On the origin of gamma-rays in broad-lined Blazars:

to BLR or not to BLR ?

Luigi Costamante ASI, Unita` di Ricerca Scientifica

Expected in FSRQ: no VHE detections, cutoff ~10-20 GeV

Sometimes gamma-rays beyond the BLR:

Aleksic et al. (MAGIC Coll) 2011

Detections 4C 21.35 (Magic) PKS 1510-089 (HESS, Magic) b) >10 GeV in LAT

PMN J1016+0512:

$$L_{disk} \sim 9 \times 10^{45} erg/s, R_{blr} \sim 3 \times 10^{17} cm$$

if R_{diss} ~2.5×10¹⁷ \Rightarrow T_{BLR} > 16 !

e.g. Costamante et al. 2009, 2010

Sometimes gamma-rays beyond the BLR:

a) FSRQ detected at VHE

b) >10 GeV in LAT

Detections 4C 21.35 (Magic) PKS 1510-089 (HESS, Magic) PMN J1016+0512:

$$L_{disk} \sim 9 \times 10^{45} erg/s, R_{blr} \sim 3 \times 10^{17} cm$$

if R_{diss} ~2.5×10¹⁷ \Rightarrow T_{BLR} > 16 !

e.g. Costamante et al. 2009, 2010

For population studies EC(BLR) still most common SED model in FSRQs

is BLR absorption a common phenomenon ?
is it consistent with EC modeling ?
different location in high-flaring vs steady state ?

100 highest-significance Gamma-ray FSRQs in the 3LAC + 6 large-BLR cases

Fermi-LAT Data, PASS8, 7.3-years exposure

106 in total, 83 with L_{BLR} estimates

Costamante, Cutini, Tosti, Antolini, Tramacere 2018, MNRAS, in press (arXiv 1804.06282)

Methodology

BLR spectrum

BBody (same as for EC) is a good approximation for attenuation shoulder

BLR at different ionization parameter

BLR absorption feature

BLR spectrum

BBody (same as for EC) is a good approximation for attenuation shoulder

BLR at different ionization parameter

BLR absorption feature

NO evidence of BLR cut-offs !

Only I out of IO FSRQ compatible with significant BLR absorption

NO evidence of BLR cut-offs !

Only I out of IO FSRQ compatible with significant BLR absorption

Sample 83 objects with L_{BLR} estimate

For the brightest 20: difference High/Low state ?

No evidence of strong interaction with BLR photons

VHE-detected FSRQs: also in Low state

Better fitted with intrinsic electron cutoff !

Conclusion:

NO evidence of jet interaction with BLR photons !

EC(BLR) seems the exception, not the normality, of the gamma-ray emission in Fermi Blazars

Alternatives?

to reduce absorption but staying within the BLR ?

- 1. Much larger BLR (~100x) $\tau \propto 1/R_{\rm BLR}$
- 2. Shift γγ threshold by selecting angles ("Flattened BLR")

1. Energy density UBLR goes down 10-4

U_{BLR} becomes lower than any other radiation field —> EC(BLR) disfavoured

2. Shift threshold 5x (to ~100 GeV) $\rightarrow \vartheta \leq 30 \deg$ 30 $R_{diss} = Tan(\alpha)^* R_{BLR}$ $\geq 1.7 R_{BLR}$ Shift threshold ~2x 45° 2002 60° 45°

Alternatives?

to reduce absorption but staying within the BLR ?

- 1. Much larger BLR (~100x) $\tau \propto 1/R_{\rm BLR}$
- Shift γγ threshold by selecting angles ("Flattened BLR")

Both do NOT keep EC(BLR) viable

Two Caveats:

1) Long integration time (years)

2) Kinematics of the emission (localized dissipation vs moving blob)

Doppler effect: $\Delta R \simeq \Delta t_{obs} * \beta * \Gamma^2$

$$\begin{array}{ll} \Gamma = 10 \\ \Delta t_{obs} \ge 10^5 s \end{array} \implies \Delta R \ge 10^{17} cm \end{array}$$

We can gain a factor ~3 in path length

Conclusion & Consequences

 EC(BLR) is disfavoured as gamma-ray emission mechanism in Broad-line Blazars (~9/10, EC-IR or SSC or EC-ambient) ⇒ re-model SED for jet parameters

Conclusion & Consequences

 EC(BLR) is disfavoured as gamma-ray emission mechanism in Broad-line Blazars (~9/10, EC-IR or SSC or EC-ambient) ⇒ re-model SED for jet parameters

2) Gamma-ray spectrum is mostly intrinsic (particle distribution) \Rightarrow new diagnostic possibilities

ON THE SPECTRAL SHAPE OF RADIATION DUE TO INVERSE COMPTON SCATTERING CLOSE TO THE MAXIMUM CUTOFF

E. LEFA^{1,3}, S. R. KELNER¹, AND F. A. AHARONIAN^{1,2} ¹ Max-Planck-Institut für Kernphysik, P.O. Box 103980, 69029 Heidelberg, Germany; eva.lefa@mpi-hd.mpg.de ² Dublin Institute for Advanced Studies, 31 Fitzwilliam Place, Dublin 2, Ireland Received 2012 March 10; accepted 2012 May 11; published 2012 June 26

The Index of the Exponential Cutoff in the Energy Spectrum of IC Radiation β_C Calculated for Three Different Target Photon Fields, in the Thomson and Klein-Nishina Regimes

Scattering regime	Thomson	Klein-Nishina	Thomson	Klein-Nishina
Radiation field electrons	β	β	abrupt cutoff	abrupt cutoff
Monochromatic photons	$\beta/2$	β	∞	∞
Planckian photons	$\beta/(\beta+2)$	β	1	∞
Synchrotron photons	$\beta/(\beta+4)$	β	1	∞

Note. The index β characterizes the exponential cutoff in the electron energy distribution given by Equation 1.

Conclusion & Consequences

 EC(BLR) is disfavoured as gamma-ray emission mechanism in Broad-line Blazars (~9/10, EC-IR or SSC or EC-ambient) ⇒ re-model SED for jet parameters

2) Gamma-ray spectrum is mostly intrinsic (particle distribution) \Rightarrow new diagnostic possibilities (e.g. Lefa et al 2014)

3) Without BLR suppression, FSRQs luminous at VHE \Rightarrow CTA sky much richer of FSRQs

3C 454.3 can be easily detectable at VHE !

Pacciani et al. 2014 - flare

HBL-like flare !

Conclusion & Consequences

 EC(BLR) is disfavoured as gamma-ray emission mechanism in Broad-line Blazars (~9/10, EC-IR or SSC or EC-ambient) ⇒ re-model SED for jet parameters

2) Gamma-ray spectrum is mostly intrinsic (particle distribution) \Rightarrow new diagnostic possibilities (e.g. Lefa et al 2014)

3) Without BLR suppression, FSRQs luminous at VHE \Rightarrow CTA sky much richer of FSRQs

4) Differences FSRQ/BLLac ?

LC et al. 2018, MNRAS, in press (arXiv 1804.06282)

What about the Gamma-BLR connection then ?

What about the Jet-Accretion connection then ?

BLR acts as proxy of the disk, does not affect Jet radiation

Conclusion & Consequences

 EC(BLR) is disfavoured as gamma-ray emission mechanism in Broad-line Blazars (~9/10, EC-IR or SSC or EC-ambient) ⇒ re-model SED for jet parameters

2) Gamma-ray spectrum is mostly intrinsic (particle distribution) \Rightarrow new diagnostic possibilities (e.g. Lefa et al 2014)

3) Without BLR suppression, FSRQs should be luminous at VHE \Rightarrow CTA sky much richer of FSRQs

4) Differences FSRQ/BLLac are intrinsic to how the jet is born: accretion and jet power

LC et al. 2018, MNRAS, in press (arXiv 1804.06282)