

The Cherenkov Telescope Array view of extra-galactic jetted sources

F. Tavecchio¹, P. Romano¹, M. Landoni¹, <u>S. Vercellone</u>¹, G. Galanti¹, L. Foschini¹ for the CTA Consortium²

¹INAF – Osservatorio Astronomico di Brera

²see https://www.cta-observatory.org/consortium_authors/authors_2018_06.html for full author list

• The Cherenkov Telescope Array

• Narrow-line Seyfert 1 galaxies

Extreme HBL & Hadron beams

• The Cherenkov Telescope Array

• Narrow-line Seyfert 1 galaxies

• Extreme HBL & Hadron beams

Two sites (North and South) for a whole-sky coverage

Operated as an open Observatory

A factor of 5-20 more sensitive w.r.t. the current IACTs depending on the energy band

The Cherenkov Telescope Array

CTA Performance

Differential Sensitivity

A factor of **5-20 improvement** in sensitivity depending on energy, relative to current IACTs.

Extension of the accessible energy range from well below 100 GeV to above 100 TeV.

https://www.cta-observatory.org/science/cta-performance/

CTA as a transient factory

- Huge advantage over Fermi in energy range of overlap for ~minute to ~day timescale phenomena
 - Explosive transients
 - AGN flares
 - Binary systems
 - Real-time analysis SW is crucial
- Disadvantage over Fermi
 - Limited FoV (compared to Fermi)
 - Prompt reaction to external trigger is critical

cherenkov telescope array

Science with the Cherenkov Telescope Array

Science with CTA

arXiv:1709.07997

To be published as a book & open-access online version by World Scientific.

• The Cherenkov Telescope Array

• Narrow-line Seyfert 1 galaxies

• Extreme HBL & Hadron beams

NLS1 galaxies as VHE sources ???

- Evidence for possible VHE emission from NLS1 galaxies
 - About 7% (4%) are radio-loud [Komossa+06, VCV] ([Cracco+16, SDSS, z<0.345]) and present flat radio spectrum [Oshlack+01, Zhou+03, Yuan+08] resembling jetted sources
 - Hard component in some X-ray spectra observed with Swift/XRT and flux and spectral variability in the hard X-ray observed with INTEGRAL/IBISand Swift/BAT [Foschini+09]
 - See reviews by [Foschini+15, D'Ammando+16] On the properties of jetted NLS1
 - A positive detection with CTA (>20GeV) would allow us to put constraints on location of the gamma-ray emitting zone

10

NLS1 galaxies as high-energy sources **!!!**

- The smoking gun
 - Discovery of gamma-ray emission (E>100MeV) with Fermi-LAT from PMN J0948+0022 [Abdo+09a, Foschini+10]
 - The SED fit with the model by [Ghisellini & Tavecchio 09] clearly resembles that of a blazar-like source
 - Gamma-ray emission is
 variable too, on time-scales as
 low as a few hours [Abdo+09b,
 Calderone+11, Paliya+14]

Current sample

- About **20 sources** have been recently discovered as gamma-ray emitters [see recent results presented at the NLS1s Symposium in Padova].
- At the time of writing, **none of them** have been **detected at VHE** by current imaging atmospheric Cherenkov telescope.
- VERITAS observations (5.25 h) on PMN J0948+0022 obtained only UL (also on nightly and 30m timescales) for E>100 GeV.
- VERITAS started observations a few days after the gamma-ray peak, monitoring the flare decay.

High and flaring states can last **1-3 days, a promising time-scale for CTA**, when compared with Fermi-LAT in the overlapping energy ranges.

- We make use of the *ctools* (v1.4.2) simulation and analysis software package [Knödlseder+16]
 - <u>http://cta.irap.omp.eu/ctools/</u>
- IRFs: public **prod3b-v1**, averaged
 - <u>https://www.cta-observatory.org/science/cta-performance/</u>
- A paper is in preparation on the whole sample [Romano+18]

PMN J0948+0022: simulations setup

- We simulated three gamma-ray states:
 - quiescence \rightarrow grey triangles, broken PL [Abdo+09] with Γ_1 = 2.3, Γ_2 = 3.4, E_b = 1 GeV
 - high-state \rightarrow red stars, PL [Foschini+11] with Γ = 2.55

- **flaring-state** \rightarrow not observed, assumed to be 3 x the high-state

Time period	$F_{E > 100 {\rm MeV}}$	Г	TS
🔺 Jun 01–30	0.23 ± 0.01	2.77 ± 0.06	98
★ Jul 07–10	1.02 ± 0.02	2.55 ± 0.02	140
Aug 1–Sep 14	0.26 ± 0.01	2.74 ± 0.03	140

During the high gamma-ray state, the spectrum becomes harder than that of low and quiescence periods **harder-when-brighter:** promising for CTA observations

PMN J0948+0022: simulations setup

J0948+0022 ("Flare" State) J0948+0022 (High State)	NSNSNS NSNSN	North_z20_average_5h South_z20_average_5h North_z20_average_5h South_z20_average_5h North_z20_average_5h South_z20_average_5h North_z20_average_5h South_z20_average_5h North_z20_average_5h South_z20_average_5h North_z20_average_5h	3 5 5 10 10 5 5 10 10 50	1000 1000 1000 1000 1000 1000 1000 100	20-150 20-150 20-150 20-150 20-150 20-150 20-150 20-150 20-150 20-150	3 3 3 3 3 3 3 3 3 3 4	3 5 5 10 10 5 5 10 10 50	1000 1000 1000 1000 1000 1000 1000 100	20-30, 20-30, 20-30, 20-30, 20-30, 20-30, 20-30, 20-30, 20-30, 20-30,	30-50, 30-50, 30-50, 30-50, 30-50, 30-50, 30-50, 30-50, 30-50, 30-50, 30-50,	50-150 50-150 50-150 50-150 50-150 50-150 50-150 50-150 50-150 50-150	20–50
	S	South_z20_average_50h	50	1000	20-150	4	50	1000	20-30,	30-50,	50-150,	20-50
J0948+0022 (Quiescent)	N S	North_z20_average_50h South_z20_average_50h	100 100	1000 1000	20–150 20–150	1 1	100 100	1000 1000	20–50 20–50			

- We simulated observations for both the Northern and the Southern **sites**
- IRFs were selected according to the simulated **exposure time**
- Input spectral models were derived extrapolating the best-fit Fermi spectra to the CTA energy range, including the effects of the gamma-ray absorption both inside the source (PL + Exponential cut-off at ~30 GeV) and the EBL [Dominguez+11]
- To reduce the impact of variations between individual realisations we performed sets of N=1000 statistically independent realisations by adopting different seeds for the randomization

PMN J0948+0022: simulations results

CTA should be able to detect this source on different flux states and at different time-scales. In particular, assuming that **dissipation region is inside the BLR:**

- "Flare" state
 - all bands in 10 hr
 - up to 50 GeV in 3 hr
- High state [Foschini+11a]
 - all bands in 50 hr
 - up to 50 GeV in 10 hr
- Quiescence [Abdo+09a]
 - in the 20-150 and 20-50 GeV bands in 100 hr.

High significance → TS ≥ 25 Low significance → 10 ≤ TS < 25 Undetected → TS < 10

Simulated spectra (flaring & high)

The γ-ray emitting region may not always be placed at the same distance from the central black-hole during different flaring episodes of the same source **[Foschini+2011b]**.

Detection of TeV photons [Albert+08, Ahnen+15] and the dramatic change of the position of the sync. & IC peaks in some blazars during extreme flares [Ghisellini +13, Pacciani+14, Ahnen+15] support the idea of a dissipation region outside the BLR.

• The Cherenkov Telescope Array

• Narrow-line Seyfert 1 galaxies

Extreme HBL & Hadron beams

Extreme BL Lacs - properties

weak radio flux

- Very hard X-ray and gamma-ray (de-absorbed) spectra
- Rather **modest variability** at all frequencies
- Synchrotron peak ~ keV; IC peak ~ TeV

Extreme BL Lacs - properties

- Acceleration/emission mechanism?
- Far-IR EBL-probes and anomalies
 - ALPS De Angelis et al. 2011
 - Hadron beams Essey & Kuser Murase+ 2012

Essey & Kusenko 2010 Murase+ 2012

- LIV Fairbairn+ 2014 Tavecchio & Bonnoli 2016
- IGMF probes

Neronov 2010 Tavecchio+ 2010 Katarzynski+2006, Tavecchio+ 2009 Lefa et al. 2011, Zacharopoulou et al. 2011

Franceschini+ 2008 Dominguez+ 2011

Extreme BL Lacs - properties

- Acceleration process?
- Why cooling so small?
- Why weakly/slowly variable?

Hadron beams

 $\gamma\text{-}rays$ are produced by UHECRs accelerated in the jet and beamed towards the observer.

Essey & Kusenko 2010 Murase et al. 2012 Aharonian et al. 2013 Tavecchio 2014

A distinctive prediction of this model is that the observed γ -ray spectrum extends at energies much higher than those allowed by the conventional propagation through the EBL.

An hard tail at 20-30 TeV is considered the smoking gun of this model.

Hadron beams

Hadron beams

Data: LAT [Costamante+18], H.E.S.S. [Aharonian+07]

EBL: [Dominguez+11]

(S) – Standard leptonic model (HB) – Hadron-beams model

E-HBLs simulation setup

1ES 0229+200

Model	Site	zAngle (deg)	IRF	Expo (h)	Bins	Energy (TeV)	Number	Total
Standard Standard	N S	20 40	North_z20_average_50h South_z40_average_50h	50 50	15 15	0.1–30 0.1–30	1000 1000	-
Murase	S	40	South_z40_average_50h	50	15	0.1-100	1000	-
Alp	S	40	South_z40_average_50h	50	15	0.1-100	1000	4000

SW (ctools) and IRFs (public): same as for the NLS1s

Southern array → **SSTs** to probe **E > 10 TeV**

A paper is in preparation [Tavecchio+18]

1ES 0229+200 - CTA simulations

- **CTA** will be **the next generation** Cherenkov Telescope Array, open to the scientific community
- We simulated jetted sources whose spectra lie on both CTA energy ends, E<100 GeV and E>10 TeV.
- Preliminary results show that
 - NLS1s: detections might be obtained at E < 50 GeV during high/flaring states, while in the highest energy range (50-150 GeV) the EBL and the internal absorption may play a relevant role.
 - E-HBLs: the excellent CTA performance at E > 10TeV may help in discriminating among different emission models.