Dissipation and Particle Acceleration in Blazar Jets

Mitch Begelman

JILA, University of Colorado

Why do blazar jets shine?

Why/how/where does (some) jet energy get converted into (nonthermal) particle pressure? After all, magnetic acceleration is not intrinsically a dissipative process...

MAGNETIC ACCELERATION Target: $\bigcirc_{?} = L_j / \dot{M}_j c^2$

- Stage 1: Magnetocentrifugal: launching the jet
 - Brings jet to Alfvén point (R_A basically the light cylinder) and ?
 - Insensitive to streamline shape ("split monopole" model)
 - Rotational energy converted to Poynting flux
- Stage 2: Magnetic nozzle: main acceleration stage
 - Boosts ? using magnetic pressure
 - Brings jet through fast magnetosonic point and to ~ ??
 - Converts Poynting flux to kinetic energy, but ...
 - ~Half energy still in Poynting flux
- Stage 3: Coasting:
 - Near cancellation of forces ? further acceleration by magnetic forces (sub)logarithmic
 - Only this stage *needs* gas pressure (dissipation) to extract the last half of the energy

Relativistic acceleration is gradual (outside R_A)

- Inside R_A energy "passes through" field lines; outside R_A energy is carried by flow
- But energy has inertia: $(E = Mc^2)$ • in relativistic version of $a = \frac{F}{M}$

both numerator and denominator ? energy content

$$\Gamma \propto (ext. \ pressure)^{-1/4}$$

SOURCES OF DISSIPATION

• Boundary conditions

- Unsteady conditions at base of jet (disk connection)
- Recollimation shocks
- Jostle sides of jet (turbulent cocoon, intercept clouds)
- Both are externally induced: tap unknown fraction of jet energy
- Surface/global instabilities
 - Kelvin-Helmholtz: suppressed as ? becomes large
 - Current-driven instabilities (kink)
 - Suppressed by poloidal field
 - Tend to wiggle whole jet
- Internal instabilities
 - Internal shear
 - Current-driven not effective when jet too close to force-free
 - Need pre-existing dissipation (see above) to "prime pump"

CURRENT-DRIVEN INSTABILITIES

• Jets are basically moving screw-pinches

- Helical current wound around z
- Ubiquitous unstable configuration in plasma physics (Kruskal & Schwarzschild 1954)
- Competing effects:
 - Toroidal B_[?] is destabilizing
 - Poloidal B_p is stabilizing
 - Gas pressure can enhance destabilizing effect of B_[?] (MCB '98)
- Conclude:
 - m=1 (kink) most unstable
 - catalyzed by particle pressure

CURRENT-DRIVEN INSTABILITIES

• Purely magnetic (force free) jets unstable if ...

- Poloidal field not too strong
- Jet boundaries are "soft" (jet not too fast)
- Force-free jets enclosed in rigid walls are stable

• Conclude:

- Best place to build up significant gas pressure is early in the acceleration process
- Otherwise jet can be "stuck" with large
 Poynting flux over long distances

Plot of current density: Bromberg & Tchekhovskoy 2016

LOCALIZED INTERNAL INSTABILITIES

- Present when gas pressure balances toroidal field (MCB '98)
- Global eigenfunction analysis confirms modes confined to annulus (Des & MCB '18)

Special relativistic MHD (Athena) simulations – O'Neill et al. 2012

How does the dissipation takes place?

First-order Fermi acceleration at shocks

- The astrophysical "standard" for ~40 years
 - Roughly the right index (for strong shocks)
 - Efficient
 - Simultaneously explain synchrotron spectra and cosmic rays

But shock acceleration doesn't work well for:

Highly magnetized flows ? shocks weak

OR

Highly relativistic flows ? diffusion model (multiple shock crossings) fails

BLAZARS FAIL BOTH TESTS

(Sironi et al. 2015)

THE ALTERNATIVE: RECONNECTION

Key element in space and solar physics for decades...

... astrophysics lags behind in applying it

Why?

- Difficult to calculate
- Resistive models too slow
- Nonthermal particle acceleration inefficient at nonrelativistic (Solar System) energies, particle heating instead

Picture is very different for relativistic plasmas

TEARING MODE INSTABILITY

- Tears up current sheet into filaments
- Creates magnetic "islands" (plasmoids)
- Speeds up collisional & collisionless
 reconnection

ALL RECONNECTION IS FAST (?0.1 v_A)

PARTICLE IN CELL SIMULATION – 2D

PARTICLE IN CELL SIMULATION – 3D w/guide field

(Cerutti et al. 2013,

(Cerutti et al. 2014)

Particle Acceleration

- Electron energy distributions develop power-law tail
- Index depends on "magnetization"

$$\sigma = \frac{B^2}{4\pi n \bar{\gamma} m c^2}$$

Groups using different codes agree

Power-law index (pair plasma)

• Flatter spectrum for larger $\sigma = \frac{B^2}{4\pi n \bar{\gamma} m c^2}$

 $f(\gamma) \sim \gamma^{-p}$

Electron-ion reconnection:

Electron power-laws – similar dependence on ?

e-i energy partition also depends on ?

(Werner et al. 2018)

The "sweet spot" for relativistic jets?

Driven Kinetic Turbulence in Relativistic Pair Plasma

Non-thermal power-law energy distribution

• Empirical fit:

$$\alpha \sim 1 + C_0 (\sigma \rho_e / L)^{-1/2}$$

 $C_0 \approx 0.075$

THIS JUST IN: no size dependence – models converge (arXiv:1805.08754)

Zhdankin, Werner, Uzdensky, & Begelman (PRL 118, 055103 2017)

DENSITY

(Zhdankin et al. 2018)

768³ TURBULENCE SNAPSHOT FLY-THROUGH

?-ray flares

Is a separate (linear accelerator) mechanism also operating?

The Crab Provides Clues

- Duration ~ 1 day ? c ? ~ 3 x 10¹⁵ cm
- Photon energy > 100 MeV ? PeV electrons
- Not power-law: fit by monoenergetic spectrum
- Isotropic flare energy: E ~ 4 x 10⁴⁰ erg

Synchrotron emission >100 MeV challenges particle acceleration models

Under ideal MHD conditions: E<B ? ε_{max}< 160 MeV

(Guilbert+1983, de Jager+1996, Uzdensky+2011)

Speiser Orbits

- Most energetic particles: gyroradius > current sheet thickness
 - B- field field reverses during gyro-orbit
 - accelerated by E_z in z-direction ? orbit stretched
 - particles become confined to current sheet

- Midplane B is small and radiation reaction is reduced
- Particles reach higher energies and emit photons with ε > ε_{max} (Non-rel: Speiser 1965; Rel: Kirk 04, Uzdensky+ 2011)

Evidence for relativistic Speiser orbits

Sample of 150 particle orbits

"Kinetic beaming"

- Beaming of radiation due to the strong energy-dependent particle anisotropy
- Distinct signature from Doppler beaming = energy-independent

SUMMARY...

- EM acceleration of relativistic jets can lead to conditions conducive to particle heating/acceleration
- Occurs at a moderate to high magnetization ?
 - Disfavors shock acceleration
 - Favors reconnection in discrete current sheets or turbulence
- Large PIC simulations reveal robust phenomenology
 - Power-law indices: similar dependence on ? for reconnection/turbulence in pair/electron-ion plasma
 - High energy cutoffs
 - observed spectra consistent with ? ~ 1 (natural regulation?)
- Separate "linear accelerator" mechanism predicted by reconnection theory could explain hard ?-ray flares