

Obituary

Leo Takalo

University of Turku, Tuorla Observatory, Finland

MAGIC

Head of the **OJ-94 Project** targeting OJ 287 periodicity

VI OJ-94 Annual Meeting *"Blazar monitoring towards the third millennium"* Torino, 19-21 May 1999

Twenty years of the Whole Earth Blazar Telescope

Claudia M. Raiteri & Massimo Villata (INAF-Osservatorio Astrofisico di Torino)

for the WEBT Collaboration http://www.oato.inaf.it/blazars/webt/

Some dates

1991-2000 Compton Gamma Ray Observatory

➡ Third EGRET Catalogue (20 MeV-30 GeV)

1997 WEBT birth - John Mattox (BU, USA) President 🖙 continuous optical monitoring

2000 Massimo Villata (OATo, Italy) President 🕫 +radio+near-IR

WEBT MW campaigns on specific objects

2007 GLAST-AGILE Support Program (GASP)

➡ 14 BL Lacs + 14 FSRQs continuously monitored

Some information

- ~ 200 observers
- ~ 120 telescopes contributing to the WEBT campaigns (~100 optical + 9 near-IR + 10 radio)
 - photometry + polarimetry + spectroscopy
 - collaborations with other teams, in particular AGILE, Fermi, MAGIC
 - archive data available one year after publication
- ~ 200 papers by the WEBT

GEOMETRICAL interpretation proposed in many WEBT works:

long-term VARIABILITY = variation of the VIEWING ANGLE θ \Rightarrow variation of the DOPPLER BEAMING FACTOR δ $\delta = [\Gamma(1-\beta\cos\theta)]^{-1}$ with $\Gamma = (1-\beta^2)^{-\frac{1}{2}}$ bulk Lorentz factor

When δ increases:

- flux density increases as $F_{\nu}(\nu) = \delta^{2+\alpha} F'_{\nu}(\nu)$ (for a continuous jet)
- variability time scale decreases as $\Delta t = \Delta t'/\delta$
- variability amplitude of intrinsic flux changes increases as $\Delta F \propto \delta^{2+\alpha}$

Perucho et al. (2012, ApJ, 749, 55) "Anatomy of helical extragalactic jets: the case of S5 0836+710"

Fromm et al. (2013, A&A, 557, A105) "Catching the radio flare in CTA 102"

Britzen et al. (2017, A&A, 602, A29) *"A swirling jet in the quasar 1308+326"*

Numerical hints

t = 12.0

Nakamura et al. (2001, New Astronomy, 6, 61) "Production of wiggled structure of AGN radio jets in the sweeping magnetic twist mechanism"

t = 12.0

Moll et al. (2008, A&A, 492, 621) " *Kink instabilities in jets from rotating magnetic fields*"

Mignone et al. (2010, MNRAS, 402, 7) "High-resolution 3D relativistic MHD simulations of jets"

t = 10¹ t₂ But can we see the effects of Doppler factor changes in the blazar light curves?

LETTER

doi:10.1038/nature24623

Blazar spectral variability as explained by a twisted inhomogeneous jet

C. M. Raiteri¹, M. Villata¹, J. A. Acosta-Pulido^{2,3}, I. Agudo⁴, A. A. Arkharov⁵, R. Bachev⁶, G. V. Baida⁷, E. Benítez⁸, G. A. Borman⁷, W. Boschin^{2,3,9}, V. Bozhilov¹⁰, M. S. Butuzova⁷, P. Calcidese¹¹, M. I. Carnerero¹, D. Carosati^{9,12}, C. Casadio^{4,13}, N. Castro-Segura^{3,14}, W.-P. Chen¹⁵, G. Damljanovic¹⁶, F. D'Ammando^{17,18}, A. Di Paola¹⁹, J. Echevarría⁸, N. V. Efimova⁵, Sh. A. Ehgamberdiev²⁰, C. Espinosa⁸, A. Fuentes⁴, A. Giunta¹⁹, J. L. Gómez⁴, T. S. Grishina²¹, M. A. Gurwell²², D. Hiriart⁸, H. Jermak²³, B. Jordan²⁴, S. G. Jorstad^{21,25}, M. Joshi²⁵, E. N. Kopatskaya²¹, K. Kuratov^{26,27}, O. M. Kurtanidze^{28,29,30,31}, S. O. Kurtanidze²⁸, A. Lähteenmäki^{32,33,34}, V. M. Larionov^{5,21}, E. G. Larionova²¹, L. V. Larionova²¹, C. Lázaro^{2,3}, C. S. Lin¹⁵, M. P. Malmrose²⁵, A. P. Marscher²⁵, K. Matsumoto³⁵, B. McBreen³⁶, R. Michel⁸, B. Mihov⁶, M. Minev¹⁰, D. O. Mirzaqulov²⁰, A. A. Mokrushina^{5,21}, S. N. Molina⁴, J. W. Moody³⁷, D. A. Morozova²¹, S. V. Nazarov⁷, M. G. Nikolashvili²⁸, J. M. Ohlert^{38,39}, D. N. Okhmat⁷, E. Ovcharov¹⁰, F. Pinna^{2,3}, T. A. Polakis⁴⁰, C. Protasio^{2,3}, T. Pursimo⁴¹, F. J. Redondo-Lorenzo^{2,3}, N. Rizzi⁴², G. Rodriguez-Coira^{2,3}, K. Sadakane³⁵, A. C. Sadun⁴³, M. R. Samal¹⁵, S. S. Savchenko²¹, E. Semkov⁶, B. A. Skiff⁴⁴, L. Slavcheva-Mihova⁶, P. S. Smith⁴⁵, I. A. Steele²³, A. Strigachev⁶, J. Tammi³², C. Thum⁴⁶, M. Tornikoski³², Yu. V. Troitskaya²¹, I. S. Troitsky²¹, A. A. Vasilyev²¹ & O. Vince¹⁶

CTA 102 (2230+114)

FSRQ @ *z* = 1.037

WEBT optical+near-IR+radio monitoring In 2013-2017:

39 telescopes in 28 observatories

Late 2016: jump of 6-7 mag

Peak: 28 December 2016

⊏> *R* = 10.82 ± 0.04

 $r > \log v L_v = 48.12 \text{ (erg/s)}$

Supprecedented

Optical, mm, and radio behaviour different

- coming from different jet regions
- ⇒ the jet is inhomogeneous

In optical, fast flares are more rapid and pronounced when the source is brighter

S Doppler beaming effect

Assume that long-term variability is due to changes of δ because of changes of θ

 \Rightarrow From the long-term trends derive $\delta(t)$ and $\theta(t)$ at different v

➡ the jet is curved and twisting

Verify increased variability amplitude for higher δ

Oscillations around the long-term trend represented by the spline

Small-amplitude fast variations due to intrinsic processes after correcting for $\delta(t)$ (= fixed δ_{base})

Verify time contraction

Blue: > $\delta_{max}/2$ Red: < $\delta_{max}/2$

$$\tau = \tau_{\rm blue} = \tau_{\rm red}/2$$

SED modelling

- build thermal emission model
- build a base-level synchrotron spectrum (blss)
- \forall epoch build $\delta(v)$ and $\theta(v)$
- derive the predicted synchrotron SED as
 Doppler enhancement of the blss
- + thermal emission model
- = total SED to be compared with observed SED
- ⇒ excellent reproduction of both flux level and spectral slope

As a result the jet is:

- inhomogeneous different frequencies emitted from different regions
- curved different regions have different viewing angles
- twisting/swinging/swirling/ snaking/meandering/wiggling the viewing angle varies in time because of internal (instabilities) or external (orbital motion, precession) reasons

ACTIVE GALAXIES

A cosmic jet swinging our way

Long-term multi-wavelength monitoring of a jet from a supermassive black hole reveals that more intense periods of variability in brightness occur when the jet is pointed more directly at Earth, thereby strengthening the geometric interpretation of long-term changes in brightness.

Eileen T. Meyer

Thank you

Polarization

- strong variability of P
- no correlation of P_{jet} with F_{jet}
- wide rotations of EVPA, both clockwise and anticlockwise
- coincidence of θ minima with fast changes or inversions of EVPA

