AGN physics from multi-epoch core-shift measurements

Alexander Plavin Y. Kovalev, A. Pushkarev, A. Lobanov

Astro Space Center, Moscow Moscow Institute of Physics and Technology Max-Planck-Institut für Radioastronomie

June 15, 2017 Half a Century of Blazars and Beyond

Core shift in AGN jets

Due to synchrotron self-absorption (e.g. Blandford & Konigl,1979) apparent jet origin (*core*) location r_c depends on ν Badio core at different frequencies

Alexander Plavin, Y. Kovalev, A. Pushkarev, A. Lobanov

 $(\nu_5 > \nu_4 > \nu_3 > \nu_2 > \nu_1)$

AGN physics from multi-epoch core-shift measurements 2 / 12

Observational data

- Simultaneous 2 and 8 GHz VLBA+ observations during 1994-2016 years
- About 1000 of 4000 quasars have noticeable extended jet
- 40 of them observed at > 10 epochs

Observational data

- Simultaneous 2 and 8 GHz VLBA+ observations during 1994-2016 years
- About 1000 of 4000 quasars have noticeable extended jet
- 40 of them observed at > 10 epochs

- 1. Acquire two-frequency calibrated images
- 2. Align corresponding images (i.e. find $r_{1\rightarrow 2}$)
- 3. Estimate core position on each image r_1, r_2

4. Core shift is
$$r_c(\nu_1) - r_c(\nu_2) = r_1 - r_2 - r_{1\to 2}$$

- 1. Acquire two-frequency calibrated images
- 2. Align corresponding images (i.e. find $r_{1\rightarrow 2}$)
- 3. Estimate core position on each image r_1, r_2

4. Core shift is
$$r_c(\nu_1) - r_c(\nu_2) = r_1 - r_2 - r_{1\to 2}$$

Alexander Plavin, Y. Kovalev, A. Pushkarev, A. Lobanov

- 1. Acquire two-frequency calibrated images
- 2. Align corresponding images (i.e. find $\mathsf{r}_{1\to 2})$
- 3. Estimate core position on each image r_1, r_2

4. Core shift is
$$r_c(\nu_1) - r_c(\nu_2) = r_1 - r_2 - r_{1\to 2}$$

- 1. Acquire two-frequency calibrated images
- 2. Align corresponding images (i.e. find $r_{1\rightarrow 2}$)
- 3. Estimate core position on each image r_1, r_2
- 4. Core shift is $r_c(\nu_1) r_c(\nu_2) = r_1 r_2 r_{1 \to 2}$

- 1. Acquire two-frequency calibrated images
- 2. Align corresponding images (i.e. find $r_{1\rightarrow 2}$)
- 3. Estimate core position on each image r_1, r_2

4. Core shift is
$$r_c(\nu_1) - r_c(\nu_2) = r_1 - r_2 - r_{1\to 2}$$

We developed an automated method.

Core shift magnitudes

40 quasars 1691 individual observations Magnitude of $8 \rightarrow 2$ GHz shift:

Median 0.55 mas

Median 3.2 pc

Core shift magnitudes

40 quasars 1691 individual observations Magnitude of $8\rightarrow 2$ GHz shift:

Median 0.55 mas $\Rightarrow r_c(8 \text{ GHz}) = 0.2 \text{ mas}$

Median 3.2 pc \Rightarrow $r_{\rm c}(8 \text{ GHz}) = 1 \text{ pc}$ assuming $r_{\rm c}(\nu) \sim 1/\nu$

Detected 8-2 GHz core-shift variability

Median max – min difference 0.35 mas, maximum around 0.8 mas Significant variability for 33 of 40 AGNs

Jet parameters evolution

Find that $r_c \sim S_c^{0.3} \implies N_c \sim S_c^{1.5}$ and $B_c \sim S_c^{-0.33}$

Flare propagation

Implications

Core position varies by $\sim 0.5 \text{ mas} \Rightarrow$ flare region extent is at least this long

Implications

Core position varies by $\sim 0.5 \text{ mas} \Rightarrow$ flare region extent is at least this long

Flares at ν_1 and ν_2 happen with a delay \Rightarrow cores $r_c(\nu_1)$ and $r_c(\nu_2)$ move separately \Rightarrow any fixed dependency like $r_c \sim 1/\nu$ cannot hold.

Implications

Core position varies by $\sim 0.5 \text{ mas} \Rightarrow$ flare region extent is at least this long

Flares at ν_1 and ν_2 happen with a delay \Rightarrow cores $r_c(\nu_1)$ and $r_c(\nu_2)$ move separately \Rightarrow any fixed dependency like $r_c \sim 1/\nu$ cannot hold.

- Apparent core is not only shifted from the jet base, but the shift varies in time;
- Need to take variability of Δr_c into account when inferring physical parameters.

Apparent core velocity

Comparison with 15 GHz kinematic measurements:

Core velocity: lower bound on the jet flow speed.

Summary

- We measured 8-2 GHz core shift for the largest sample of AGN observations; typical values are ~ 0.5 mas;
- Variability detected for the majority of AGNs: up to 0.8 mas, typically \sim 0.3 mas;
- Cores at different frequencies move separately from each other: no fixed frequency dependence.
- Flare regions are extended along the jet, ≥ 2 pc.
- Independent method to probe flow speed: apparent core velocity as a lower bound.

Individual core movements

Assuming changes in S_c and r_c caused by jet parameters changing, we get $r_c(\nu) \sim S_c(\nu)^p$.

 $\Delta r_c = Measured value$ a $+ b_1 S_c (\nu_1)^p \quad Core movement at \nu_1$ $- b_2 S_c (\nu_2)^p \quad Core movement at \nu_2$ $+ c \cdot r_{beam} \quad Bias due to finite beam$

All terms are significant. No time shift between $S_c(\nu)$ and $r_c(\nu)$ variations. $p \approx 0.3$