AGN physics from multi-epoch core-shift measurements

Alexander Plavin
Y. Kovalev, A. Pushkarev, A. Lobanov

Astro Space Center, Moscow
Moscow Institute of Physics and Technology
Max-Planck-Institut für Radioastronomie

June 15, 2017
Half a Century of Blazars and Beyond
Core shift in AGN jets

Due to synchrotron self-absorption (e.g. Blandford & Konigl, 1979), the apparent jet origin (core) location r_c depends on ν. The radio core at different frequencies ($\nu_5 > \nu_4 > \nu_3 > \nu_2 > \nu_1$) is illustrated in the diagram.
Observational data

- Simultaneous 2 and 8 GHz VLBA+ observations during 1994-2016 years
- About 1000 of 4000 quasars have noticeable extended jet
- 40 of them observed at > 10 epochs
Observational data

- Simultaneous 2 and 8 GHz VLBA+ observations during 1994-2016 years
- About 1000 of 4000 quasars have noticeable extended jet
- 40 of them observed at > 10 epochs

Blue — all 4143 AGNs
Red — 40 studied here

Redshifts
up to $z = 2.37$,
median $z = 0.74$
Core shift measurement

1. Acquire two-frequency calibrated images
2. Align corresponding images (i.e. find $r_{1 \rightarrow 2}$)
3. Estimate core position on each image — r_1, r_2
4. Core shift is $r_c(\nu_1) - r_c(\nu_2) = r_1 - r_2 - r_{1 \rightarrow 2}$
Core shift measurement

1. Acquire two-frequency calibrated images
2. Align corresponding images (i.e. find $r_{1 \to 2}$)
3. Estimate core position on each image — r_1, r_2
4. Core shift is $r_c(\nu_1) - r_c(\nu_2) = r_1 - r_2 - r_{1 \to 2}$
Core shift measurement

1. Acquire two-frequency calibrated images
2. Align corresponding images (i.e. find $r_{1\rightarrow2}$)
3. Estimate core position on each image — r_1, r_2
4. Core shift is $r_c(\nu_1) - r_c(\nu_2) = r_1 - r_2 - r_{1\rightarrow2}$
Core shift measurement

1. Acquire two-frequency calibrated images
2. Align corresponding images (i.e. find $r_{1\rightarrow2}$)
3. Estimate core position on each image — r_1, r_2
4. Core shift is $r_c(\nu_1) - r_c(\nu_2) = r_1 - r_2 - r_{1\rightarrow2}$

We developed an automated method.

8 GHz phase center

8 GHz core

2 GHz core

2 GHz phase center

Alexander Plavin, Y. Kovalev, A. Pushkarev, A. Lobanov
Core shift measurement

1. Acquire two-frequency calibrated images
2. Align corresponding images (i.e. find $r_{1\rightarrow2}$)
3. Estimate core position on each image — r_1, r_2
4. Core shift is $r_c(\nu_1) - r_c(\nu_2) = r_1 - r_2 - r_{1\rightarrow2}$

We developed an automated method.
Core shift magnitudes

40 quasars
1691 individual observations
Magnitude of 8→2 GHz shift:

Median 0.55 mas

Median 3.2 pc
Core shift magnitudes

40 quasars
1691 individual observations
Magnitude of 8→2 GHz shift:

Median 0.55 mas
⇒ $r_c(8 \text{ GHz}) = 0.2 \text{ mas}$

Median 3.2 pc
⇒ $r_c(8 \text{ GHz}) = 1 \text{ pc}$

assuming $r_c(\nu) \sim 1/\nu$
Detected 8-2 GHz core-shift variability

Characteristic examples:

Median $\text{max} - \text{min}$ difference 0.35 mas, maximum around 0.8 mas

Significant variability for 33 of 40 AGNs
Find that $r_c \sim S_c^{0.3}$ \implies N_c \sim S_c^{1.5}$ and $B_c \sim S_c^{-0.33}$
Flare propagation

Flare reaches core at ν_2

Flare reaches core at ν_1 while still affecting ν_2

Flare leaves the ν_2 core region

Flare leaves both core regions

Alexander Plavin, Y. Kovalev, A. Pushkarev, A. Lobanov

AGN physics from multi-epoch core-shift measurements
Implications

Core position varies by ~ 0.5 mas \Rightarrow flare region extent is at least this long
Implications

Core position varies by ~ 0.5 mas \Rightarrow flare region extent is at least this long

Flares at ν_1 and ν_2 happen with a delay \Rightarrow cores $r_c(\nu_1)$ and $r_c(\nu_2)$ move separately \Rightarrow any fixed dependency like $r_c \sim 1/\nu$ cannot hold.
Implications

Core position varies by ~ 0.5 mas \Rightarrow flare region extent is at least this long

Flares at ν_1 and ν_2 happen with a delay \Rightarrow cores $r_c(\nu_1)$ and $r_c(\nu_2)$ move separately \Rightarrow any fixed dependency like $r_c \sim 1/\nu$ cannot hold.

- Apparent core is not only shifted from the jet base, but the shift varies in time;
- Need to take variability of Δr_c into account when inferring physical parameters.
Apparent core velocity

Comparison with 15 GHz kinematic measurements:

Core velocity: lower bound on the jet flow speed.
Summary

- We measured 8-2 GHz core shift for the largest sample of AGN observations; typical values are ~ 0.5 mas;
- Variability detected for the majority of AGNs: up to 0.8 mas, typically ~ 0.3 mas;
- Cores at different frequencies move separately from each other: no fixed frequency dependence.
- Flare regions are extended along the jet, ≥ 2 pc.
- Independent method to probe flow speed: apparent core velocity as a lower bound.
Individual core movements

Assuming changes in S_c and r_c caused by jet parameters changing, we get $r_c(\nu) \sim S_c(\nu)^{p}$.

$$\Delta r_c = \begin{align*}
a \\
+ b_1 S_c(\nu_1)^{p} \\
- b_2 S_c(\nu_2)^{p} \\
+ c \cdot r_{\text{beam}}
\end{align*}$$

Measured value

Core movement at ν_1

Core movement at ν_2

Bias due to finite beam

All terms are significant.

No time shift between $S_c(\nu)$ and $r_c(\nu)$ variations.

$p \approx 0.3$