Photon-Stimulated Desorption from Cold Molecular Films with Synchrotron Radiation

Jean-Hugues Fillion

Laboratoire d'Etudes du Rayonnement et de la Matière en Astrophysique et Atmosphères (LERMA)

INFN, Frascati 2017

The life Cycle of Interstellar Matter

Molecular Astrophysics

multidiciplanary approach

Instrumentation for ground-based and space
 observatories (Herschel, JUICE)

Observations across the electromagnetic spectrum using world-class space and ground-based facilities (Planck, Herschel, Rosetta, ALMA, NOEMA, SOFIA, VLA, VLT, HST, FUSE...)

Theoretical and numerical models of interstellar molecular clouds (PDR, XDR, shocks, turbulence...)

Understanding of molecular processes through laboratory experiments and computations (collisional rates, chemical reaction rates, interactions between gas phase and grain surfaces...)

LERMA UMR 8112

ORION MOLECULAR CLOUD

Credit: Rogelio Bernal Andreo (Deep Sky Colors).

INFN, Frascati 2017

MOLECULAR RESERVOIR IN COLD REGIONS

Boogert 2015

INFN, Frascati 2017

MOLECULAR RESERVOIR IN COLD REGIONS

Wideband High-resolution IRAM-30 Survey

H₂CO and CH₃OH observed in the Horsehead PDR

CH₃OH H₂CO CH30H A 145.103 [K.km/s] H₂CO 145.603 [K.km/s] 1.5 1.5 0.6 Hily-Blant *et al.* 2005 Pety et al. 2005, 2007 1 1 0.4 Guzman et al. 2011, 2013 0.5 0.5 0.2 0 50 δx (") 50 δx (") 100 100 0 0

- At PDR position, non-thermal is needed to explain H2CO and CH3OH abundances
- At the dense core position , on the other hand, non-thermal of ices is needed to explain the observed abundance of CH₃OH, while a pure gas-phase model can reproduce the observed H₂CO abundance.

INFN, Frascati 2017

INFN, Frascati 2017

UV-X Photodesorption in the universe

Inner and outer regions of molecular clouds (Hollenbach 2009)

Prestellar cores (Caselli 2012) cosmic-ray-induced FUV field

а

Outer parts of protostellar

enveloppes (Mottram 2012)

Protoplanetary disks (Dominik 2005, Bergin 2014

UV and X-ray photons

 $\begin{array}{l} \mbox{Atmospheres of Icy satellites} \\ \mbox{in the outer solar system} \\ \mbox{UV Photons}: \mbox{H Ly-} \alpha \end{array}$

Credit :Nasa/Johns Hopkins University

UV-Photodesorption in the Laboratory

Microwave-Discharge Hydrogen-Flow Lamp (Lyα)

Westley 1995, Öberg 2007, 2009a, 2009b,, Bahr & Baragiola 2012, Yan & Yates 2013 Muñoz Caro 2010, 2014, 2015, 2016a, 2016b

(Ly α) 10.2 eV + broad band Absolute Yields

Pulsed-laser induced desorption

Yabushita 2007, 2008a, 2008b, 2008c, 2009 Hama 2010, 2011, 2016

(193 nm) 6.42 eV (157 nm)7.89 eV

mechanisms

Synchrotron radiation

Fayolle , Bertin, Fillion et al. 2011,2012,2013,2014, 2016

Monchromatic excitation 7-20 eV

Differential absolute Yields + mechanisms

« SPICES » set-up : Surface Processes and ICES

🖵 UHV - 8-200 K

Gas PhaseMass spectrometry

Surface
Reflexion Absorption Infrared
Spectroscopy

« SPICES » @ SOLEIL (DESIRS beamline)

« SPICES » @ SOLEIL (DESIRS beamline)

PHOTON STIMULATED DESORPTION of PURE CO ICES

Fayolle et al., Astrophys. J. Lett. 2011

Importance of Energy dependent Study

CO photodesorption: molecular mechanism Bertin et al., Phys Chem Chem Phys 2012

CO photodesorption: molecular mechanism Bertin et al., Phys Chem Chem Phys 2012

Only the upper 1-2 layers are affected with photodesorption

Pure N₂ photodesorption

First event leading to the desorption: excitation to an electronic bound state

Photodesorption of pure N_2 : induced by N + N recombination ?

Mixed ices CO-N₂

¹³CO and ${}^{15}N_2$ TITREY 6,0x10⁻² • 6,0x10⁻² ¹³CO signal ¹⁵N₂ $^{15}N_{2}$ signal ¹³CO photodesorption rate (molecule/photon) $^{15}\mathsf{N}_2$ photodesorption rate (molecule/photon) 30 ML_{eq} ¹³CO HOPG14 K 3,0x10⁻² - 3,0x10⁻² Pure CO ice shiphing 0,0 0,0 CO ice + $1ML N_2$ ice + 1ML N CO ice + 2ML N_2 CO ice + 2ML N րոր MM. -3,0x10⁻² -3,0x10⁻² CO ice + 4ML N_2 CO ice + 4ML N₂ CO ice + 8ML N₂ CO ice + 8ML N CO ice + $16MLN_2$ CO ice + 16ML N₂ -6,0x10⁻² -6,0x10⁻² 12 13 12 13 8 9 10 8 9 10 11 11 Photon energy (eV) Photon energy (eV)

Mixed ices CO-N₂

13CO

and ${}^{15}N_2$

1.1.4.02

 30 ML_{eq}

¹⁵N₂

13**СО** НОРG14 К

UV Photodesorption: case of simple molecules

Bertin et al., ApJ 2013

Photodesorption and photochemistry The CO₂ case

$$CO_{2s} \xrightarrow{hv} CO_{2s}^* \longrightarrow CO_{s}^{(*)} + O$$

Photodesorption from condensed CH4

^(b) Johns-Krull & Herczeg (2007); and ^(c) Mathis et al. (1983).

Photodesorption from condensed CH4 on top of CO

10.2 eV @ 10 K (Ly-α)

Photodesorption quantum yield ~ 0.05 molecules /absorbed photon assuming absorption in top 3 ML of CO

Photodestruction (bulk)

Öberg et al. 2010 σ = 5x10⁻¹⁹ cm⁻² ~ 0.033 destroyed molecules per absorbed photons.

Dupuy et al., A&A 2017

Most of the energy is relaxed away

Photodesorption from condensed pure formaldehyde

HOPG, 10 K

Photodesorption from condensed Mixture of CO and Formaldehyde

Bertin et al., ApJ Lett 2016

Bertin et al., ApJ Lett 2016

UV and X-ray Photodesorption of water

Competition dissociation / desorption

- Exciton delocalization and desorption of intact water
- « Kick-out » by fast H-atom produced by photodissociation
- Exothermic recombination

 \blacksquare H, OH and H₂O

- Photodissociation of water + reactivity of photofragments OH, H and O
- Secondary photolysis and reactivity after prolonged irradiation

Secondary processes

Photon Stimulated Desorption of water with UV photons

« SPICES 2 » set-up : Surface Processes and ICES 2

Higher Sensitivity

- Increase vacuum perfomance
- New analysis Chamber
- New mass spectrometer

New achievements

- Ion/neutral detection
- Kinetic energy measurement
- Compatible for : continuous (synchrotron)
 Or pulsed (laser)
 sources

INFN, Frascati 2017

^{-&}gt; internal energy

SULLEIL

« SPICES » @ SOLEIL (SEXTANTS beamline) sedants

Desorption mechanisms induced by soft X-ray photons

Auger decay

Near-edge X-ray spectroscopy

Total Electron yield (TEY) ~ Absorption spectrum

-	$15 \mathrm{K}$	90 K
OH	$1 imes 10^{-2}$	1×10^{-3}
0	$3 imes 10^{-4}$	
HO_2	$3 imes 10^{-3}$	1×10^{-3}
O_2	$4 imes 10^{-3}$	$9 imes 10^{-4}$
H_2O_2	$1 imes 10^{-2}$	$6 imes 10^{-3}$

Desorption of neutrals from Amorphous Solild Water

What desorbs

Photodesorption yields @ 540 eV for ASW at 90K (molecule or ion per incident photon)							
Ν	Neutrals	Cati	ions	А	nions		
H_2O	1.2×10^{-2}	H^+	1.6×10^{-4}	H^{-}	1×10^{-5}		
H_2	3×10^{-2}	H_2^+	3×10^{-7}	H_2^-	3×10^{-10}		
O_2	7×10^{-3}	H_3^{+}	5×10^{-9}	O^{-}	7×10^{-8}		
OH	$< 1 \times 10^{-3}$	O^+	3×10^{-8}	OH^-	1×10^{-8}		
		OH^+	8×10^{-9}	H_2O^-	3×10^{-10}		
		H_2O^+	5×10^{-9}	O_2^-	7×10^{-10}		
		H_3O^+	2×10^{-8}	_			
		O_2^+	4×10^{-9}				
		$(H_2O)_2H^+$	6×10^{-8} .	$+ (H_2O)_nH^+ c$	lusters		
				from $n - 3$ to	11		

from n = 3 to 11

Many different species are observed

Desorption of neutral species dominates

Intact H₂O desorption

Taking :

- the absorption cross-section at 540 eV as 1.10^{-18} cm²

- the first 10 ML are involved in desorption (~ mean free path of a 500 eV e- in ice)

	Y ^{inc}	Yabs	
X-Ray (540 eV)	1,2.10 ⁻² ph ⁻¹	1,2 / absorbed photon	This work
UV (10 eV)	2. 10 ⁻⁴ ph ⁻¹	1.10 ⁻³ / absorbed photon	This work
Electron (87eV)		0,5 / electron	Kimmel 2005

Astrophysical implication

Astrophysical models integrate from 0,1 to 10 keV. E.g. spectrum from Walsh et al. 2012 based on TW Hydrae measurements : 10⁻¹ 5 tellar X-ray Spectrum 5 tellar X-ra

Far off-resonance (>600 eV) we can extrapolate our data using the known atomic O 1s absorption cross-section (Berkowitz 2002) :

Multiplied by the above spectrum and averaged : Y_{X-ray} ~ 2.10-3 molecule/incident photon Y_{X-ray} > Y_{UV} (~3.10⁻⁴)

Therefore X-ray photodesorption should dominate in large regions of the disk

Conclusion

- □ CO induced desorption not the key to explain the desorption of organics
- BUT photodesorption impact *both solid and gas phases chemical networks*
- Importance to provide accurate Yields
- Amorphous Solid Water

New UV and X-rays Yields for neutral H₂O

Importance of X-rays impact in protoplanetary disks

Importance to study H₂O-rich ice mixtures

Photon and Electron Stimulated Desorption in particles accelerators

Cold surfaces (2 – 20 K)

Residual gases : H₂, H₂O, CO, CO₂, CH₄...

Set-up at CERN designed by V. Baglin and B. Henrist, installed by M. Haubner and B. Henrist

Cut of L H C beam pipe

Secondary Electron Yields variation with:

- ➢Electron energy
- ➤Material, coating
- Surface treatment
- Absorbed electron dose (scrubbing)
- ➤Condensate layers

Acknowledgments

Co-workers

M. Bertin, R. Dupuy, T. Putaud, M. Doronin, G. Feraud, X. Michaut, P. Jeseck, L. Philippe, J.-H. Fillion.

C. Romanzin

collaboration

R. Cimino, V. Baglin

Supports

DIM – Astrophysique et Conditions d'Apparition de la Vie

L Nahon N De Oliveira G Garcia