

On the Detection Potential of Short Blazar Flares for Current Neutrino Telescopes

Michael Kreter, Matthias Kadler, Felicia Krauss, Roopesh Ojha, Sara Buson on behalf of the Fermi-LAT Collaboration, Karl Mannheim, Joern Wilms

> Half a Century of Blazars and Beyond June 14th, 2018

On the Detection Potential of Short Blazar Flares

EVIDENCE FOR AN EXTRATERRESTRIAL HIGH-ENERGY NEUTRINO SIGNAL

Credit: IceCube Collaboration 2014, Physical Review Letters 113, 101101

• Also for Muon Neutrinos from the Northern Sky

(IceCube Collaboration 2015, Physical Review Letters 115, 8)

• But: No clear source identification possible

On the Detection Potential of Short Blazar Flares

BLAZARS AS PROMISING NEUTRINO SOURCES

Neutrino output of blazars estimated based on

- Mannheim 1993, A&A 269, 67–76
- Mannheim 1995, Astroparticle Physics, 3, 295

$$\begin{split} p + \textit{nucleus} &\to \pi + X \quad (\pi = \pi^{\pm}, \pi^{0}) \\ p + \gamma &\to \Delta^{+} \to \begin{cases} \pi^{0} + p \\ \pi^{+} + n. \end{cases} \end{split}$$

Resulting pions decay:

$$\begin{split} \pi^0 &\rightarrow \gamma + \gamma \\ \pi^\pm &\rightarrow \mu^\pm + \nu_\mu \ (\ \text{or} \ \bar{\nu_\mu}) \\ \mu^+ &\rightarrow e^+ + \bar{\nu_\mu} + \nu_e \\ \mu^- &\rightarrow e^- + \nu_\mu + \bar{\nu_e} \end{split}$$

Credit: Katz & Spiering 2012, Progress in Particle and Nuclear Physics, 67, 651

On the Detection Potential of Short Blazar Flares

COINCIDENCE OF A HIGH-FLUENCE BLAZAR OUTBURST WITH A PEV NEUTRINO EVENT

 $\Rightarrow \mbox{Calorimetric Output in BigBird field dominated by} \\ PKS \ B1424-418 \\ \Rightarrow \ But: \ Chance \ Coincidence \approx 5\% \\ \end{cases}$

On the Detection Potential of Short Blazar Flares

BLAZARS ARE RAPIDLY VARIABLE SOURCES

On the Detection Potential of Short Blazar Flares

Motivation Method Summary

• Blazars show bright flares on timescales of minutes to months

$$\Rightarrow$$
 But: How to define a flare?

On the Detection Potential of Short Blazar Flares

Motivation Method

SUMMARY

Select continuous time ranges i that fulfill: $\sigma_{\rm i} \geq 3 \times \sigma$

- G: Flux Ground Level
- σ : Intrinsic source variation
- A_{eff}: IceCube effective area

Define:

$$\sigma_{i} = (\mathsf{Flux} - 3 imes \mathsf{Flux} \mathsf{ err}) imes \mathsf{A}_{\mathsf{eff}} - \mathsf{G}$$

Select continuous time ranges i that fulfill: $\sigma_{\rm i} \geq 3 \times \sigma$

- G: Flux Ground Level
- σ: Intrinsic source variation
- A_{eff}: IceCube effective area

N

On the

Detection

POTENTIAL OF SHORT BLAZAR

FLARES

Method

ESTIMATE MAXIMUM NEUTRINO OUTPUT

Pion Photoproduction: Maximum Neutrino Output:

On the Detection Potential of Short Blazar Flares

MOTIVATION METHOD

FLARE SAMPLE

Source	Flare Number	Duration in Days	${\sf N}_{ u}^{\max}$	${f N}_{ u}^{{ m pred}}$ $ imes$ 10 $^{-2}$
3C 279	1	6	0.797	1.99
PKS 1510-089	2	5	0.306	0.764
PKS 1510-089	3	11	0.586	1.46
PKS 1510-089	4	1	0.0405	0.101
3C 279	5	1	0.0272	0.0681
3C 279	6	5	0.214	0.535
PKS 1510-089	7	10	0.393	0.982
3C 279	8	2	0.0993	0.248
PKS 1510-089	9	4	0.159	0.398
PKS 1510-089	10	2	0.0605	0.151
3C 454.3	38	240	11.71	29.28

On the Detection Potential of Short Blazar Flares

MOTIVATION 1 4 1

Method

Summary

- Detection probability of short flares \sim days is small
- Reasonable association only for very bright short flares or long outbursts

TXS 0506+056

Fermi-LAT detection of increased gamma-ray activity of TXS 0506+056, located inside the IceCube-170922A error region.

ATel #10791; Yasuyuki T. Tanaka (Hiroshima University), Sara Buson (NASA/GSFC), Daniel Kocevski (NASA/MSFC) on behalf of the Fermi-LAT collaboration on 28 Sep 2017; 10:10 UT

Credential Certification: David J. Thompson (David.J.Thompson@nasa.gov)

Subjects: Gamma Ray, Neutrinos, AGN

- First track-like IceCube EHE event consistent with a flaring LAT source
- What is the expected neutrino output?

On the Detection Potential of Short Blazar Flares

LOTIVATION |

Method

Summary

ON THE γ -ray light curve of TXS 0506+056 Detection POTENTIAL OF SHORT BLAZAR FLARES 2009 2010 2011 2012 2013 20142015 2016 2017 4.5Method 4 $5_{100-30000\,{\rm MeV}}$ [×10⁻⁷cm⁻²s⁻¹] 3.53 2.5

Outburst already going on since early 2016 •

56000

55500

2 1.5

0.5

55000

No short-flare period identified, according to our criteria \Rightarrow

56500

MJD

57000

57500

58000

γ -ray light curve of TXS 0506+056

- Outburst already going on since early 2016
- \Rightarrow No short-flare period identified, according to our criteria \Rightarrow Calculate neutrino expectation for long-term outburst

On the Detection Potential of Short Blazar Flares

Long-term outburst SED of TXS 0506+056

On the Detection Potential of Short Blazar Flares

MOTIVATION METHOD

SUMMARY

- select time range from early 2016 through Sep 2017
- $N_{\nu}^{\text{pred}} \approx 0.02$

 \Rightarrow Long-term association is plausible

- Short blazar flares yield only a small neutrino detection probability
- Long-term outbursts are required to provide enough fluence
- Association of EHE neutrino with TXS 0506+056 is calorimetrically plausible

On the Detection Potential of Short Blazar Flares

ON THE DETECTION POTENTIAL OF SHORT BLAZAR FLARES

MOTIVATION 1 4 1

Method

Summary

Backup

ESTIMATE MAXIMUM NEUTRINO OUTPUT

Scaling Factor:

$$\mathsf{N}_{\nu,\mathsf{PeV}}^{\mathsf{pred}} = \mathfrak{f} \times \mathsf{N}_{\nu,\mathsf{PeV}}^{\mathsf{max}}$$
$$\mathfrak{f} = 0.5 \times 0.05 \approx 0.025$$

Things to consider:

- Different neutrino flavors
- UV seed photons needed (FSRQs)
- PeV peaks might be smeared out to pprox (0.03 10) PeV

 \Rightarrow See Kadler et al. 2016 for details

On the Detection Potential of Short Blazar Flares

Motivation Method Summary

(1)

LIGHT CURVE GROUND LEVEL CALCULATION

On the Detection Potential of Short Blazar Flares

IOTIVATION

Method

SUMMARY