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Outline	

•  An	extended	rela1vis1c	fluid	jet	emission	model	
based	on	observa1ons	of	M87.	
•  FiJng	radio	observa1ons	to	constrain	the	structure	
and	dynamics	of	jets.	
• Modelling	1me-dependent	mul1-frequency	flares.	
• Understanding	radio	lags	and	orphan	flares.	



Jet	simula1ons	
•  General	rela1vis1c	MHD	
simula1ons	find	jets	which	
start	magne1cally	
dominated	and	parabolic	
in	the	accelera1ng	region.	
•  Once	the	jets	have	
accelerated	and	converted	
most	of	the	magne1c	
energy	into	bulk	kine1c	
energy	the	accelera1on	
ceases	to	be	efficient	and	
the	jets	become	ballis1c	
and	conical.	

	 McKinney	and	Blandford	2009	



Observa1ons	of	M87	
•  VLBI	observa1ons	of	M87	show	the	jet	starts	parabolic	and	
accelera1ng	and	this	transi1ons	to	conical	decelera1ng	jet	
at	~105	rs.	

Asada	and	
Nakamura	2012	

Hada	et	al.	2014	

Parabolic	&	accelera1ng	

Conical	and	
decelera1ng	



A	realis1c	fluid	model	for	jet	emission	

 

Transition region. Jet transitions from parabolic to conical. 
Plasma first comes into equipartition and magnetic 
acceleration ceases to be efficient. Dominates optically thin 
synchrotron and SSC emission. 

L 
x 

0 xT 

Slowly decelerating conical 
section. Dominates optically 
thick radio synchrotron 
emission and external 
Compton. 

Accelerating 
magnetically 
dominated 
parabolic base. 

Po8er	and	Co8er	2013a	



A	rela1vis1c	fluid	jet	emission	model	
•  Rela1vis1c	energy-momentum	and	par1cle	number	flux	are	
conserved	along	the	fluid	jet.	
•  The	popula1on	of	non-thermal	electrons	is	evolved	along	
the	jet	experiencing	in	situ	accelera1on	and	radia1ve	
losses.	
•  The	jet	structure	is	divided	into	thousands	of	cylindrical	
sec1ons	and	the	synchrotron	and	inverse-Compton	
emission	calculated	from	each.	
•  A	detailed	treatment	of	the	external	photon	sources	from	
the	accre1on	disc,	BLR,	dusty	torus,	NLR,	starlight	and	CMB.	
•  The	synchrotron	and	pair-produc1on	opaci1es	are	
integrated	through	the	jet	to	each	sec1on.	



FiJng	the	quiescent	model	to	spectra	

•  The	first	1me	a	model	fits	to	both	radio	and	gamma-ray	blazar	
observa1ons	simultaneously	and	with	unprecedented	accuracy.	
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FiJng	to	38	simultaneous	mul1wavelength	Fermi	blazars		

SED	data	from	Abdo	et	al.	2009	
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Comparison	to	exis1ng	models	

Bo8cher	et	al.	2013	 Ghisellini	et	al.	2009	

•  Exis1ng	spherical	blob	and	cylindrical	jet	emission	models	are	
successful	at	high	frequencies	but	cannot	reproduce	the	observed	
radio	emission	produced	by	the	large	scale	structure	of	the	jet.	



Op1cally	thick	 Op1cally	thin	

Synchrotron	break	

Constraining	the	radius	of	the	transi1on	
region	

Po8er	and	Co8er	2013b	



An	approximately	linear	rela1on	between	jet	
power	and	transi1on	region	radius!	

Po8er	and	Co8er	2015	
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Time-dependent	flares	

•  Using	the	same	fluid	
model	as	before	we	allow	
the	plasma	proper1es	to	
be	1me-dependent.	
•  The	flare	is	described	by	
three	parameters:	the	
distance	of	the	flaring	
front	at	which	par1cle	
accelera1on	occurs,	the	
equipar11on	ra1o	of	
plasma	leaving	the	flare	
and	the	effec1ve	jet	
power	of	the	flaring	
plasma.	



Mul1wavelength	flare	in	PKS1504	

•  This	mul1wavelength	flare	can	be	well	fi8ed	by	an	
equipar11on	flare	occurring	in	the	BLR	with	the	same	
parameters	as	the	quiescent	jet	plasma.			

Po8er	2018	MNRAS	



Flaring	behaviour	
•  The	rise	and	decay	1me	of	a	flare	are	both	approximately	
equal	to	the	radia1ve	life1me	of	the	emiJng	electrons.	
•  This	is	the	1mescale	taken	to	fill	and	deplete	the	
maximum	volume	of	flaring	plasma	trailing	the	flaring	
front	(the	radia1ve	lengthscale).	
•  Since	the	radia1ve	life1me	of	the	highest	energy	
electrons	is	shortest,	X-ray/UV	synchrotron	and	gamma-
rays	are	the	fastest	to	respond	(can	lead	to	orphan	flares	
if	a	flare	is	short).	
•  Longer	dura1on	flares	have	1me	to	respond	to	the	1me-
dependence	of	the	electron	accelera1on	process.	
•  Radio	flares	act	as	a	long-term	moving	average	of	the	jet	
power	smoothed	on	the	radia1ve	life1me,	and	with	a	
frequency	dependent	lag.	

Po8er	2018	



Radio	flare	in	Mkn	501	

•  Increasing	the	power	of	the	jet	in	Mkn	501	by	a	factor	of	
10	for	100	days	leads	to	an	observable	radio	flux	
increase.	
•  The	radio	lag	and	rise	1me	increase	as	frequency	
decreases	and	are	~months	at	15GHz.	

Po8er	2018	



Radio	Flare	in	an	FSRQ	(PKS	1510)	

•  In	more	powerful	FSRQ	jets	the	op1cally	thin	region	
is	at	a	larger	distance	from	the	prompt	high	energy	
emission,	so	the	radio	lag	and	rise	1me	are	longer					
~	years	at	15Ghz.	 Po8er	2018	





Orphan	Flares	
•  Orphan	flares	occur	when	the	1mescale	of	the	flare	is	shorter	
than	the	radia1ve	life1me	at	most	frequencies.	
•  Only	the	most	luminous	high	energy	synchrotron	or	IC	
emission	responds	fast	enough	to	be	observed	over	the	
quiescent	emission.	

Orphan	Inverse-Compton	flare	 Orphan	synchrotron	flare	



Conclusions	
•  Our	rela1vis1c	extended	fluid	jet	emission	model	is	the	
first	full	spectrum	blazar	model.	
• Modelling	radio	emission	and	the	synchrotron	break	we	
find	that	more	powerful	FSRQ	jets	remain	magne1sed	
and	accelerate	for	larger	distances	than	weaker	BL	Lac	
jets.	
•  The	intrinsic	rise/decay	1me	of	a	flare	is	determined	by	
the	radia1ve	life1me	at	a	given	frequency.	
• We	therefore	expect	short	symmetric	flares	and	longer	
structured	flares.	
•  Radio	flares	reflect	long-term	changes	in	jet	power.	
•  Radio	lags	and	rise/decay	1mescales	can	be	used	to	
determine	jet	proper1es	and	increase	in	higher	power	
blazars	with	1mescales	of	~months-decades.		



Rise	and	decay	1mescales	

•  Flaring	emission	rises	and	decays	on	the	radia1ve	
life1me.	



Evidence	for	AGN	unifica1on	
•  Similar	Eddington	distribu1on	to	AGN	observa1ons	of	
radia1vely	inefficient	Low	Excita1on	Radio	Galaxies	(FRIs)	
and	radia1vely	efficient	High	Excita1on	Radio	Galaxies	
(FRIIs).	

Mingo	et	al.	2014	 P+C	2015	
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Evidence	for	an	accre1on	mode	dichotomy	
•  Assuming	a	fiducial	mass	MBH=5x108MSun	for	all	FSRQs	and	BL	
Lacs	(Shaw	et	al.	2013).	
•  	The	distance	in	rs	at	which	the	jet	comes	into	equipar11on	is	
much	larger	in	FSRQs	than	BL	Lacs.	
•  The	Eddington	accre1on	rate	is	much	lower	in	BL	Lacs	than	
FSRQs.	
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xT 

FSRQs:              

10-3/0.1pc 5x1036W (~5x10-4LEDD) 

0.1/10pc 

2/200pc 1040W (~1LEDD) 

BL Lacs:              
 
 

 5x1038W  (~0.05LEDD) 

BL Lacs - Small radius transition region 
with large magnetic field strength 
leading to high peak synchrotron 
frequency. Gamma rays dominated by 
SSC emitted within transition region. 
 

xT 

FSRQs - Large radius transition region 
with small magnetic field strength leading 
to low peak synchrotron frequency. 
Gamma rays dominated by scattering 
CMB photons at large distances. 
 

Summary	



Powerful	jets	must	be	highly	magne1sed!	
•  We	demand	that	at	least	5%	of	the	total	ini1al	energy	in	the	plasma	
remains	in	the	plasma	to	large	distances	and	is	not	radiated	away	
by	synchrotron	and	synchrotron	self-Compton	(i.e.	floss>0.05).	
•  For	typical	jet	parameters	with	a	fixed	magne1sa1on	we	constrain	
high	power	jets	(>0.1LEdd)	to	be	strongly	magne1cally	dominated	
UB/Ue±>104,	independently	of	black	hole	mass.	

Po8er	2016	in	press	
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External	photon	fields	

CMB	
dominates	
at	large	
distances	

Po8er	and	Co8er	2013a	



A	fluid	jet	model	–	conserva1on	of	energy	
•  We	assume	jet	proper1es	only	depend	on	the	jet	length	and	are	
homogeneous	perpendicular	to	the	jet	axis.	
•  Since	we	allow	the	jet	velocity	and	shape	to	change	as	a	func1on	of	
distance	conserva1on	of	rela1vis1c	energy-momentum	takes	the	form.	

New constraints on black hole jets 4071

primarily to the flat radio spectrum (e.g. Blandford & Königl 1979;
Mufson et al. 1984; Ghisellini, Maraschi & Treves 1985; Kaiser,
Sunyaev & Spruit 2000; Markoff, Falcke & Fender 2001; Spada
et al. 2001; Pe’er & Casella 2009; Jamil, Fender & Kaiser 2010;
Vila, Romero & Casco 2012).

In this paper, we use one of the most sophisticated models
for blazar jet emission currently available (Potter & Cotter 2012,
2013a,b; Potter & Cotter 2013c) to fit to the entire sample of Fermi
blazars from Abdo et al. (2010b) with simultaneous multiwave-
length observations and redshifts. Because this model takes into
account the extended parabolic to conical geometry and acceler-
ation of the jet fluid, we show that we are able to place mean-
ingful constraints on the structure and dynamics of supermassive
black hole jets by fitting to the blazar spectra across all observ-
able wavelengths, with unprecedented accuracy. The structure of
the paper is as follows: we start by introducing and explaining
the assumptions of our jet model, we then show the results of
fitting the model to the observed spectra and the constraints we
obtain. Finally, we discuss these results in the context of cur-
rent ideas on magnetic acceleration, the blazar sequence and AGN
unification.

2 J E T M O D E L

Our model is motivated by the recent results from observations
and simulations. The jet is modelled by a 1D time-independent
relativistic fluid flow with a variable shape and bulk Lorentz factor
(Potter & Cotter 2013a). The total relativistic energy of the plasma
is conserved via the equation for energy–momentum

∇µT µν = 0, T µν = T
µν

Magnetic + T
µν

Particles + T
µν

Losses, (1)

where Tµν is the total energy–momentum tensor of the jet plasma
which can be decomposed into magnetic and particle energy den-
sities, and also a cumulative energy loss term which we include
to conserve the total energy along the jet. The components of the
energy–momentum tensor in the fluid rest frame, indicated by a
prime, are given by

T ′00
Magnetic = B ′2

2µ0
, T ′00

Particles =
∫ ∞

Emin

Een
′
e(x,Ee) dEe,

T ′00
losses(x) =

∫ x

0

P ′
synch(x) + P ′

IC(x) + P ′
ad(x)

πR2(x)
dx. (2)

where we have set c = 1, x is the distance along the jet axis in
the lab frame, B′ is the rest-frame magnetic field strength, Ee is the
electron energy, ne the electron energy distribution and P ′

synch(x) +
P ′

IC(x) + P ′
ad the sum of the synchrotron, inverse-Compton and adi-

abatic losses per unit length in the fluid rest frame (for a detailed
calculation of these loss terms see sections 3–6 in Potter & Cot-
ter 2012 and sections 5–6 in Potter & Cotter 2013a). Making the
assumption that the plasma is locally homogeneous and isotropic
perpendicular to the jet axis, the energy–momentum tensor simpli-
fies to that of a relativistic perfect fluid, P = ρ/3, in the fluid rest
frame.

T ′µν =

⎛

⎜⎜⎜⎜⎝

ρ ′ 0 0 0

0 ρ′

3 0 0

0 0 ρ′

3 0

0 0 0 ρ′

3

⎞

⎟⎟⎟⎟⎠
, (3)

where ρ ′ = T′00 is the total rest-frame energy density. Using a
Lorentz transformation to convert the energy–momentum tensor

from the rest frame to the lab frame (and assuming β = v/c ≈ 1)

T µν(x) = $µ
aT

′ab$ν
b = · · ·

⎛

⎜⎜⎜⎜⎜⎝

4
3 γbulk(x)2ρ ′ 4

3 γbulk(x)2ρ ′ 0 0
4
3 γbulk(x)2ρ ′ 4

3 γbulk(x)2ρ ′ 0 0

0 0 ρ′

3 0

0 0 0 ρ′

3

⎞

⎟⎟⎟⎟⎟⎠
, (4)

where γ bulk is the bulk Lorentz factor of the jet plasma. The two
factors of the Lorentz factor in the relation of the lab-frame energy
density to the rest-frame energy density, ρ ∝ ρ ′γ 2, can be intuitively
understood as one being due to an increase in energy by the Lorentz
boost and one due to the increase in density because of the length
contraction in the x-direction. Integrating equation (1) and using
the four-dimensional divergence theorem (see for example Page &
Thorne 1974), we find
∫

∇µT µνd4V =
∫

T µνd3Sµ =
∫ x+dx

x

∫ 2π

0

∫ R

0
T 0νR dR dφ dx

+
∫ t+dt

t

∫ 2π

0

∫ R

0
T 1νR dR dφ dt

+
∫ t+dt

t

∫ x+dx

x

∫ 2π

0
T 2νR dφ dx dt

+
∫ t+dt

t

∫ x+dx

x

∫ R

0
T 3νdR dx dt = 0. (5)

where d4V =
√

|g| dt dx dR dφ is the invariant 4-volume, g is the
determinant of the metric tensor and

√
|g| = R, using cylindrical

coordinates in Minkowski space (appropriate for the strongly ra-
diating sections of the jet which occur many Schwarzschild radii
from the black hole). The last three 3-surface integrals containing
an integral over time are equal to zero due to the time-independence
of the model, and we have used the assumed radial and azimuthal
symmetry of the jet plasma. The only non-zero components of (5)
occur for ν = 0 or 1, in both cases this gives us our equation for
conservation of energy–momentum

∂

∂x

(
4
3
γbulk(x)2πR2(x)ρ ′(x)

)
= 0. (6)

The particle flux Jµ is conserved along the jet by the equation

∇µJµ(Ee, x) = 0, J µ(Ee) = n′
e(Ee, x)Uµ(x), (7)

where Uµ(x) = γ (x)(1, β(x), 0, 0) is the jet fluid 4-velocity,
β(x) = v(x)/c, v(x) is the jet speed and n′

e the electron number
density in the rest frame. Integrating equation (7) and using the
divergence theorem as before we find
∫

∇µJµd4V =
∫

Jµd3Sµ = ∂

∂x
(πR2(x)n′

e(x)U 0(x)) = 0, (8)

where again the three 3-surface integrals which contain an inte-
gral over time vanish due to the time-independence of the model.
These equations ensure that the total energy is conserved along the
jet and naturally take into account the magnetic energy required
to accelerate the jet and the internal energy gained when the jet
decelerates via interactions with its environment. To illustrate this
we shall explicitly show that in the case of an accelerating jet with
minimal radiative and adiabatic losses the magnetic energy is con-
verted into bulk kinetic energy of the plasma. Equations (6) and (8)
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primarily to the flat radio spectrum (e.g. Blandford & Königl 1979;
Mufson et al. 1984; Ghisellini, Maraschi & Treves 1985; Kaiser,
Sunyaev & Spruit 2000; Markoff, Falcke & Fender 2001; Spada
et al. 2001; Pe’er & Casella 2009; Jamil, Fender & Kaiser 2010;
Vila, Romero & Casco 2012).

In this paper, we use one of the most sophisticated models
for blazar jet emission currently available (Potter & Cotter 2012,
2013a,b; Potter & Cotter 2013c) to fit to the entire sample of Fermi
blazars from Abdo et al. (2010b) with simultaneous multiwave-
length observations and redshifts. Because this model takes into
account the extended parabolic to conical geometry and acceler-
ation of the jet fluid, we show that we are able to place mean-
ingful constraints on the structure and dynamics of supermassive
black hole jets by fitting to the blazar spectra across all observ-
able wavelengths, with unprecedented accuracy. The structure of
the paper is as follows: we start by introducing and explaining
the assumptions of our jet model, we then show the results of
fitting the model to the observed spectra and the constraints we
obtain. Finally, we discuss these results in the context of cur-
rent ideas on magnetic acceleration, the blazar sequence and AGN
unification.

2 J E T M O D E L

Our model is motivated by the recent results from observations
and simulations. The jet is modelled by a 1D time-independent
relativistic fluid flow with a variable shape and bulk Lorentz factor
(Potter & Cotter 2013a). The total relativistic energy of the plasma
is conserved via the equation for energy–momentum

∇µT µν = 0, T µν = T
µν

Magnetic + T
µν

Particles + T
µν

Losses, (1)

where Tµν is the total energy–momentum tensor of the jet plasma
which can be decomposed into magnetic and particle energy den-
sities, and also a cumulative energy loss term which we include
to conserve the total energy along the jet. The components of the
energy–momentum tensor in the fluid rest frame, indicated by a
prime, are given by

T ′00
Magnetic = B ′2

2µ0
, T ′00

Particles =
∫ ∞

Emin

Een
′
e(x,Ee) dEe,

T ′00
losses(x) =

∫ x

0

P ′
synch(x) + P ′

IC(x) + P ′
ad(x)

πR2(x)
dx. (2)

where we have set c = 1, x is the distance along the jet axis in
the lab frame, B′ is the rest-frame magnetic field strength, Ee is the
electron energy, ne the electron energy distribution and P ′

synch(x) +
P ′

IC(x) + P ′
ad the sum of the synchrotron, inverse-Compton and adi-

abatic losses per unit length in the fluid rest frame (for a detailed
calculation of these loss terms see sections 3–6 in Potter & Cot-
ter 2012 and sections 5–6 in Potter & Cotter 2013a). Making the
assumption that the plasma is locally homogeneous and isotropic
perpendicular to the jet axis, the energy–momentum tensor simpli-
fies to that of a relativistic perfect fluid, P = ρ/3, in the fluid rest
frame.

T ′µν =

⎛

⎜⎜⎜⎜⎝

ρ ′ 0 0 0

0 ρ′

3 0 0

0 0 ρ′

3 0

0 0 0 ρ′

3

⎞

⎟⎟⎟⎟⎠
, (3)

where ρ ′ = T′00 is the total rest-frame energy density. Using a
Lorentz transformation to convert the energy–momentum tensor

from the rest frame to the lab frame (and assuming β = v/c ≈ 1)

T µν(x) = $µ
aT

′ab$ν
b = · · ·

⎛

⎜⎜⎜⎜⎜⎝

4
3 γbulk(x)2ρ ′ 4

3 γbulk(x)2ρ ′ 0 0
4
3 γbulk(x)2ρ ′ 4

3 γbulk(x)2ρ ′ 0 0

0 0 ρ′

3 0

0 0 0 ρ′

3

⎞

⎟⎟⎟⎟⎟⎠
, (4)

where γ bulk is the bulk Lorentz factor of the jet plasma. The two
factors of the Lorentz factor in the relation of the lab-frame energy
density to the rest-frame energy density, ρ ∝ ρ ′γ 2, can be intuitively
understood as one being due to an increase in energy by the Lorentz
boost and one due to the increase in density because of the length
contraction in the x-direction. Integrating equation (1) and using
the four-dimensional divergence theorem (see for example Page &
Thorne 1974), we find
∫

∇µT µνd4V =
∫

T µνd3Sµ =
∫ x+dx

x

∫ 2π

0

∫ R

0
T 0νR dR dφ dx

+
∫ t+dt

t

∫ 2π

0

∫ R

0
T 1νR dR dφ dt

+
∫ t+dt

t

∫ x+dx

x

∫ 2π

0
T 2νR dφ dx dt

+
∫ t+dt

t

∫ x+dx

x

∫ R

0
T 3νdR dx dt = 0. (5)

where d4V =
√

|g| dt dx dR dφ is the invariant 4-volume, g is the
determinant of the metric tensor and

√
|g| = R, using cylindrical

coordinates in Minkowski space (appropriate for the strongly ra-
diating sections of the jet which occur many Schwarzschild radii
from the black hole). The last three 3-surface integrals containing
an integral over time are equal to zero due to the time-independence
of the model, and we have used the assumed radial and azimuthal
symmetry of the jet plasma. The only non-zero components of (5)
occur for ν = 0 or 1, in both cases this gives us our equation for
conservation of energy–momentum

∂

∂x

(
4
3
γbulk(x)2πR2(x)ρ ′(x)

)
= 0. (6)

The particle flux Jµ is conserved along the jet by the equation

∇µJµ(Ee, x) = 0, J µ(Ee) = n′
e(Ee, x)Uµ(x), (7)

where Uµ(x) = γ (x)(1, β(x), 0, 0) is the jet fluid 4-velocity,
β(x) = v(x)/c, v(x) is the jet speed and n′

e the electron number
density in the rest frame. Integrating equation (7) and using the
divergence theorem as before we find
∫

∇µJµd4V =
∫

Jµd3Sµ = ∂

∂x
(πR2(x)n′

e(x)U 0(x)) = 0, (8)

where again the three 3-surface integrals which contain an inte-
gral over time vanish due to the time-independence of the model.
These equations ensure that the total energy is conserved along the
jet and naturally take into account the magnetic energy required
to accelerate the jet and the internal energy gained when the jet
decelerates via interactions with its environment. To illustrate this
we shall explicitly show that in the case of an accelerating jet with
minimal radiative and adiabatic losses the magnetic energy is con-
verted into bulk kinetic energy of the plasma. Equations (6) and (8)
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primarily to the flat radio spectrum (e.g. Blandford & Königl 1979;
Mufson et al. 1984; Ghisellini, Maraschi & Treves 1985; Kaiser,
Sunyaev & Spruit 2000; Markoff, Falcke & Fender 2001; Spada
et al. 2001; Pe’er & Casella 2009; Jamil, Fender & Kaiser 2010;
Vila, Romero & Casco 2012).

In this paper, we use one of the most sophisticated models
for blazar jet emission currently available (Potter & Cotter 2012,
2013a,b; Potter & Cotter 2013c) to fit to the entire sample of Fermi
blazars from Abdo et al. (2010b) with simultaneous multiwave-
length observations and redshifts. Because this model takes into
account the extended parabolic to conical geometry and acceler-
ation of the jet fluid, we show that we are able to place mean-
ingful constraints on the structure and dynamics of supermassive
black hole jets by fitting to the blazar spectra across all observ-
able wavelengths, with unprecedented accuracy. The structure of
the paper is as follows: we start by introducing and explaining
the assumptions of our jet model, we then show the results of
fitting the model to the observed spectra and the constraints we
obtain. Finally, we discuss these results in the context of cur-
rent ideas on magnetic acceleration, the blazar sequence and AGN
unification.

2 J E T M O D E L

Our model is motivated by the recent results from observations
and simulations. The jet is modelled by a 1D time-independent
relativistic fluid flow with a variable shape and bulk Lorentz factor
(Potter & Cotter 2013a). The total relativistic energy of the plasma
is conserved via the equation for energy–momentum

∇µT µν = 0, T µν = T
µν

Magnetic + T
µν

Particles + T
µν

Losses, (1)

where Tµν is the total energy–momentum tensor of the jet plasma
which can be decomposed into magnetic and particle energy den-
sities, and also a cumulative energy loss term which we include
to conserve the total energy along the jet. The components of the
energy–momentum tensor in the fluid rest frame, indicated by a
prime, are given by

T ′00
Magnetic = B ′2

2µ0
, T ′00

Particles =
∫ ∞

Emin

Een
′
e(x,Ee) dEe,

T ′00
losses(x) =

∫ x

0

P ′
synch(x) + P ′

IC(x) + P ′
ad(x)

πR2(x)
dx. (2)

where we have set c = 1, x is the distance along the jet axis in
the lab frame, B′ is the rest-frame magnetic field strength, Ee is the
electron energy, ne the electron energy distribution and P ′

synch(x) +
P ′

IC(x) + P ′
ad the sum of the synchrotron, inverse-Compton and adi-

abatic losses per unit length in the fluid rest frame (for a detailed
calculation of these loss terms see sections 3–6 in Potter & Cot-
ter 2012 and sections 5–6 in Potter & Cotter 2013a). Making the
assumption that the plasma is locally homogeneous and isotropic
perpendicular to the jet axis, the energy–momentum tensor simpli-
fies to that of a relativistic perfect fluid, P = ρ/3, in the fluid rest
frame.

T ′µν =

⎛

⎜⎜⎜⎜⎝

ρ ′ 0 0 0

0 ρ′

3 0 0

0 0 ρ′

3 0

0 0 0 ρ′
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⎞
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, (3)

where ρ ′ = T′00 is the total rest-frame energy density. Using a
Lorentz transformation to convert the energy–momentum tensor

from the rest frame to the lab frame (and assuming β = v/c ≈ 1)

T µν(x) = $µ
aT

′ab$ν
b = · · ·
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, (4)

where γ bulk is the bulk Lorentz factor of the jet plasma. The two
factors of the Lorentz factor in the relation of the lab-frame energy
density to the rest-frame energy density, ρ ∝ ρ ′γ 2, can be intuitively
understood as one being due to an increase in energy by the Lorentz
boost and one due to the increase in density because of the length
contraction in the x-direction. Integrating equation (1) and using
the four-dimensional divergence theorem (see for example Page &
Thorne 1974), we find
∫

∇µT µνd4V =
∫

T µνd3Sµ =
∫ x+dx

x

∫ 2π

0

∫ R

0
T 0νR dR dφ dx

+
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0
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+
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0
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where d4V =
√

|g| dt dx dR dφ is the invariant 4-volume, g is the
determinant of the metric tensor and

√
|g| = R, using cylindrical

coordinates in Minkowski space (appropriate for the strongly ra-
diating sections of the jet which occur many Schwarzschild radii
from the black hole). The last three 3-surface integrals containing
an integral over time are equal to zero due to the time-independence
of the model, and we have used the assumed radial and azimuthal
symmetry of the jet plasma. The only non-zero components of (5)
occur for ν = 0 or 1, in both cases this gives us our equation for
conservation of energy–momentum

∂

∂x

(
4
3
γbulk(x)2πR2(x)ρ ′(x)

)
= 0. (6)

The particle flux Jµ is conserved along the jet by the equation

∇µJµ(Ee, x) = 0, J µ(Ee) = n′
e(Ee, x)Uµ(x), (7)

where Uµ(x) = γ (x)(1, β(x), 0, 0) is the jet fluid 4-velocity,
β(x) = v(x)/c, v(x) is the jet speed and n′

e the electron number
density in the rest frame. Integrating equation (7) and using the
divergence theorem as before we find
∫

∇µJµd4V =
∫

Jµd3Sµ = ∂

∂x
(πR2(x)n′

e(x)U 0(x)) = 0, (8)

where again the three 3-surface integrals which contain an inte-
gral over time vanish due to the time-independence of the model.
These equations ensure that the total energy is conserved along the
jet and naturally take into account the magnetic energy required
to accelerate the jet and the internal energy gained when the jet
decelerates via interactions with its environment. To illustrate this
we shall explicitly show that in the case of an accelerating jet with
minimal radiative and adiabatic losses the magnetic energy is con-
verted into bulk kinetic energy of the plasma. Equations (6) and (8)
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primarily to the flat radio spectrum (e.g. Blandford & Königl 1979;
Mufson et al. 1984; Ghisellini, Maraschi & Treves 1985; Kaiser,
Sunyaev & Spruit 2000; Markoff, Falcke & Fender 2001; Spada
et al. 2001; Pe’er & Casella 2009; Jamil, Fender & Kaiser 2010;
Vila, Romero & Casco 2012).

In this paper, we use one of the most sophisticated models
for blazar jet emission currently available (Potter & Cotter 2012,
2013a,b; Potter & Cotter 2013c) to fit to the entire sample of Fermi
blazars from Abdo et al. (2010b) with simultaneous multiwave-
length observations and redshifts. Because this model takes into
account the extended parabolic to conical geometry and acceler-
ation of the jet fluid, we show that we are able to place mean-
ingful constraints on the structure and dynamics of supermassive
black hole jets by fitting to the blazar spectra across all observ-
able wavelengths, with unprecedented accuracy. The structure of
the paper is as follows: we start by introducing and explaining
the assumptions of our jet model, we then show the results of
fitting the model to the observed spectra and the constraints we
obtain. Finally, we discuss these results in the context of cur-
rent ideas on magnetic acceleration, the blazar sequence and AGN
unification.

2 J E T M O D E L

Our model is motivated by the recent results from observations
and simulations. The jet is modelled by a 1D time-independent
relativistic fluid flow with a variable shape and bulk Lorentz factor
(Potter & Cotter 2013a). The total relativistic energy of the plasma
is conserved via the equation for energy–momentum

∇µT µν = 0, T µν = T
µν

Magnetic + T
µν

Particles + T
µν

Losses, (1)

where Tµν is the total energy–momentum tensor of the jet plasma
which can be decomposed into magnetic and particle energy den-
sities, and also a cumulative energy loss term which we include
to conserve the total energy along the jet. The components of the
energy–momentum tensor in the fluid rest frame, indicated by a
prime, are given by

T ′00
Magnetic = B ′2
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, T ′00

Particles =
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ad(x)
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where we have set c = 1, x is the distance along the jet axis in
the lab frame, B′ is the rest-frame magnetic field strength, Ee is the
electron energy, ne the electron energy distribution and P ′

synch(x) +
P ′

IC(x) + P ′
ad the sum of the synchrotron, inverse-Compton and adi-

abatic losses per unit length in the fluid rest frame (for a detailed
calculation of these loss terms see sections 3–6 in Potter & Cot-
ter 2012 and sections 5–6 in Potter & Cotter 2013a). Making the
assumption that the plasma is locally homogeneous and isotropic
perpendicular to the jet axis, the energy–momentum tensor simpli-
fies to that of a relativistic perfect fluid, P = ρ/3, in the fluid rest
frame.

T ′µν =
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where ρ ′ = T′00 is the total rest-frame energy density. Using a
Lorentz transformation to convert the energy–momentum tensor

from the rest frame to the lab frame (and assuming β = v/c ≈ 1)

T µν(x) = $µ
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where γ bulk is the bulk Lorentz factor of the jet plasma. The two
factors of the Lorentz factor in the relation of the lab-frame energy
density to the rest-frame energy density, ρ ∝ ρ ′γ 2, can be intuitively
understood as one being due to an increase in energy by the Lorentz
boost and one due to the increase in density because of the length
contraction in the x-direction. Integrating equation (1) and using
the four-dimensional divergence theorem (see for example Page &
Thorne 1974), we find
∫

∇µT µνd4V =
∫

T µνd3Sµ =
∫ x+dx

x

∫ 2π

0

∫ R

0
T 0νR dR dφ dx

+
∫ t+dt

t
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0

∫ R

0
T 1νR dR dφ dt

+
∫ t+dt

t
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x
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0
T 2νR dφ dx dt

+
∫ t+dt

t

∫ x+dx

x

∫ R

0
T 3νdR dx dt = 0. (5)

where d4V =
√

|g| dt dx dR dφ is the invariant 4-volume, g is the
determinant of the metric tensor and

√
|g| = R, using cylindrical

coordinates in Minkowski space (appropriate for the strongly ra-
diating sections of the jet which occur many Schwarzschild radii
from the black hole). The last three 3-surface integrals containing
an integral over time are equal to zero due to the time-independence
of the model, and we have used the assumed radial and azimuthal
symmetry of the jet plasma. The only non-zero components of (5)
occur for ν = 0 or 1, in both cases this gives us our equation for
conservation of energy–momentum

∂

∂x

(
4
3
γbulk(x)2πR2(x)ρ ′(x)

)
= 0. (6)

The particle flux Jµ is conserved along the jet by the equation

∇µJµ(Ee, x) = 0, J µ(Ee) = n′
e(Ee, x)Uµ(x), (7)

where Uµ(x) = γ (x)(1, β(x), 0, 0) is the jet fluid 4-velocity,
β(x) = v(x)/c, v(x) is the jet speed and n′

e the electron number
density in the rest frame. Integrating equation (7) and using the
divergence theorem as before we find
∫

∇µJµd4V =
∫

Jµd3Sµ = ∂

∂x
(πR2(x)n′

e(x)U 0(x)) = 0, (8)

where again the three 3-surface integrals which contain an inte-
gral over time vanish due to the time-independence of the model.
These equations ensure that the total energy is conserved along the
jet and naturally take into account the magnetic energy required
to accelerate the jet and the internal energy gained when the jet
decelerates via interactions with its environment. To illustrate this
we shall explicitly show that in the case of an accelerating jet with
minimal radiative and adiabatic losses the magnetic energy is con-
verted into bulk kinetic energy of the plasma. Equations (6) and (8)
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primarily to the flat radio spectrum (e.g. Blandford & Königl 1979;
Mufson et al. 1984; Ghisellini, Maraschi & Treves 1985; Kaiser,
Sunyaev & Spruit 2000; Markoff, Falcke & Fender 2001; Spada
et al. 2001; Pe’er & Casella 2009; Jamil, Fender & Kaiser 2010;
Vila, Romero & Casco 2012).

In this paper, we use one of the most sophisticated models
for blazar jet emission currently available (Potter & Cotter 2012,
2013a,b; Potter & Cotter 2013c) to fit to the entire sample of Fermi
blazars from Abdo et al. (2010b) with simultaneous multiwave-
length observations and redshifts. Because this model takes into
account the extended parabolic to conical geometry and acceler-
ation of the jet fluid, we show that we are able to place mean-
ingful constraints on the structure and dynamics of supermassive
black hole jets by fitting to the blazar spectra across all observ-
able wavelengths, with unprecedented accuracy. The structure of
the paper is as follows: we start by introducing and explaining
the assumptions of our jet model, we then show the results of
fitting the model to the observed spectra and the constraints we
obtain. Finally, we discuss these results in the context of cur-
rent ideas on magnetic acceleration, the blazar sequence and AGN
unification.

2 J E T M O D E L

Our model is motivated by the recent results from observations
and simulations. The jet is modelled by a 1D time-independent
relativistic fluid flow with a variable shape and bulk Lorentz factor
(Potter & Cotter 2013a). The total relativistic energy of the plasma
is conserved via the equation for energy–momentum

∇µT µν = 0, T µν = T
µν

Magnetic + T
µν

Particles + T
µν

Losses, (1)

where Tµν is the total energy–momentum tensor of the jet plasma
which can be decomposed into magnetic and particle energy den-
sities, and also a cumulative energy loss term which we include
to conserve the total energy along the jet. The components of the
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prime, are given by
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T ′00
losses(x) =

∫ x

0

P ′
synch(x) + P ′

IC(x) + P ′
ad(x)

πR2(x)
dx. (2)
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the lab frame, B′ is the rest-frame magnetic field strength, Ee is the
electron energy, ne the electron energy distribution and P ′

synch(x) +
P ′

IC(x) + P ′
ad the sum of the synchrotron, inverse-Compton and adi-

abatic losses per unit length in the fluid rest frame (for a detailed
calculation of these loss terms see sections 3–6 in Potter & Cot-
ter 2012 and sections 5–6 in Potter & Cotter 2013a). Making the
assumption that the plasma is locally homogeneous and isotropic
perpendicular to the jet axis, the energy–momentum tensor simpli-
fies to that of a relativistic perfect fluid, P = ρ/3, in the fluid rest
frame.

T ′µν =

⎛
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where γ bulk is the bulk Lorentz factor of the jet plasma. The two
factors of the Lorentz factor in the relation of the lab-frame energy
density to the rest-frame energy density, ρ ∝ ρ ′γ 2, can be intuitively
understood as one being due to an increase in energy by the Lorentz
boost and one due to the increase in density because of the length
contraction in the x-direction. Integrating equation (1) and using
the four-dimensional divergence theorem (see for example Page &
Thorne 1974), we find
∫
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where d4V =
√

|g| dt dx dR dφ is the invariant 4-volume, g is the
determinant of the metric tensor and

√
|g| = R, using cylindrical

coordinates in Minkowski space (appropriate for the strongly ra-
diating sections of the jet which occur many Schwarzschild radii
from the black hole). The last three 3-surface integrals containing
an integral over time are equal to zero due to the time-independence
of the model, and we have used the assumed radial and azimuthal
symmetry of the jet plasma. The only non-zero components of (5)
occur for ν = 0 or 1, in both cases this gives us our equation for
conservation of energy–momentum

∂
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(
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)
= 0. (6)

The particle flux Jµ is conserved along the jet by the equation

∇µJµ(Ee, x) = 0, J µ(Ee) = n′
e(Ee, x)Uµ(x), (7)

where Uµ(x) = γ (x)(1, β(x), 0, 0) is the jet fluid 4-velocity,
β(x) = v(x)/c, v(x) is the jet speed and n′

e the electron number
density in the rest frame. Integrating equation (7) and using the
divergence theorem as before we find
∫

∇µJµd4V =
∫

Jµd3Sµ = ∂
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(πR2(x)n′

e(x)U 0(x)) = 0, (8)

where again the three 3-surface integrals which contain an inte-
gral over time vanish due to the time-independence of the model.
These equations ensure that the total energy is conserved along the
jet and naturally take into account the magnetic energy required
to accelerate the jet and the internal energy gained when the jet
decelerates via interactions with its environment. To illustrate this
we shall explicitly show that in the case of an accelerating jet with
minimal radiative and adiabatic losses the magnetic energy is con-
verted into bulk kinetic energy of the plasma. Equations (6) and (8)
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Mufson et al. 1984; Ghisellini, Maraschi & Treves 1985; Kaiser,
Sunyaev & Spruit 2000; Markoff, Falcke & Fender 2001; Spada
et al. 2001; Pe’er & Casella 2009; Jamil, Fender & Kaiser 2010;
Vila, Romero & Casco 2012).

In this paper, we use one of the most sophisticated models
for blazar jet emission currently available (Potter & Cotter 2012,
2013a,b; Potter & Cotter 2013c) to fit to the entire sample of Fermi
blazars from Abdo et al. (2010b) with simultaneous multiwave-
length observations and redshifts. Because this model takes into
account the extended parabolic to conical geometry and acceler-
ation of the jet fluid, we show that we are able to place mean-
ingful constraints on the structure and dynamics of supermassive
black hole jets by fitting to the blazar spectra across all observ-
able wavelengths, with unprecedented accuracy. The structure of
the paper is as follows: we start by introducing and explaining
the assumptions of our jet model, we then show the results of
fitting the model to the observed spectra and the constraints we
obtain. Finally, we discuss these results in the context of cur-
rent ideas on magnetic acceleration, the blazar sequence and AGN
unification.

2 J E T M O D E L

Our model is motivated by the recent results from observations
and simulations. The jet is modelled by a 1D time-independent
relativistic fluid flow with a variable shape and bulk Lorentz factor
(Potter & Cotter 2013a). The total relativistic energy of the plasma
is conserved via the equation for energy–momentum

∇µT µν = 0, T µν = T
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Magnetic + T
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Particles + T
µν

Losses, (1)

where Tµν is the total energy–momentum tensor of the jet plasma
which can be decomposed into magnetic and particle energy den-
sities, and also a cumulative energy loss term which we include
to conserve the total energy along the jet. The components of the
energy–momentum tensor in the fluid rest frame, indicated by a
prime, are given by

T ′00
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IC(x) + P ′
ad(x)
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where we have set c = 1, x is the distance along the jet axis in
the lab frame, B′ is the rest-frame magnetic field strength, Ee is the
electron energy, ne the electron energy distribution and P ′

synch(x) +
P ′

IC(x) + P ′
ad the sum of the synchrotron, inverse-Compton and adi-

abatic losses per unit length in the fluid rest frame (for a detailed
calculation of these loss terms see sections 3–6 in Potter & Cot-
ter 2012 and sections 5–6 in Potter & Cotter 2013a). Making the
assumption that the plasma is locally homogeneous and isotropic
perpendicular to the jet axis, the energy–momentum tensor simpli-
fies to that of a relativistic perfect fluid, P = ρ/3, in the fluid rest
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T ′µν =

⎛

⎜⎜⎜⎜⎝

ρ ′ 0 0 0

0 ρ′

3 0 0

0 0 ρ′

3 0

0 0 0 ρ′

3

⎞

⎟⎟⎟⎟⎠
, (3)

where ρ ′ = T′00 is the total rest-frame energy density. Using a
Lorentz transformation to convert the energy–momentum tensor

from the rest frame to the lab frame (and assuming β = v/c ≈ 1)
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where γ bulk is the bulk Lorentz factor of the jet plasma. The two
factors of the Lorentz factor in the relation of the lab-frame energy
density to the rest-frame energy density, ρ ∝ ρ ′γ 2, can be intuitively
understood as one being due to an increase in energy by the Lorentz
boost and one due to the increase in density because of the length
contraction in the x-direction. Integrating equation (1) and using
the four-dimensional divergence theorem (see for example Page &
Thorne 1974), we find
∫
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where d4V =
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|g| dt dx dR dφ is the invariant 4-volume, g is the
determinant of the metric tensor and

√
|g| = R, using cylindrical

coordinates in Minkowski space (appropriate for the strongly ra-
diating sections of the jet which occur many Schwarzschild radii
from the black hole). The last three 3-surface integrals containing
an integral over time are equal to zero due to the time-independence
of the model, and we have used the assumed radial and azimuthal
symmetry of the jet plasma. The only non-zero components of (5)
occur for ν = 0 or 1, in both cases this gives us our equation for
conservation of energy–momentum

∂
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(
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γbulk(x)2πR2(x)ρ ′(x)

)
= 0. (6)

The particle flux Jµ is conserved along the jet by the equation

∇µJµ(Ee, x) = 0, J µ(Ee) = n′
e(Ee, x)Uµ(x), (7)

where Uµ(x) = γ (x)(1, β(x), 0, 0) is the jet fluid 4-velocity,
β(x) = v(x)/c, v(x) is the jet speed and n′

e the electron number
density in the rest frame. Integrating equation (7) and using the
divergence theorem as before we find
∫

∇µJµd4V =
∫

Jµd3Sµ = ∂
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(πR2(x)n′

e(x)U 0(x)) = 0, (8)

where again the three 3-surface integrals which contain an inte-
gral over time vanish due to the time-independence of the model.
These equations ensure that the total energy is conserved along the
jet and naturally take into account the magnetic energy required
to accelerate the jet and the internal energy gained when the jet
decelerates via interactions with its environment. To illustrate this
we shall explicitly show that in the case of an accelerating jet with
minimal radiative and adiabatic losses the magnetic energy is con-
verted into bulk kinetic energy of the plasma. Equations (6) and (8)
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•  In	order	to	relate	plasma	proper1es	in	the	rest	frame	and	lab	frame	we	
treat	the	plasma	as	a	rela1vis1c	perfect	fluid.	

•  Integra1ng	conserva1on	of	energy	over	the	jet	volume	and	using	the	
divergence	theorem	we	find	the	conserva1on	of	energy	equa1on	for	the	
jet.	


