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Introduction

• We	studied	several	detector	configurations	with	our	cosmic	ray	
telescope,	and	a	high-intensity	(~3MBq)	60Co	source		

• Two	crystals,	up	to	8	channels	recorded,	scintillators	and	lead	to	
trigger	straight	tracks	

• The	60Co	source	corresponds	to	~2-2.5	times	the	average	background	
in	the	FWD	endcap	predicted	by	MC	12

2

V. PILE-UP FROM A 60Co RADIOACTIVE SOURCE

As a third way to investigate the effect of pile-up from low-energy photons on the perfor-
mance of the calorimeter, we used a 60Co radioactive source. In this section the main results
of this study are discussed.

A. Setup

The setup is schematically shown in Figure 15, and here briefly described. A CsI(Tl) and
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FIG. 15. Schematic layout of the setup used for the studies with the 60Co source. The lead block
shown in gray in the figure, together with the crystals, each about 5 cm thick, select cosmic muon
tracks with p & 250MeV/c.

a pure CsI crystal were stacked at a distance of a few millimeters, a space in which the 60Co
source could be inserted; the source was positioned symmetrically between the two crystals,
which were therefore illuminated approximately the same way. The trigger for cosmic ray
tracks was provided by a pair of scintillators arranged to provide tracks close to vertical,
and traversing the crystal in the proximity to its center in the longitudinal direction. We set
the threshold for the scintillator signals high enough to obtain similar trigger rates with and
without the radioactive source. The decay of 60Co produces two photons of energy 1.17MeV
and 1.23MeV respectively. We have measured the activity of the source reading one of
the crystals with a photomultiplier tube and counting the number of peaks in a given time
window; an example of the measured spectrum for a particular event is shown in Figure 16.
Averaging 100 of such events we measure 1.77 ± 0.04 hits/µs. Since each crystal subtends
approximately half of 4⇡ solid angle, this figure is consistent with the nominal source activity
of about 3.6 MBq.

B. Results

We present a comparison of the response to cosmic ray tracks in data runs taken with or
without the 60Co source inserted between the crystals. In Figure 17 the ENE for the CsI(Tl)
crystal is shown as a function of the CR-(RC)4 filter shaping time. The corresponding plot
is shown in Figure 18 for the pure CsI crystal. The qualitative features of these two plots
are remarkably similar to those of Figures 7, 8, in which the background was simulated.
We observe however that quantitavely the effect of pile-up induced by the 60Co radioactive
source is less pronounced than the pile-up simulated with the R4S1 conditions.
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Database	of	CRT	(+	60Co	source)	data	on	single	crystals:

• Pure	CsI	with	LAAPD	readout	
I. 			bare	crystal	
II.			+	UV11S	filter	
III.		+	UV11S	filter	+	NOL9	WLS	
IV.		+	UV5S	filter	+	NOL9	WLS	

• Pure	CsI	with	photopentode	readout	

• CsI(Tl)	
I. 		pin-diode	readout	
II.		pin-diode	+	APD	readout	(transimpedance	amplifier)	
III.	pin-diode	+	APD	readout	(charge	integrating	amplifier)

3
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CsI	+	UV11S	+WLS
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CsI	+	UV5S	+WLS
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Photo-pentode

7

G. Finocchiaro @ 28th B2GM10-10-2017

Photo-pentode	energy	resolution

7

• Resolution	derived	from	the	difference	of	signal	of	the	two	PP	at	the	
crystal	ends.	Gain	of	PPs	was	equalised	in	this	run,	but	relatively	small	
(~50)	
• Did	not	correct	for	the	light	lost	because	absorbed	by	the	second	PP:	
the	quoted	resolution	is	an	upper	limit

actually an upper limit, since part of the light is not collected because absorbed by the second1

photopentode at the far end of the crystal.2
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FIG. 5. Energy resolution vs. CR-(RC)4 shaping time for the pure CsI crystal with photopentode
readout.

Finally, in Figure 6 we show the difference of the signal times in the two photosensors for3

⌧ = 45 ns. The fitted width of the difference corresponds to a time resolution of �t ' 7.5 ns4

with 2 LAAPD readout, and �t ' 1.6 ns with PP readout.5

III. PURE CSI WITH APD READOUT, OPTICAL FILTER AND WAVELENGTH SHIFTER6

IV. CSI(TL) WITH PIN DIODE AND APD READOUT7

Given the high cost8

V. RESOLUTION PERFORMANCE COMPARISON9

In this section we present the expected performance in terms of energy resolution of a10

crystal calorimeter with different characteristics, as described in the previous sections, in terms11

of active material (pure or Thalliun-doped CsI) and photosensors (pin diodes, photopentodes,12

LAAPDs, possibly including for the latter optical filters and wavelength shifters).13

We calculate the relative energy resolution of the calorimeter using the formula14
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a
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aDiffaMaxCRRC4tauFFT_ch2_ch3 aDiffaMaxCRRC4tauFFT_ch2_ch3
Entries  2008
Integral    2008

 / ndf 2χ  78.27 / 84
Prob   0.6558
Constant  1.79± 62.06 
Mean      0.02887±0.01556 − 
Sigma     0.023± 1.244 

aDiffaMaxCRRC4tauFFT_ch2_ch3
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Photo-pentode	ENE
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• High	S/N	ratio	==>	small	ENE	
• τ=25ns	optimal	both	for	ENE	and	resolution
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FIG. 3. Amplitude spectrum of the CR-(RC)4-shaped signal with ⌧ = 45ns.
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FIG. 4. ENE vs. CR-(RC)4 shaping time of the pure CsI crystal with photopentode readout, in
three representative experimental situations (see legend).

is represented by the blue squares. In the same plot the ENE in the low-gain PP run is also1

shown (no source).2

The energy resolution for tracks releasing on average 28MeV in the crystal is measured3

from the difference of the two PP signal in the dedicated run in which the crystal was read4

out at both ends. The resolution is shown in Figure 5 as a function of the CR-(RC)4 filter time5

constant. It is worth noticing that the single photopentode resolution shown in the figure is6

4
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Photo-pentode	time	resolution	(pure	CsI)
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• σt	(APD	@	τ=45ns)	~	7.5ns	
• σt	(PP				@	τ=25ns)	~	1.6ns
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FIG. 6. Time difference of signals from two APDs (left) and two photopentodes (right) reading a
pure CsI crystal. The time constant of the CR-(RC)4 filter is 45 ns in both plots.

where the first term accounts for electronic noise, the second one is due to stochastic fluctua-1

tions, the third describes shower transverse leakage fluctuations, and finally the constant term2

is due to relative crystal (mis)calibrations. The symbol � indicates the sum in quadrature.3

The comparison is based on the values of ENE and energy resolution directly measured4

on cosmic ray data including data with the high activity 60
Co radioactive source.5

The figures used for the different configurations are shown in Table I for the no-background6

case, and in Table II for data with the 60
Co source.7

Detector ⌧ [ns] ENE [MeV] �E/E [%]

CsI(Tl) + pin diode 500 0.74± 0.01 2.10± 0.04

CsI + LAAPD 45 1.52± 0.03 6.01± 0.16

CsI + WLS + LAAPD 100 1.97± 0.03 6.69± 0.16

CsI + PP 25 0.17± 0.01 3.82± 0.08

CsI(Tl) + LAAPD 200 0.83± 0.02 3.02± 0.09

TABLE I. Compilation of measured values of the Equivalent Noise Energy and of the relative energy
resolution at 100MeV (stochastic fluctuations only) in different detector configurations.

We take from the Belle II TDR [3] the coefficient of the term parameterizing shower contain-8

ment fluctuations, c = 0.81%, as well as the term describing the effect of imperfect calibrations,9

d = 1.34%.10

Figures. 7, 8, 9, 10 and 11 show, both for the non-background case and for data with the11

6

APD PP
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CsI(Tl)	-	reference	crystal
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Relative	energy	resolution

• Parameterised	as	

• We	use	the	values	of	the	Belle	II	TDR	for	the	constant	term	
d=1.43%,	and	for	the	one	related	to	shower	containment	
c=0.81%.	
• For	the	other	terms,	we	use	measurements	on	single	crystals	
from	the	cosmic	muon	setup

10

actually an upper limit, since part of the light is not collected because absorbed by the second1

photopentode at the far end of the crystal.2
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FIG. 5. Energy resolution vs. CR-(RC)4 shaping time for the pure CsI crystal with photopentode
readout.
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V. RESOLUTION PERFORMANCE COMPARISON9

In this section we present the expected performance in terms of energy resolution of a10

crystal calorimeter with different characteristics, as described in the previous sections, in terms11

of active material (pure or Thalliun-doped CsI) and photosensors (pin diodes, photopentodes,12

LAAPDs, possibly including for the latter optical filters and wavelength shifters).13
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ECL	energy	resolution
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Belle	II	background	predictions	in	ECL
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Discussions on Sep. 28th

• Obviously, number of reconstructed clusters, their 
energy and position distributions are the 
quantities to be monitored.

• Andrea run cluster reconstruction routine on 16th

bg. campaign sample. 4

Pile up noise 
estimation in Phase-3 
full luminosity

K. Miyabayashi 
B2GM Oct. 2017

3

Phase 2 
maximum dose:  0.38 Gy/yr

Radiation Dose in Crystals
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i.e., with the exception of the first three rings, the pile-up noise is smaller in 
the FWD endcap than elsewhere (the full MC says).

• Adding	photosensors	to	the	Belle	CsI(Tl)	crystals	should	be	considered	as	a	way	to	
improve	robustness	against	background	(at	a	relatively	low	cost),	both	in	the	endcaps	
and	in	the	barrel.
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Conclusions and outlook
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Abstract16

In this note we discuss results from cosmic ray data collected in a number of different configurations,17

corresponding to possible options proposed for the upgrade of the Belle II forward electromagnetic18

calorimeter. In particular, we consider a pure CsI calorimeter with photopentode or large-area APD19

(LAAPD) readout. The use of optical filters and wavelength shifters with LAAPDs is also studied.20

Finally, we investigate the possibility of retaining the CsI(Tl) crystals with pin diode photosensors of21

the present Belle calorimeter, adding two LAAPDs with either transconduttance or charge integrating22

amplifier readout. Finally, a comparison of the performance of the various options in terms of energy23

and time resolution is presented.24
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