement that is characterized by the variance, 2 is a simple metric which 
can quantify the noise in an image using Equation 4-14, but this metric does not 
quantify the noise texture. In Figure 4-27, the two CT images of a test object have 
the same variance in the background, but there is a perceptible difference in appear-
ance of the way the noise looks. Although the noise variance is the same, the fre-
quency dependence of the noise is different. The frequency dependence of the 
noise variance is characterized by the noise power spectrum, NPS(f), where for a  
2D image I(x,y)

 
22 ( )

( , ) ( , ) x yi xf yf
x y x y eNPS f f I x y I dx dy  [4-19]

where fx is the frequency corresponding to the x-dimension and fy is the fre-
quency corresponding to the y-dimension, and I  is the mean of image I(x,y). Just as 
the MTF(f) gives a richer, frequency-dependent measure of how an imaging system 
operates on an input signal, the NPS(f) yields an informative, frequency-dependent 
measure of how an imaging system operates on the noise input into the system. The 
NPS is essentially a frequency-dependent breakdown of the variance, and indeed the 
integral of the NPS over all frequencies equals the variance 2.

FIGURE 4-27 Two CT images of a test object are shown, and the standard deviation in the highlighted 
boxes is identical. However, the noise texture—the way the noise looks—is different. These differences in 
noise texture are characterized using the frequency dependent noise power spectrum, NPS(f).

TABLE 4-1 EXAMPLES OF NOISE VERSUS PHOTONS

NOISE ( ) RELATIVE NOISE SNR

PHOTONS/PIXEL (N) (  = N ) ( /N) (%) (N/ )

10 3.2 32 3.2

100 10 10 10

1,000 31.6 3.2 32

10,000 100 1.0 100

100,000 316.2 0.3 316 Chapter 4 Image Quality 87

 2 ( , )
x y

x y x y
f f

NPS f f df df  [4-20]

If the noise in each pixel of a 2D image is not dependent upon the noise values 
in any of its surrounding pixels, then there will be no noise correlation and the NPS(f) 
will essentially be a flat, horizontal line (Fig. 4-28). This type of uncorrelated noise 
is called white noise. Real imaging systems have some blur phenomenon that results 
in the finite width of the PSF(x) or LSF(x). This blurring means that noise from 
detector elements can leak into the adjacent detector elements, leading to noise cor-
relation between adjacent pixels in the image. There are many types and causes of 
noise correlation (including anticorrelation, where positive noise in one pixel will 
tend to induce a negative noise value in adjacent pixels), including reconstruction 
algorithms in tomography, but in general, the result of noise correlation is that the 
NPS is no longer white—and the shape of the NPS(f) for a given imaging system 
then is a technical description of this broader sense of noise texture (see Fig. 4-28).

The noise power spectrum is an analytical tool that is used by imaging scientists 
but is not generally used in the clinical radiology setting. It is an important metric 
when considering the design of new imaging systems, and in the comprehensive eval-
uation of research imaging systems. Nevertheless, some familiarity with the concept of 
the NPS is useful to the clinically focused reader, because reconstructed images such 
as in CT have a wide array of noise textures that are plainly visible on clinical images, 
and these textures depend on the reconstruction methodology and kernels used.

We will return to concepts of the NPS later in this chapter.

4.7 Contrast

Subject Contrast 

Subject contrast is the fundamental contrast that arises in the signal, after it has 
interacted with the patient but before it has been detected. The example of projection 
radiography is illustrated in Figure 4-29. In the case of x-ray projection imaging, an 
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the NPS is useful to the clinically focused reader, because reconstructed images such 
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Singolo	
  modulo	
  di	
  PIXIRAD.	
  
ArchiteFura	
  ibrida	
  
	
  
• 	
  CdTe	
  (30	
  ×	
  25	
  mm2)	
  
• 	
  CMOS	
  ASIC	
  a	
  pixel	
  (512×476	
  pixels,	
  con	
  passo	
  es.	
  60	
  μm)	
  

Cara8eris<che	
  principali:	
  
	
  
• 	
  2	
  contatori	
  per	
  ogni	
  pixel	
  	
  
• 	
  più	
  grande	
  chip	
  ASIC	
  mai	
  costruito	
  
• 	
  Assemblabile	
  su	
  entrambi	
  i	
  laE	
  
• 	
  Soglie	
  energeEche	
  basse	
  
• 	
  Compensazione	
  automaEca	
  offset	
  per	
  ogni	
  pixel	
  

Pixirad-­‐1	
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Il	
  sensore	
  CdTe	
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ü  Il	
  sensore	
  a	
  pixel	
  di	
  CdTe	
  (ACRORAD	
  Co.,	
  Ltd)	
  è	
  un	
  
diodo	
  di	
  Epo	
  SchoFky	
  a	
  raccolta	
  di	
  eleFroni	
  sui	
  pixel	
  

ü  Grande	
  area	
  30.96	
  ×	
  24.98	
  ×	
  0.65	
  mm3	
  	
  

ü  Matrice	
  esagonale	
  con	
  passo	
  di	
  60	
  μm	
  
ü  Corrente	
  di	
  leakage	
  estremamente	
  bassa:	
  5nA/cm2	
  	
  

@	
  400-­‐500	
  V	
  



ASIC	
  CMOS	
  a	
  grande	
  area	
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Modalità	
  di	
  acquisizione	
  da0:	
  	
  
ü  LeFura	
  a	
  2	
  colori	
  (2	
  soglie,	
  2	
  contatori)	
  	
  
ü  dead-­‐Eme	
  free	
  (DTF),	
  mentre	
  un	
  contatore	
  acquisisce,	
  

l’altro	
  legge	
  



Pixirad-­‐1	
  

Luca	
  de	
  Ruvo	
   SYRMA-­‐CT	
  10/03/2014	
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PIXIRAD-­‐8	
  
Complete	
  module	
  includes;	
  
	
  
• 	
  8	
  unit	
  sensor	
  	
  
- 	
  25×2.5	
  cm²	
  acEve	
  are	
  
- 	
  2	
  M	
  pixel	
  –	
  4M	
  counters	
  
- 	
  2	
  pixel	
  inter-­‐modules	
  
spacing	
  
- 	
  almost	
  edge	
  less	
  toward	
  
the	
  breast	
  
	
  
• 	
  DAQ	
  electronics	
  
• 	
  Cooling	
  system	
  
• 	
  1	
  Gbit	
  Ethernet	
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Risposta	
  (conteggi	
  in	
  funzione	
  del	
  numero	
  di	
  fotoni)	
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K-­‐edge	
  
del	
  Cd	
  a	
  
26.7	
  keV	
  



Noise	
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A	
  soglie	
  basse	
  
corrisponde	
  risoluzione	
  
spaziale	
  peggiore	
  
	
  
	
  
La	
  soglia	
  bassa	
  
determina	
  maggiore	
  
smoothing	
  
	
  
	
  
A	
  soglie	
  basse	
  è	
  
associato	
  un	
  rumore	
  
inferiore	
  
	
  
NEQ	
  permeFe	
  di	
  
pesare	
  risoluzione	
  
spaziale	
  e	
  rumore	
  in	
  
un’unica	
  figura	
  di	
  
merito	
  


