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Fig. 7. The X-ray Spectral Energy Distributions of Mkn 421 in the long BeppoSAX observations of May 1999, April and May 2000. Best fit
spectra (dashed lines) were obtained with a log-parabolic law. The SED of the two observations of 1997, May 4 and 1998, April 21 are also
plotted to show the spectral evolution of the source.

Table 4. Reduced χ2 values for the best fit spectra of Mkn 421
with a power law with exponential cutoff and a log-parabola for
the 1999-2000 observations.

Date PL+EC Log P d.o.f.
1999-05 4.16 1.11 141

I 1.57 1.11 111
II 3.22 1.14 111

III 2.51 1.06 111
IV 1.77 1.04 111

2000-04 13.11 1.06 152
H 8.13 1.01 152
F 8.21 1.06 152

2000-05 7.89 1.34 149
I 5.82 1.37 149
II 2.77 1.03 136

III 2.87 1.26 136
IV 2.14 0.87 136
V 1.67 1.00 121

5.2. The April 2000 observation

In spring 2000 Mkn 421 reached the highest brightness level
of all the BeppoSAX observations. The source was well de-
tectable in the PDS at energies higher than 100 keV and there-
fore we considered in our analysis the PDS 13–120 keV data.

The resulting χ2 for the entire observation (see Table 4)
was well acceptable and the corresponding log-parabolic SED
in shown in Fig. 7. The source spectrum in this high state was
very different from that observed in fainter states. In particular,

the spectral curvature b decreased to 0.21, and the peak energy
increased at about 3 keV.

From the light curve of Fig. 2 we see that the X-ray flux
of Mkn 421 was characterised by an approximately oscillating
behaviour with a typical amplitude of about 1.5, without promi-
nent flares. We selected then two data sets, useful for a more
detailed analysis, on the base of the count rate. All the events
in the time intervals during which the mean 2–10 keV MECS
count rate was higher than 7.5 ct/s were included in the High
state subset H, while the remaining events were in the Faint
subset F. The parameters of the log-parabolic best fits of these
two subsets are given in Table 5 and the corresponding SEDs
are plotted in Fig. 9.

Again spectral changes between the two states are rather
small: in particular the value of b was practically unchanged
while a changed by 0.08, implying an increase of the peak en-
ergy from 2.3 to 3.7 keV in the H state.

5.3. The May 2000 observation

During the last observation of May 2000 Mkn 421 was in a high
luminosity state. The spectral best fit for the entire data set was
evaluated using the same energy ranges for LECS and MECS
of April 2000 observation, while that of PDS was limited
at 70 keV. The resulting reduced χ2 is reported in Table 4.
The mean spectral continuum is very well described by the log-
parabolic law, as shown by the SED plotted in Fig. 7.

Also for this long pointing the spectral analysis was per-
formed in five shorter segments, selected on the basis of the
time features in the light curve of Fig. 3. Segment I, from
the beginning to 180 000 s, includes the first portion of the
light curve before the flare; segments II and III were taken
in the rising and decaying portions of the flare; segment IV
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Fig. 2. The X-ray Spectral Energy Distribution of Mkn 501 observed with BeppoSAX in April 1997. The interpolations are the best fits with a
log-parabolic law.

Fig. 3. The best fit spectrum with a log-parabolic law and the residuals
of the BeppoSAX observation of Mkn 501 on 11 April 1997. The bin-
ning of the data is finer than in Fig. 2. Note the systematic deviation
due to a flux excess at energies greater than 30 keV.

The three observations of April 1997 were performed dur-
ing a very active phase of Mkn 501. The peak energy Ep

changed from about 9 keV to 100 keV and correspondingly
the Fbol changed by a factor of ∼4.5. The curvature parame-
ter b was generally low, in the range 0.12–0.17. The SEDs of
these observations are shown in Fig. 2. Despite the good χ2, the
residuals showed some systematic deviations. In particular, in
the spectrum observed on April 11, there is a clear excess at en-
ergies above 30 keV and a similar behaviour can also be recog-
nised in the data of April 7. To show in detail how this deviation
is significant we plotted the best fit spectrum and residuals of
April 11 in Fig. 3: the last seven points in the PDS range are all
more than one standard deviation higher than expected. Note
also that if the best fit parameters are evaluated limiting the

upper energy to 30 keV, their values do not change indicating
that their estimation is dominated by the low energy data be-
cause of their much better statistics. Another important result,
very clearly evident in the SEDs of Fig. 2, is that the flux at en-
ergies below 0.5 keV remained practically unchanged despite
the large variability observed at higher energies. As discussed
in Sect. 5, this fact can be relevant to look for a possible inter-
pretation of the spectral evolution of the flare.

A marginal detection (1997, April 4−15) of Mkn 501 with
EGRET at energies greater than ∼100 MeV is reported by
Kataoka et al. (1999) who give the photon flux F(>100 MeV) =
9 ± 7 × 10−8 ph cm−2 s−1. We verified that the extrapolation
in this range of our log-parabolic fit for the April 16 obser-
vation, when the source was at the highest level in the X-ray
band, was compatible with this flux. Indeed, using the best
fit values of Table 4, we computed a flux F(100 MeV) =
1.8×10−9 ph cm−2 s−1 MeV−1 corresponding to a power law in-
tegral flux of F(>100 MeV) ≃ 16×10−8 ph cm−2 s−1. Note that
this value, considering that the source during the EGRET point-
ing was likely weaker than the exceptional flare of April 16 and
that its γ-ray spectrum steeper than our assumption, must be
considered as an upper limit. In any case, the April 16 extrapo-
lated value is compatible with the EGRET result within 1σ.

Observations of Mkn 501 from March to October 1997
at energies higher than 0.25 TeV, performed with CAT, are
reported by Djannati-Atai et al. (1999), who adopted a log-
parabolic law to fit the spectra. In particular, in April the
source was observed in time windows very close, but not
strictly simultaneous, with the BeppoSAX pointings. It showed
a behaviour remarkably similar to that in the X rays with a
very strong flare on April 16. The spectral curvature in the
TeV range was always stronger than in the X rays, in partic-
ular the value of b was found greater than 0.4. A similar result
is reported by Krennrich et al. (1999), who observed Mkn 501
with the Whipple telescope from February to June 1997.

MRK 501   SAX
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Fig. 4. E∗p − L∗p and E∗p − b plots for Mrk 501 (black filled squares) com-
pared with those of Mrk 421 (orange circles). Black lines indicate the
regressions underlying the rlog correlation coefficient.

Fig. 5. The SEDs for three observations of Mrk 501 performed by
BeppoSAX, XMM-Newton and Swift.

variability of this source. The source has similar trends to
Mrk 421, with higher correlation coefficients for the E∗p − L∗p and
E∗p − b relations, namely, rlog = 0.89 and rlog = −0.79, respec-
tively. Figure 5 shows the SEDs relative to three observations
performed with all three satellites to show in detail the variations
of Ep, sp, and curvature b.

The observations of 1ES 1959+650 cover a narrower sub-
region of both the E∗p − L∗p and the E∗p − b plane relative to
Mrk 421, as shown by Fig. 6. These observations were mostly
performed within ten days during 2006. The observation per-
formed on 29 May 2006 (circled) is peculiar as it yields a very
high curvature value. This pointing took place at the end of a
set of 6 observations, in which the flux was decreasing; this
may represent a phase dominated by cooling, when the estimated
value of the curvature could well be affected by an exponential
cutoff close to the observed energy range.

The source PKS 2155-304 is the truly variant member of our
set in a number of respects. In fact, the spectral analysis yields a

Fig. 6. E∗p − L∗p and E∗p −b plots for 1ES 1959+650 (black filled squares)
compared with those of Mrk 421 (orange circles). Circled values refers
to the peculiar observation performed on the 29 May 2006 by Swift (see
Sect. 4 for details).

Fig. 7. The SEDs for four observations of PKS 2155-304 performed by
BeppoSAX, XMM-Newton and Swift.

log-parabolic index a > 2, and relatedly, Ep is less than 1 keV. It
was difficult to evaluate the SED peak location with BeppoSAX,
XMM-Newton and Swift because it often falls below the observa-
tional X-ray range, as shown in Fig. 7. Such spectra indicate that
the X rays constitute the upper end of a synchrotron emission.
On the other hand, we never observed a high energy exponential
cutoff in our analysis, which confirmes our modelling in terms
of a spectral curvature b. The source PKS 2155-304 covers a re-
gion in the E∗p − b plane overlapping that of Mrk 421 in Fig. 8.
On the other hand, the same figure shows that the source does
not appear to follow a similar trend in the E∗p − L∗p plane. A pos-
sible explanation for this is that our X-ray observations may be
biased in that we observe the source only with Ep values in the
X-rays band, corresponding to higher states relative to its aver-
age (Tramacere et al. 2007b).

PKS 2155-304

•b: curvature at peak
•Ep: peak energy

•Sp: SED height @ Ep
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Fig. 3. Spectrum from the first orbit of the ObsID 00030352013 performed on 2006 June 22. Left Panel: the systematic deviations on both sides of
the residuals from a best fit with a power-law with Galactic NH show the need of intrinsic curvature. Right panel: the deviations disappear with the
log-parabolic model with Galactic NH. The χ2

r decreases from 1.60 with 246 d.o.f. (power-law) to 1.19 with 245 d.o.f. (log-parabola); the F-test
statistics clearly favours the curved model.

(Fossati et al. 2000b; Tanihata et al. 2004; Massaro et al. 2004;
Tramacere et al. 2007a,b). All of these authors agreed that when
the spectral shape of Mrk 421 is curved, can be difficult to de-
scribe its curvature in terms of absorption alone because this
would require a column density much higher than the Galactic
value of NH = 1.61 × 1020 cm−2 (Lockman & Savage 1995),
and would also yield unacceptable fits of high χ2

r . Moreover,
brightness profile derived from high resolution images of the
host early-type galaxy of Mrk 421 do not exhibit any evidence of
large amounts of absorbing material (Urry et al. 2000). Based on
these phenomenological results, we performed the spectral anal-
ysis by fixing the NH absorbing column densities to the Galactic
values and using the following log-parabolic spectral law (LP):

F(E) = K E−(a+b log(E)) ph cm−2 s−1 keV−1, (2)

where a is the photon index at 1 keV and b measures the spectral
curvature.

Both the SED peak energy (Ep) and height (S p) can be de-
rived easily from Eq. (2), but, in this case, they are affected by
an intrinsic analytical correlation. This bias can be removed by
using an equivalent functional relationship that is a log-parabola
expressed in terms of Ep, S p, and b (LPEP):

S (E) = (1.60 × 10−9) S p 10−b (log(E/Ep ))2
erg cm−2 s−1, (3)

where S p = E2
pF(Ep) and Ep are estimated during the fit, and

the numerical constant is simply the energy conversion factor
between keV and erg.

4.2. Orbit-resolved analysis

Because of the bright state of the source, we were able to ex-
tract spectra for each orbit, for a total of 172 spectra. A motiva-
tion for performing an orbit-resolved analysis is the strong vari-
ability of the source during these pointings. Integrating spectra
over timescales much longer than the typical variability produces
misleading results in estimating of the curvature, Ep, and S p.

The results of the spectral analysis are reported in Table 2
(which is at the end of the text; rejected spectra are indicated by
(*)), where all statistical errors refer to the 68% confidence level
(equal to one Gaussian standard deviation). The second, third,
and forth columns in Table 2 report the best-fit parameters esti-
mates for the model in Eq. (2). The fifth column reports the value

of the SED peak estimated analytically from Eq. (2) according to
the best-fit model results (Ep∗ ). The sixth and seventh columns
report the Ep and S p best-fit model estimates using Eq. (3) as the
best-fitting model. In the eighth column, we report the flux in the
0.3–10.0 keV band, evaluated by integrating the model function
in Eq. (2). In the last column, we report the reduced χ2 statistics
for the fit with Eq. (2).

The SED peak energy was often difficult to estimate. This
was because during this particularly high brightness state, the
spectra were in some cases hard, with a photon index of a ≃
[1.6−1.7] and of low spectral curvature, implying a peak energy
far from the XRT energy band.

To test the robustness of the Ep estimate, we first derived
the peak energy from the spectral parameters of Eq. (2) (Ep∗).
We then fitted the spectra using Eq. (3), by setting the initial
curvature value to that returned from the fit with Eq. (2). To test
the stability of the results, we adopted the following criteria:

1. The value of Ep is statistically significant. Given the asym-
metric uncertainties, we define σEp to be half of the 2 sigma
confidence level, and require that Ep/σEp < 1.

2. Ep∗ consistent with Ep to a one sigma uncertainty .

We show in Table 2 the estimates of Ep satisfying this criterion,
and in the other cases report only the lower limit of Ep∗. The es-
timates of Ep∗ > 100 keV are obviously not statistically robust,
meaning that the true energy peak may be in excess of 100 keV,
although we are unable to provide a robust estimate.

All spectra for which the stability conditions were satisfied
returned values of Ep <∼ 20 keV.

4.3. Orbit-merged analysis

An orbit-resolved spectral analysis has the ability to follow ac-
curately the strong variability in the source, even though the Ep
estimates are affected by significant uncertainties. In any case,
based on the spectral/flux pattern traced by the previous analy-
sis, we can identify all the orbits indicating essentially the same
spectral/flux states. We can use these intervals to perform an
orbit-merged spectral analysis, and achieve smaller uncertain-
ties in the Ep value, without integrating the source over periods
that exhibits significant changes.

The results of this analysis are reported in Table 3 (which
is at the end of the text). In this analysis, when Ep and Ep∗ can
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Fig. 3. Spectrum from the first orbit of the ObsID 00030352013 performed on 2006 June 22. Left Panel: the systematic deviations on both sides of
the residuals from a best fit with a power-law with Galactic NH show the need of intrinsic curvature. Right panel: the deviations disappear with the
log-parabolic model with Galactic NH. The χ2

r decreases from 1.60 with 246 d.o.f. (power-law) to 1.19 with 245 d.o.f. (log-parabola); the F-test
statistics clearly favours the curved model.

(Fossati et al. 2000b; Tanihata et al. 2004; Massaro et al. 2004;
Tramacere et al. 2007a,b). All of these authors agreed that when
the spectral shape of Mrk 421 is curved, can be difficult to de-
scribe its curvature in terms of absorption alone because this
would require a column density much higher than the Galactic
value of NH = 1.61 × 1020 cm−2 (Lockman & Savage 1995),
and would also yield unacceptable fits of high χ2

r . Moreover,
brightness profile derived from high resolution images of the
host early-type galaxy of Mrk 421 do not exhibit any evidence of
large amounts of absorbing material (Urry et al. 2000). Based on
these phenomenological results, we performed the spectral anal-
ysis by fixing the NH absorbing column densities to the Galactic
values and using the following log-parabolic spectral law (LP):

F(E) = K E−(a+b log(E)) ph cm−2 s−1 keV−1, (2)

where a is the photon index at 1 keV and b measures the spectral
curvature.

Both the SED peak energy (Ep) and height (S p) can be de-
rived easily from Eq. (2), but, in this case, they are affected by
an intrinsic analytical correlation. This bias can be removed by
using an equivalent functional relationship that is a log-parabola
expressed in terms of Ep, S p, and b (LPEP):

S (E) = (1.60 × 10−9) S p 10−b (log(E/Ep ))2
erg cm−2 s−1, (3)

where S p = E2
pF(Ep) and Ep are estimated during the fit, and

the numerical constant is simply the energy conversion factor
between keV and erg.

4.2. Orbit-resolved analysis

Because of the bright state of the source, we were able to ex-
tract spectra for each orbit, for a total of 172 spectra. A motiva-
tion for performing an orbit-resolved analysis is the strong vari-
ability of the source during these pointings. Integrating spectra
over timescales much longer than the typical variability produces
misleading results in estimating of the curvature, Ep, and S p.

The results of the spectral analysis are reported in Table 2
(which is at the end of the text; rejected spectra are indicated by
(*)), where all statistical errors refer to the 68% confidence level
(equal to one Gaussian standard deviation). The second, third,
and forth columns in Table 2 report the best-fit parameters esti-
mates for the model in Eq. (2). The fifth column reports the value

of the SED peak estimated analytically from Eq. (2) according to
the best-fit model results (Ep∗ ). The sixth and seventh columns
report the Ep and S p best-fit model estimates using Eq. (3) as the
best-fitting model. In the eighth column, we report the flux in the
0.3–10.0 keV band, evaluated by integrating the model function
in Eq. (2). In the last column, we report the reduced χ2 statistics
for the fit with Eq. (2).

The SED peak energy was often difficult to estimate. This
was because during this particularly high brightness state, the
spectra were in some cases hard, with a photon index of a ≃
[1.6−1.7] and of low spectral curvature, implying a peak energy
far from the XRT energy band.

To test the robustness of the Ep estimate, we first derived
the peak energy from the spectral parameters of Eq. (2) (Ep∗).
We then fitted the spectra using Eq. (3), by setting the initial
curvature value to that returned from the fit with Eq. (2). To test
the stability of the results, we adopted the following criteria:

1. The value of Ep is statistically significant. Given the asym-
metric uncertainties, we define σEp to be half of the 2 sigma
confidence level, and require that Ep/σEp < 1.

2. Ep∗ consistent with Ep to a one sigma uncertainty .

We show in Table 2 the estimates of Ep satisfying this criterion,
and in the other cases report only the lower limit of Ep∗. The es-
timates of Ep∗ > 100 keV are obviously not statistically robust,
meaning that the true energy peak may be in excess of 100 keV,
although we are unable to provide a robust estimate.

All spectra for which the stability conditions were satisfied
returned values of Ep <∼ 20 keV.

4.3. Orbit-merged analysis

An orbit-resolved spectral analysis has the ability to follow ac-
curately the strong variability in the source, even though the Ep
estimates are affected by significant uncertainties. In any case,
based on the spectral/flux pattern traced by the previous analy-
sis, we can identify all the orbits indicating essentially the same
spectral/flux states. We can use these intervals to perform an
orbit-merged spectral analysis, and achieve smaller uncertain-
ties in the Ep value, without integrating the source over periods
that exhibits significant changes.

The results of this analysis are reported in Table 3 (which
is at the end of the text). In this analysis, when Ep and Ep∗ can

Ep
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Fig. 2. The X-ray Spectral Energy Distribution of Mkn 501 observed with BeppoSAX in April 1997. The interpolations are the best fits with a
log-parabolic law.

Fig. 3. The best fit spectrum with a log-parabolic law and the residuals
of the BeppoSAX observation of Mkn 501 on 11 April 1997. The bin-
ning of the data is finer than in Fig. 2. Note the systematic deviation
due to a flux excess at energies greater than 30 keV.

The three observations of April 1997 were performed dur-
ing a very active phase of Mkn 501. The peak energy Ep

changed from about 9 keV to 100 keV and correspondingly
the Fbol changed by a factor of ∼4.5. The curvature parame-
ter b was generally low, in the range 0.12–0.17. The SEDs of
these observations are shown in Fig. 2. Despite the good χ2, the
residuals showed some systematic deviations. In particular, in
the spectrum observed on April 11, there is a clear excess at en-
ergies above 30 keV and a similar behaviour can also be recog-
nised in the data of April 7. To show in detail how this deviation
is significant we plotted the best fit spectrum and residuals of
April 11 in Fig. 3: the last seven points in the PDS range are all
more than one standard deviation higher than expected. Note
also that if the best fit parameters are evaluated limiting the

upper energy to 30 keV, their values do not change indicating
that their estimation is dominated by the low energy data be-
cause of their much better statistics. Another important result,
very clearly evident in the SEDs of Fig. 2, is that the flux at en-
ergies below 0.5 keV remained practically unchanged despite
the large variability observed at higher energies. As discussed
in Sect. 5, this fact can be relevant to look for a possible inter-
pretation of the spectral evolution of the flare.

A marginal detection (1997, April 4−15) of Mkn 501 with
EGRET at energies greater than ∼100 MeV is reported by
Kataoka et al. (1999) who give the photon flux F(>100 MeV) =
9 ± 7 × 10−8 ph cm−2 s−1. We verified that the extrapolation
in this range of our log-parabolic fit for the April 16 obser-
vation, when the source was at the highest level in the X-ray
band, was compatible with this flux. Indeed, using the best
fit values of Table 4, we computed a flux F(100 MeV) =
1.8×10−9 ph cm−2 s−1 MeV−1 corresponding to a power law in-
tegral flux of F(>100 MeV) ≃ 16×10−8 ph cm−2 s−1. Note that
this value, considering that the source during the EGRET point-
ing was likely weaker than the exceptional flare of April 16 and
that its γ-ray spectrum steeper than our assumption, must be
considered as an upper limit. In any case, the April 16 extrapo-
lated value is compatible with the EGRET result within 1σ.

Observations of Mkn 501 from March to October 1997
at energies higher than 0.25 TeV, performed with CAT, are
reported by Djannati-Atai et al. (1999), who adopted a log-
parabolic law to fit the spectra. In particular, in April the
source was observed in time windows very close, but not
strictly simultaneous, with the BeppoSAX pointings. It showed
a behaviour remarkably similar to that in the X rays with a
very strong flare on April 16. The spectral curvature in the
TeV range was always stronger than in the X rays, in partic-
ular the value of b was found greater than 0.4. A similar result
is reported by Krennrich et al. (1999), who observed Mkn 501
with the Whipple telescope from February to June 1997.
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Fig. 8. E∗p − L∗p and E∗p − b plots for PKS 2155-304 (black filled squares)
compared with those of Mrk 421 (orange circles).

5. Discussion

Correlations between L∗p and E∗p provide interesting information
concerning the driver of the source spectral evolution. For exam-
ple, using a wide dataset of X-ray observations of Mrk 421 we
have investigated the effects of varing physical parameters in the
synchrotron emission, where the dependence of L∗p on E∗p may
be represented in the form of a power-law, that is, L∗p ∝ E∗ αp
(Tramacere et al. 2007a, and references therein).

In fact, the synchrotron peak is expected to scale as L∗p ∝
N γ2 B2 δ4 while the peak energy scales as E∗p ∝ γ2B δ, in terms
of the number N of emitting particles, the magnetic field B, of
the typical electron energy γmc2, and of the beaming factor δ.
Thus, α = 1 applies1 when the spectral changes are dominated
by variations of the electron average energy, α = 2 applies for
changes of the magnetic field, α = 4 if changes in the beaming
factor dominate and formally, α = ∞ (i.e., a vertical line in the
E∗p−L∗p plane) applies for changes only in the number of emitting
particles.

Here, we have presented accurate analyses of the X-ray spec-
tra of several TeV HBLs observed over a period 11 years. We
confirm that these spectra are best described with a log-parabolic
model, even though in some cases an acceptable fit is also pro-
vided by a power-law spectral model absorbed by a Galactic
column density.

From our analyses we have derived values of spectral param-
eters, Ep, S p and curvature b, independently. With the cosmolog-
ical transformations given by Eqs. (3) and (5), we searched for
possible correlations, or at least trends, among the spectral pa-
rameters. Five sources (PKS 0548-322, 1H 1426+428, Mrk 501,
1ES 1959+650, PKS 2155-304) have enough data to warrant in-
vestigating in some detail the E∗p − L∗p and E∗p − b relations and
comparing them with those found for Mrk 421.

On the other hand, the number of observations for each
source in our sample does not allow statistical analyses as de-
tailed as in the case of Mrk 421 (Tramacere et al. 2007a).
Therefore for these sources it is not yet possible to determine
the value of the synchrotron exponent α. Accordingly, we have

1 We take the opportunity to correct here an error in Tramacere et al.
(2007a).

Fig. 9. Upper panel: the E∗p −b plot for Mrk 421 and for the five sources
analysed in detail in Sect. 5. Lower panel: blue points represents the
other TeV HBLs with insufficient data to perform a detailed analysis.
The above sources are replotted with orange crosses.

evaluated only the logarithmic correlation coefficients rlog be-
tween E∗p − L∗p and E∗p − b for each source.

Comparing these values with those evaluated for Mrk 421 we
have found that at least three sources (namely PKS 0548-322,
1H 1426+428 and Mrk 501) follow the same trends as Mrk 421
in the E∗p − L∗p plane. In the case of 1ES 1959+650, our observed
spectral parameters cover a smaller region compared to Mrk 421;
nevertheless, the trend so outlined is consistent with that of the
latter. Finally, we have found that PKS 2155-304 has again a
similar behaviour in the E∗p − b plane but definitely a different
one in the E∗p − L∗p plane.

An overall comparison of these similarities is given in Fig. 9
(upper panel). This portrays the E∗p − b plane for these five
sources plus Mrk 421, to show that the curvature ranges from
about 0.12 to about 0.55 (with the exception of only one pointing
of 1ES 1959+650, as discussed above); the correlation coeffi-
cient for the sample constituted by these sources is rlog = −0.66.
Examination of Tables A.1−A.3 indicates that the remaining
sources in our sample are consistent with the trend estabilished
for Mrk 421 and confirmed by the five HBLs discussed above
(see also Fig. 9 lower panel).

Next, we point out two cautionary remarks on biases that
may arise when comparing analyses of different sources. First,
we note the role of the beaming factor. Although Tramacere et al.
(2007a) show that for Mrk 421 the beaming factor is unlikely to
be the main driver of the E∗p − L∗p relation, it may play a subtler
role when comparing several sources. In fact, both E∗p and L∗p
depend on δ; this implies that even though for a single source δ
does not have a large variation, its value may vary significantly
from source to source, affecting the E∗p−L∗p plot. The same holds
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where βA = VA/c and VA is the Alfven waves velocity, ρg = pc/qB is the Larmor radius, and104

λmax is the maximum wavelength of the Alfven waves spectrum. The acceleration time for105

particles with Lorentz factor γ, whose Larmor radii resonate with one particular magnetic106

field turbulence length-scale, is dictated by the momentum diffusion coefficient (Dp) as,107

tacc ≈
p2

Dp

=
ρg(γ0)

c β2
A

(

B2
0

δB2

)
∣

∣

∣

∣

γ0

(

γ

γ0

)2−q

. (15)

The spatial diffusion coefficient relates to the momentum diffusion coefficient through the108

relation, DxDp ≈ p2β2
A (Skilling 1975), hence the escape time of the particles from the109

acceleration region of size R, depends on the spatial diffusion coefficient through the relation,110

tesc ≈
R2

Dx

≈
R2

(cβA)2 tacc
. (16)

The coefficients in Eq. 11, and their related time scales, can be expressed as a power-law in

terms of the Lorentz factor (γ):
⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

Dp(γ) = Dp0

(

γ
γ0

)q

, tD = 1
Dp0

(

γ
γ0

)2−q

DA(γ) = 2Dp0

(

γ
γ0

)q−1
, tDA = 1

2Dp0

(

γ
γ0

)2−q

A(γ) = Ap0γ, tA = 1
A0

(17)

where Dp0, and A0 have the dimension of the inverse of a time. Analytical solutions of

the diffusion equation for relativistic electrons are frequently discussed in the literature

since the early work by Kardashev (1962), in particular for the case of the “hard-sphere”

approximation. Neglecting the S and Tesc terms in Eq. 11, and using a mono-energetic

and instantaneous injection (n(γ, 0) = N0δ(γ − γ0)), the solution of the diffusion equation is

(Melrose 1969; Kardashev 1962):

n(γ, t) =
N0

γ
√

4πDp0t
exp

{

−
[ln(γ/γ0) − (Ap0 − Dp0)t]2

4Dp0t

}

, (18)

ie. a log-parabolic distribution, whose curvature term is:

r =
ce

4Dp0 t
∝

1

Dp0t
(19)
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governing the temporal evolution of n(γ) is:87

∂n(γ, t)

∂t
=

∂

∂γ

{

− [S(γ, t) + DA(γ, t)]n(γ, t) + Dp(γ, t)
∂n(γ, t)

∂γ

}

−
n(γ, t)

Tesc(γ)
+ Q(γ, t) (11)

where Dp(γ, t) is the momentum diffusion coefficient, DA(γ, t) = (2/γ)Dp(γ, t) is the av-88

erage energy change term resulting from the momentum-diffusion process, and S(γ, t) =89

−C(γ, t) + A(γ, t) is an extra term describing systematic energy loss (C) and/or gain (A),90

and Q(γ, t) is the injection term. In the standard diffusive shock acceleration scenario, there91

are several possibilities for which one can expect that energy gain fluctuations will occur,92

due to the momentum diffusion term. In particular, for the case of a turbulent magnetized93

medium, the advection of particles towards the shock resulting from a pitch angle scatter-94

ing may be accompanied by stochastic momentum diffusion mechanism. In this scenario,95

particles embedded in a magnetic field with both an ordered (B0) and turbulent (δB) com-96

ponent, exchange energy with resonant plasma waves, and the related diffusion coefficient is97

determined by the spectrum of the plasma waves. Following the approach of Becker et al.98

(2006) we describe the energy distribution W (k) in terms of the wave number k = 2π/λ99

with a power-law :100

W (k) =
δB(k)2

8π
=

δB(k0)2

8π

(

k

k0

)

−q

. (12)

with q = 2 for the “hard-sphere” spectrum, q = 5/3 for the Kolmogorov spectrum, and101

q = 3/2 for the Kraichnen spectrum, the total energy density in the fluctuations being102

UδB =

∫ kmax

k0

W (k)dk . (13)

Under these assumptions the momentum-diffusion coefficient reads (O’Sullivan et al. 2009):103

Dp ≈ β2
A

(δB

B0

)2( ρg

λmax

)q−1p2c2

ρgc
(14)
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where γ is the Lorentz factor of the particle and ε is the fractional energy gain. We here

investigate the role of fluctuations of ε, on the spectral shape of the accelerated particles.

With this aim in mind, we express the energy gain fluctuations as

ε = ε̄ + χ (2)

where the random variable χ has a probability density function with zero mean value (⟨χ⟩ =

0) and variance σ2
χ, and ε̄ represents the systematic energy gain, that we treat as a non-

random variable and the probability density function of ε is defined on the range ε ≥ 0. The

particle energy at step ns can be expressed as:

γns
= γ0Π

ns

i=1εi (3)

where γ0 is the initial energy of the particle. This equation clearly shows that the final energy

distribution (n(γ) = dN(γ)/dγ) will result from the product of the random variables εi. The

determination of an analytic expression for the distribution resulting from the multiplication

of generic random variable is not an easy task (Glen et al. 2004). Using the simplifying

assumption that the particles are always accelerated, namely the acceleration probability,

Pa, is set to unity and applying the multiplicative case of the central limit theorem (e.g.

Cowan 1998) it is possible to show that the particle energies will be distributed as a log-

normal law:

n(γ) =
N0

γσγ

√

(2π)
exp

[

− (ln γ − µ)2/2σ2
γ

]

(4)

where N0, is the total number of particles, µ = ⟨ln γ⟩, σ2
γ = σ2(ln γ). We can determine59

these two quantities by taking the logarithm of Eq. 3,60

ln γns
= ln γ0 + Σns

i=1 ln (ε̄ + χi)

= ln (γ0ε̄
ns) + Σns

i=1 ln
(

1 +
χi

ε̄

)

≈ ln (γ0ε̄
ns) + Σns

i=1

(χi

ε̄
−

χ2
i

2ε̄2

)

(5)

fluctuation

systematic
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2. THE LOG-PARABOLA ORIGIN:
ANALYTICAL APPROACH

2.1. Statistical Description

In the statistical picture, the change in energy of the particles
at each acceleration step ns is expressed as

γns
= εns

γns−1 = γns−1(1 + ∆γns−1/γns−1), (1)

where γ is the Lorentz factor of the particle and ε is the fractional
energy gain. Here we investigate the role of fluctuations of ε on
the spectral shape of the accelerated particles. With this aim in
mind, we express the energy gain fluctuations as

ε = ε̄ + χ , (2)

where the random variable χ has a probability density function
with zero mean value (⟨χ⟩ = 0) and variance σ 2

χ , and ε̄
represents the systematic energy gain, which we treat as a non-
random variable and the probability density function of ε is
defined on the range ε ! 0. The particle energy at step ns can
be expressed as

γns
= γ0Πns

i=1εi , (3)

where γ0 is the initial energy of the particle. This equation clearly
shows that the final energy distribution (n(γ ) = dN(γ )/dγ )
will result from the product of the random variables εi . The
determination of an analytic expression for the distribution
resulting from the multiplication of generic random variable
is not an easy task (Glen et al. 2004). Using the simplifying
assumption that the particles are always accelerated, namely,
the acceleration probability, Pa, is set to unity and applying the
multiplicative case of the central limit theorem (e.g., Cowan
1998), it is possible to show that the particle energies will be
distributed as a log-normal law

n(γ ) = N0

γ σγ

√
(2π )

exp
[
− (ln γ − µ)2/2σ 2

γ

]
, (4)

where N0 is the total number of particles, µ = ⟨lnγ ⟩, σ 2
γ =

σ 2(lnγ ). We can determine these two quantities by taking the
logarithm of Equation (3),

ln γns
= ln γ0 + Σns

i=1 ln(ε̄ + χi)

= ln(γ0ε̄
ns ) + Σns

i=1 ln
(

1 +
χi

ε̄

)

≈ ln(γ0ε̄
ns ) + Σns

i=1

(
χi

ε̄
− χ2

i

2ε̄2

)
, (5)

assuming that χi/ε̄ is not large. We obtain for the two parame-
ters µ and σγ

µ = ln(γ0) + ns ln ε̄ + ns

[〈χ
ε̄

〉
− 1

2

(σχ

ε̄

)2
−

〈 χ

2ε̄

〉2
]

σ 2
γ = ns

[(σχ

ε̄

)2
+

(σχ

2ε̄

)4
+ 2

(σχ

2ε̄

〈 χ

2ε̄

〉 )2]
, (6)

where we have ignored the covariance terms since we are as-
suming the energy gain at each acceleration step is independent
of the one at the previous step. Remembering that ⟨χ⟩ = 0,
σχ = σε, and ignoring the fourth-order term, we can write

µ = ln(γ0) + ns

[
ln ε̄ − 1

2

(σε

ε̄

)2]
.

σ 2
γ ≈ ns

(σε

ε̄

)2
. (7)

This equation shows that the variance increases linearly with
the number of acceleration steps and is proportional to σε

2.
Substituting µ and σγ into Equation (4)

n(γ ) = N0

γ σγ

√
(2π )

× exp

[
−

(
ln(γ /γ0) − ns

[
ln ε̄ − 1

2 (σε/ε̄)2
])2

2ns(σε/ε̄)2

]

. (8)

Hereafter we will consider decimal logarithms (log ≡ log10,
ce = 1/ log10 e ≈ 2.3) to make easier a comparison of
the curvature results from this paper with those presented in
observational papers. Taking the logarithm of Equation (8) and
substituting the parameters from Equation (8) we obtain

log n(γ ) = K − log γ

−
(
ce log γ /γ0 − ns

[
ce log ε̄ − 1

2 (σε/ε̄)2
])2

ce2ns(σε/ε̄)2
, (9)

where K includes all the constant factors. This is a log-parabolic
law with the curvature (second degree in log γ ) coefficient given
by

r = ce

2ns(σε/ε̄)2
. (10)

The interesting physical insight of this equation is that the curva-
ture of the particle energy distribution is inversely proportional
to the acceleration steps (ns) and to the variance of the energy
gain (σ 2

ε ). In the case of Pa < 1, the distribution at step ns will be
given by the convolution of different log-normal distributions
for each acceleration step, with the distribution at ns broader
than that at ns − 1 and containing fewer particles, as already
noted in Peacock (1981).

Similar results are obtained considering a constant energy
gain but a fluctuating number of acceleration steps. Assuming
that after a time t the probability distribution for the number
of steps undergone by a particle is given by a Poisson law,
it is possible to show that the energy distribution follows a
log-parabola whose curvature term depends on the inverse of
the mean number of steps multiplied by the duration of the
acceleration process.

2.2. Diffusion Equation Approach

The above statistical description provides an intuitive link
between the curvature in the energy distribution of accelerated
particles and the presence of a randomization process, such as
the dispersion in the energy gain or in the number of acceleration
steps. However, this approach does not give a complete physical
description of the processes responsible for the systematic and
stochastic energy gain, ignoring other physical processes, such
as the radiative cooling and injection rates, or the acceleration
energy dependence, necessary to give a complete description
of the particles energy distribution evolution. A physical self-
consistent description of stochastic acceleration in a time-
dependent fashion can be achieved through a kinetic equation
approach. Employing the quasi-linear approximation with the
inclusion of momentum-diffusion term (Ramaty 1979; Becker
et al. 2006), the equation governing the temporal evolution of
n(γ ) is

∂n(γ , t)
∂t

= ∂

∂γ

{
− [S(γ , t) + DA(γ , t)]n(γ , t)

+ Dp(γ , t)
∂n(γ , t)

∂γ

}
− n(γ , t)

Tesc(γ )
+ Q(γ , t), (11)
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where Dp(γ , t) is the momentum-diffusion coefficient,
DA(γ , t) = (2/γ )Dp(γ , t) is the average energy change term
resulting from the momentum-diffusion process, and S(γ , t) =
−C(γ , t) + A(γ , t) is an extra term describing systematic en-
ergy loss (C) and/or gain (A), and Q(γ , t) is the injection term.
In the standard diffusive shock acceleration scenario, there are
several possibilities for which one can expect that energy gain
fluctuations will occur, due to the momentum-diffusion term. In
particular, for the case of a turbulent magnetized medium, the
advection of particles toward the shock due to pitch angle scat-
tering may be accompanied by stochastic momentum-diffusion
mechanism. In this scenario, particles embedded in a magnetic
field with both an ordered (B0) and turbulent (δB) component,
exchange energy with resonant plasma waves, and the related
diffusion coefficient is determined by the spectrum of the plasma
waves. Following the approach of Becker et al. (2006), we de-
scribe the energy distribution W (k) in terms of the wave number
k = 2π/λ with a PL

W (k) = δB(k)2

8π
= δB(k0)2

8π

(
k

k0

)−q

, (12)

with q = 2 for the “hard-sphere” spectrum, q = 5/3 for
the Kolmogorov spectrum, and q = 3/2 for the Kraichnan
spectrum, the total energy density in the fluctuations being

UδB =
∫ kmax

k0

W (k)dk. (13)

Under these assumptions, the momentum-diffusion coefficient
reads (O’Sullivan et al. 2009)

Dp ≈ β2
A

(
δB

B0

)2 ( ρg

λmax

)q−1 p2c2

ρgc
, (14)

where βA = VA/c and VA is the Alfvén waves velocity,
ρg = pc/qB is the Larmor radius, and λmax is the maximum
wavelength of the Alfvén waves spectrum. The acceleration time
for particles with Lorentz factor γ , whose Larmor radii resonate
with one particular magnetic field turbulence length scale, is
dictated by the momentum-diffusion coefficient (Dp) as

tacc ≈ p2

Dp

= ρg(γ0)
cβ2

A

(
B2

0

δB2

)∣∣∣∣
γ0

(
γ

γ0

)2−q

. (15)

The spatial diffusion coefficient relates to the momentum-
diffusion coefficient through the relation, DxDp ≈ p2β2

A
(Skilling 1975), hence the escape time of the particles from the
acceleration region of size R depends on the spatial diffusion
coefficient through the relation

tesc ≈ R2

Dx

≈ R2

(cβA)2 tacc
. (16)

The coefficients in Equation (11), and their related timescales,
can be expressed as a PL in terms of the Lorentz factor (γ )

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Dp(γ ) = Dp0

(
γ
γ0

)q

, tD = 1
Dp0

(
γ
γ0

)2−q

DA(γ ) = 2Dp0

(
γ
γ0

)q−1
, tDA = 1

2Dp0

(
γ
γ0

)2−q

A(γ ) = Ap0γ , tA = 1
A0

, (17)

where Dp0 and A0 have the dimension of the inverse of a time.
Analytical solutions of the diffusion equation for relativistic
electrons have frequently been discussed in the literature since
the early work by Kardashev (1962), in particular for the
case of the “hard-sphere” approximation. Neglecting the S and
Tesc terms in Equation (11), and using a mono-energetic and
instantaneous injection (n(γ , 0) = N0δ(γ − γ0)), the solution
of the diffusion equation is (Melrose 1969; Kardashev 1962)

n(γ , t) = N0

γ
√

4πDp0t
exp

{
− [ln(γ /γ0) − (Ap0 − Dp0)t]2

4Dp0t

}
,

(18)
i.e., a log-parabolic distribution, whose curvature term is

r = ce

4Dp0t
∝ 1

Dp0t
. (19)

This result is fully consistent with that found in the statistical
description; indeed, Equations (18) and (8) have the same
functional form in both the statistical and in the diffusion
equation scenario, with t playing the role of ns, Dp0 the role
of the variance of the energy gain (σ 2

ε ), and Ap0 the role of
log ε̄. Hence we can write

Dp0 ∝
(σε

ε̄

)2
. (20)

It is interesting to note that in the case of the “hard-sphere”
approximation, the curvature term is simply dictated by the
ratio of the diffusive acceleration time (tD) to the evolution
time (t).

3. NUMERICAL APPROACH: MONTE CARLO
SIMULATION WITH MAGNETIC TURBULENCE

In this section, we demonstrate explicitly how the introduction
of energy fluctuations leads to curved spectral distributions of
particles. This is carried out using an MC approach.

In our simulations, we considered 105 particles injected into
the system with a cold mono-energetic distribution of Lorentz
factors, with γ0 = 1. To compare these results with the ones
presented in Section 2, we remind the reader that in the MC
approach, the duration of the acceleration process t is the
equivalent of the number of acceleration steps (ns) used in
the statistical picture and that the probability of the particle
to be upscattered or downscattered in the MC realizations
can be expressed in the statistical approach as P (ε > 1)
and P (ε < 1), respectively. The scattering probability of the
particles is dictated by the intensity of resonant waves in the
turbulent magnetic power spectrum. As a working hypothesis,
we assume that particles interact with a turbulent magnetic field
whose power spectrum is expressed by Equation (12). In each
scattering, the particles have a probability of (1 + βA)/2 of
being upscattered and a probability of (1 − βA)/2 of being
downscattered. The energy dispersion of the particle due to
resonant scattering with Alfvén waves will be ⟨∆E2⟩ ∝ (EβA)2t ,
where E = mec

2γ . Using the very good approximation for
the variance of the product of n uncorrelated random variables
(Goodman 1962)

σ 2(Πxi) = Π⟨xi⟩2Σ
(

σ 2
xi

⟨xi⟩2

)

(21)
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where Dp(γ , t) is the momentum-diffusion coefficient,
DA(γ , t) = (2/γ )Dp(γ , t) is the average energy change term
resulting from the momentum-diffusion process, and S(γ , t) =
−C(γ , t) + A(γ , t) is an extra term describing systematic en-
ergy loss (C) and/or gain (A), and Q(γ , t) is the injection term.
In the standard diffusive shock acceleration scenario, there are
several possibilities for which one can expect that energy gain
fluctuations will occur, due to the momentum-diffusion term. In
particular, for the case of a turbulent magnetized medium, the
advection of particles toward the shock due to pitch angle scat-
tering may be accompanied by stochastic momentum-diffusion
mechanism. In this scenario, particles embedded in a magnetic
field with both an ordered (B0) and turbulent (δB) component,
exchange energy with resonant plasma waves, and the related
diffusion coefficient is determined by the spectrum of the plasma
waves. Following the approach of Becker et al. (2006), we de-
scribe the energy distribution W (k) in terms of the wave number
k = 2π/λ with a PL

W (k) = δB(k)2

8π
= δB(k0)2

8π

(
k

k0

)−q

, (12)

with q = 2 for the “hard-sphere” spectrum, q = 5/3 for
the Kolmogorov spectrum, and q = 3/2 for the Kraichnan
spectrum, the total energy density in the fluctuations being

UδB =
∫ kmax

k0

W (k)dk. (13)

Under these assumptions, the momentum-diffusion coefficient
reads (O’Sullivan et al. 2009)
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ρgc
, (14)

where βA = VA/c and VA is the Alfvén waves velocity,
ρg = pc/qB is the Larmor radius, and λmax is the maximum
wavelength of the Alfvén waves spectrum. The acceleration time
for particles with Lorentz factor γ , whose Larmor radii resonate
with one particular magnetic field turbulence length scale, is
dictated by the momentum-diffusion coefficient (Dp) as

tacc ≈ p2
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= ρg(γ0)
cβ2
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The spatial diffusion coefficient relates to the momentum-
diffusion coefficient through the relation, DxDp ≈ p2β2

A
(Skilling 1975), hence the escape time of the particles from the
acceleration region of size R depends on the spatial diffusion
coefficient through the relation
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The coefficients in Equation (11), and their related timescales,
can be expressed as a PL in terms of the Lorentz factor (γ )
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where Dp0 and A0 have the dimension of the inverse of a time.
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i.e., a log-parabolic distribution, whose curvature term is
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of the variance of the energy gain (σ 2
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log ε̄. Hence we can write
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. (20)
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ratio of the diffusive acceleration time (tD) to the evolution
time (t).
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In this section, we demonstrate explicitly how the introduction
of energy fluctuations leads to curved spectral distributions of
particles. This is carried out using an MC approach.

In our simulations, we considered 105 particles injected into
the system with a cold mono-energetic distribution of Lorentz
factors, with γ0 = 1. To compare these results with the ones
presented in Section 2, we remind the reader that in the MC
approach, the duration of the acceleration process t is the
equivalent of the number of acceleration steps (ns) used in
the statistical picture and that the probability of the particle
to be upscattered or downscattered in the MC realizations
can be expressed in the statistical approach as P (ε > 1)
and P (ε < 1), respectively. The scattering probability of the
particles is dictated by the intensity of resonant waves in the
turbulent magnetic power spectrum. As a working hypothesis,
we assume that particles interact with a turbulent magnetic field
whose power spectrum is expressed by Equation (12). In each
scattering, the particles have a probability of (1 + βA)/2 of
being upscattered and a probability of (1 − βA)/2 of being
downscattered. The energy dispersion of the particle due to
resonant scattering with Alfvén waves will be ⟨∆E2⟩ ∝ (EβA)2t ,
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Fig. 7.— Left panes: evolution of the particle spectrum with impulsive injection and no

escape for the case of R = 1× 1015 cm, B = 1.0 and q = 3/2. Since tD is energy dependent,

on the x-axis we plot the ratio t/tD(γinj), where tD(γinj) is the diffusive acceleration time

evaluated at the injection energy γinj. Green solid lines represent the temporal evolution,

for B = 0.1 G, with step of 2.4× tD(γ0). Right panels: Evolution of the curvature r (upper)

and r3p (lower).

4.1. Physical set-up: the relations between Dp, and tD with γmax and R187

We study the evolution of n(γ) and of the curvature term in an homogeneous spherical

geometry, with radius R and an entangled coherent magnetic field B and a turbulent compo-

nent δB, in the two cases of impulsive and continuous injection with a quasi mono-energetic

source function Q(γinj, t) normalised to have a fixed energy input rate:

Linj =
4

3
πR3

∫

γinjmec
2Q(γinj, t)dγinj (erg/s) (25)

In our approach we don’t distinguish the acceleration region from the radiative one, and dur-188

ing the acceleration process we take into account both synchrotron and IC cooling. According189

to Eq. 14, to determine the order of magnitude of Dp we assume δB/B << 1 ≃ 0.1 − 0.01190

injection term
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2. THE LOG-PARABOLA ORIGIN:
ANALYTICAL APPROACH

2.1. Statistical Description

In the statistical picture, the change in energy of the particles
at each acceleration step ns is expressed as

γns
= εns

γns−1 = γns−1(1 + ∆γns−1/γns−1), (1)

where γ is the Lorentz factor of the particle and ε is the fractional
energy gain. Here we investigate the role of fluctuations of ε on
the spectral shape of the accelerated particles. With this aim in
mind, we express the energy gain fluctuations as

ε = ε̄ + χ , (2)

where the random variable χ has a probability density function
with zero mean value (⟨χ⟩ = 0) and variance σ 2

χ , and ε̄
represents the systematic energy gain, which we treat as a non-
random variable and the probability density function of ε is
defined on the range ε ! 0. The particle energy at step ns can
be expressed as

γns
= γ0Πns

i=1εi , (3)

where γ0 is the initial energy of the particle. This equation clearly
shows that the final energy distribution (n(γ ) = dN(γ )/dγ )
will result from the product of the random variables εi . The
determination of an analytic expression for the distribution
resulting from the multiplication of generic random variable
is not an easy task (Glen et al. 2004). Using the simplifying
assumption that the particles are always accelerated, namely,
the acceleration probability, Pa, is set to unity and applying the
multiplicative case of the central limit theorem (e.g., Cowan
1998), it is possible to show that the particle energies will be
distributed as a log-normal law

n(γ ) = N0

γ σγ

√
(2π )

exp
[
− (ln γ − µ)2/2σ 2

γ

]
, (4)

where N0 is the total number of particles, µ = ⟨lnγ ⟩, σ 2
γ =

σ 2(lnγ ). We can determine these two quantities by taking the
logarithm of Equation (3),

ln γns
= ln γ0 + Σns

i=1 ln(ε̄ + χi)

= ln(γ0ε̄
ns ) + Σns

i=1 ln
(

1 +
χi

ε̄

)

≈ ln(γ0ε̄
ns ) + Σns

i=1

(
χi

ε̄
− χ2

i

2ε̄2

)
, (5)

assuming that χi/ε̄ is not large. We obtain for the two parame-
ters µ and σγ

µ = ln(γ0) + ns ln ε̄ + ns

[〈χ
ε̄

〉
− 1

2

(σχ

ε̄

)2
−

〈 χ

2ε̄

〉2
]

σ 2
γ = ns

[(σχ

ε̄

)2
+

(σχ

2ε̄

)4
+ 2

(σχ

2ε̄

〈 χ

2ε̄

〉 )2]
, (6)

where we have ignored the covariance terms since we are as-
suming the energy gain at each acceleration step is independent
of the one at the previous step. Remembering that ⟨χ⟩ = 0,
σχ = σε, and ignoring the fourth-order term, we can write

µ = ln(γ0) + ns

[
ln ε̄ − 1

2

(σε

ε̄

)2]
.

σ 2
γ ≈ ns

(σε

ε̄

)2
. (7)

This equation shows that the variance increases linearly with
the number of acceleration steps and is proportional to σε

2.
Substituting µ and σγ into Equation (4)

n(γ ) = N0

γ σγ

√
(2π )

× exp

[
−

(
ln(γ /γ0) − ns

[
ln ε̄ − 1

2 (σε/ε̄)2
])2

2ns(σε/ε̄)2

]

. (8)

Hereafter we will consider decimal logarithms (log ≡ log10,
ce = 1/ log10 e ≈ 2.3) to make easier a comparison of
the curvature results from this paper with those presented in
observational papers. Taking the logarithm of Equation (8) and
substituting the parameters from Equation (8) we obtain

log n(γ ) = K − log γ

−
(
ce log γ /γ0 − ns

[
ce log ε̄ − 1

2 (σε/ε̄)2
])2

ce2ns(σε/ε̄)2
, (9)

where K includes all the constant factors. This is a log-parabolic
law with the curvature (second degree in log γ ) coefficient given
by

r = ce

2ns(σε/ε̄)2
. (10)

The interesting physical insight of this equation is that the curva-
ture of the particle energy distribution is inversely proportional
to the acceleration steps (ns) and to the variance of the energy
gain (σ 2

ε ). In the case of Pa < 1, the distribution at step ns will be
given by the convolution of different log-normal distributions
for each acceleration step, with the distribution at ns broader
than that at ns − 1 and containing fewer particles, as already
noted in Peacock (1981).

Similar results are obtained considering a constant energy
gain but a fluctuating number of acceleration steps. Assuming
that after a time t the probability distribution for the number
of steps undergone by a particle is given by a Poisson law,
it is possible to show that the energy distribution follows a
log-parabola whose curvature term depends on the inverse of
the mean number of steps multiplied by the duration of the
acceleration process.

2.2. Diffusion Equation Approach

The above statistical description provides an intuitive link
between the curvature in the energy distribution of accelerated
particles and the presence of a randomization process, such as
the dispersion in the energy gain or in the number of acceleration
steps. However, this approach does not give a complete physical
description of the processes responsible for the systematic and
stochastic energy gain, ignoring other physical processes, such
as the radiative cooling and injection rates, or the acceleration
energy dependence, necessary to give a complete description
of the particles energy distribution evolution. A physical self-
consistent description of stochastic acceleration in a time-
dependent fashion can be achieved through a kinetic equation
approach. Employing the quasi-linear approximation with the
inclusion of momentum-diffusion term (Ramaty 1979; Becker
et al. 2006), the equation governing the temporal evolution of
n(γ ) is

∂n(γ , t)
∂t

= ∂

∂γ

{
− [S(γ , t) + DA(γ , t)]n(γ , t)

+ Dp(γ , t)
∂n(γ , t)

∂γ

}
− n(γ , t)

Tesc(γ )
+ Q(γ , t), (11)

2
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Figure 2. Curvature parameters of the energy distribution of accelerated electrons shown in Figure 1. In the case of q = 2 (red line), the trend is consistent with the
“hard-spheres” prediction (blue line). In the case of Kolmogorov (green line) and Kraichnan (black line) turbulence, the trend predicts larger values compared to the
“hard-spheres” prediction and r approaches an asymptotic value dictated by the exponential cutoff in the equilibrium distribution.
(A color version of this figure is available in the online journal.)

taking into account the competition between radiative losses
and acceleration, and its influence on the curvature, we use the
diffusion equation approach, already outlined in Section 2.2, by
inserting into Equation (11) a cooling term for the synchrotron
and IC radiative losses. Following Moderski et al. (2005) we
can write

|γ̇synch| = 4σT c

3mec2
γ 2UB = C0γ

2UB

|γ̇IC| = 4σT c

3mec2
γ 2

∫
fKN(4γ ϵ0)ϵ0nph(ϵ0)dϵ0 = C0γ

2FKN(γ )

C(γ ) = |γ̇synch| + |γ̇IC| = C0γ
2(UB + FKN(γ )), (24)

where UB = B2/8π is the energy density of the magnetic field,
ϵ0 = hν0/mec

2 is the IC seed photon energy in units of mec
2,

nph(ϵ0) is the number density of IC seed photons with the corre-
sponding photon energy density Uph = mec

2
∫

ϵ0nph(ϵ0)dϵ0.
The function fKN results from the analytical integration of
the Jones (1968) Compton kernel, fully taking into account
Klein–Nishina (KN) effects for an isotropic seed photon field
(see Moderski et al. 2005, their Appendix C), and FKN(γ ) rep-
resents its convolution with the seed photon field. We remark
that FKN plays a crucial role in the cooling process, depending
both on the IC regime (Thomson (TH) limit for 4γ ϵ0 ≪ 1, KN
limit for 4γ ϵ0 ≫ 1) and on ϵ0nph(ϵ0) ∝ B2/R2.

Since analytical solutions are possible only for a limited
number of cases, to follow the complex dependence of the
IC cooling term on nph(ϵ0) in a self-consistent way we must
solve the diffusion equation numerically. For this purpose, we
further developed the numerical code (Tramacere et al. 2009;
Tramacere 2007) used to compute numerically the synchrotron
and IC emission and introduced it into the numerical solution of
the diffusion equation. In the numerical calculations, we adopted
the method proposed by Chang & Cooper (1970) and used
the numerical recipe given by Park & Petrosian (1996). This
is a finite difference scheme based on the centered difference
of the diffusive term, employing weighted differences for the
advective term. We use a 5000 point energy grid over the range
1.0 ! γ ! 109, and a time grid that is finely tuned to have a
temporal mesh several orders of magnitude smaller than typical
cooling and acceleration timescales. The results from our code
were compared, when possible, with known analytical solutions
and always found good agreement.

4.1. Physical Set-up: the Relations Between Dp and tD with
γmax and R

We study the evolution of n(γ ) and of the curvature term
in a homogeneous spherical geometry, with radius R and an
entangled coherent magnetic field B and a turbulent component
δB, in the two cases of impulsive and continuous injection with
a quasi mono-energetic source function Q(γinj, t) normalized to
have a fixed energy input rate:

Linj = 4
3
πR3

∫
γinjmec

2Q(γinj, t)dγinj (erg s−1). (25)

In our approach, we do not distinguish the acceleration region
from the radiative one and during the acceleration process we
take into account both synchrotron and IC cooling. According
to Equation (14), to determine the order of magnitude of
Dp we assume 1 ≫ δB/B ≃ 0.1–0.01 and require Alfvén
waves to be at least mildly relativistic, with βA ≃ 0.1–0.5,
and their maximum wavelength to be much smaller than the
accelerator size (λmax < R). To study the effect of IC cooling
on the evolution of n(γ ), we consider two different sizes of
the acceleration region, a compact one (R = 5 × 1013 cm)
and a larger one (R = 1 × 1015 cm). With this choice of
accelerator size, we set λmax ≈ 1012 cm. We stress that the
choice of λmax constrains the accelerative upper limit through
ρg < λmax leading to γmax < (λmaxqB)/mec

2, since particles
with larger ρg (hence larger γ ) cannot resonate with shorter
wavelengths. Taking into account a coherent magnetic field of
the order of 0.1 G and λmax ≈ 1012 cm we found that the purely
accelerative efficiency limits the particle energy to γmax " 107.5.
In the left panel of Figure 3, we plot tD, given by Equation (17),
as a function of λmax, for the case of q = 2, δB/B = 0.1,
and βA = 0.5. In this case, the acceleration time is energy
independent and for λmax ≈ 1012 cm it will be of the order of
tD = 1/Dp0 ≈ 104 s. In the case of q ̸= 2, the acceleration
will have an energy dependence given by Equation (17), as
shown in the right panel of Figure 3 for the case of q = 3/2.
In this section, we focus on the evolution of the curvature as
a function of the momentum-diffusion term, and therefore use
only the accelerative contributions coming from the diffusion
terms (Dp(γ ),DA(γ )), neglecting the systematic extra term
A(γ ). All the parameters and their numerical values are given
in Table 1.
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where Dp(γ , t) is the momentum-diffusion coefficient,
DA(γ , t) = (2/γ )Dp(γ , t) is the average energy change term
resulting from the momentum-diffusion process, and S(γ , t) =
−C(γ , t) + A(γ , t) is an extra term describing systematic en-
ergy loss (C) and/or gain (A), and Q(γ , t) is the injection term.
In the standard diffusive shock acceleration scenario, there are
several possibilities for which one can expect that energy gain
fluctuations will occur, due to the momentum-diffusion term. In
particular, for the case of a turbulent magnetized medium, the
advection of particles toward the shock due to pitch angle scat-
tering may be accompanied by stochastic momentum-diffusion
mechanism. In this scenario, particles embedded in a magnetic
field with both an ordered (B0) and turbulent (δB) component,
exchange energy with resonant plasma waves, and the related
diffusion coefficient is determined by the spectrum of the plasma
waves. Following the approach of Becker et al. (2006), we de-
scribe the energy distribution W (k) in terms of the wave number
k = 2π/λ with a PL

W (k) = δB(k)2

8π
= δB(k0)2

8π

(
k

k0

)−q

, (12)

with q = 2 for the “hard-sphere” spectrum, q = 5/3 for
the Kolmogorov spectrum, and q = 3/2 for the Kraichnan
spectrum, the total energy density in the fluctuations being

UδB =
∫ kmax

k0

W (k)dk. (13)

Under these assumptions, the momentum-diffusion coefficient
reads (O’Sullivan et al. 2009)

Dp ≈ β2
A

(
δB

B0

)2 ( ρg

λmax

)q−1 p2c2

ρgc
, (14)

where βA = VA/c and VA is the Alfvén waves velocity,
ρg = pc/qB is the Larmor radius, and λmax is the maximum
wavelength of the Alfvén waves spectrum. The acceleration time
for particles with Lorentz factor γ , whose Larmor radii resonate
with one particular magnetic field turbulence length scale, is
dictated by the momentum-diffusion coefficient (Dp) as

tacc ≈ p2

Dp

= ρg(γ0)
cβ2

A

(
B2

0

δB2

)∣∣∣∣
γ0

(
γ

γ0

)2−q

. (15)

The spatial diffusion coefficient relates to the momentum-
diffusion coefficient through the relation, DxDp ≈ p2β2

A
(Skilling 1975), hence the escape time of the particles from the
acceleration region of size R depends on the spatial diffusion
coefficient through the relation

tesc ≈ R2

Dx

≈ R2

(cβA)2 tacc
. (16)

The coefficients in Equation (11), and their related timescales,
can be expressed as a PL in terms of the Lorentz factor (γ )

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Dp(γ ) = Dp0

(
γ
γ0

)q

, tD = 1
Dp0

(
γ
γ0

)2−q

DA(γ ) = 2Dp0

(
γ
γ0

)q−1
, tDA = 1

2Dp0

(
γ
γ0

)2−q

A(γ ) = Ap0γ , tA = 1
A0

, (17)

where Dp0 and A0 have the dimension of the inverse of a time.
Analytical solutions of the diffusion equation for relativistic
electrons have frequently been discussed in the literature since
the early work by Kardashev (1962), in particular for the
case of the “hard-sphere” approximation. Neglecting the S and
Tesc terms in Equation (11), and using a mono-energetic and
instantaneous injection (n(γ , 0) = N0δ(γ − γ0)), the solution
of the diffusion equation is (Melrose 1969; Kardashev 1962)

n(γ , t) = N0

γ
√

4πDp0t
exp

{
− [ln(γ /γ0) − (Ap0 − Dp0)t]2

4Dp0t

}
,

(18)
i.e., a log-parabolic distribution, whose curvature term is

r = ce

4Dp0t
∝ 1

Dp0t
. (19)

This result is fully consistent with that found in the statistical
description; indeed, Equations (18) and (8) have the same
functional form in both the statistical and in the diffusion
equation scenario, with t playing the role of ns, Dp0 the role
of the variance of the energy gain (σ 2

ε ), and Ap0 the role of
log ε̄. Hence we can write

Dp0 ∝
(σε

ε̄

)2
. (20)

It is interesting to note that in the case of the “hard-sphere”
approximation, the curvature term is simply dictated by the
ratio of the diffusive acceleration time (tD) to the evolution
time (t).

3. NUMERICAL APPROACH: MONTE CARLO
SIMULATION WITH MAGNETIC TURBULENCE

In this section, we demonstrate explicitly how the introduction
of energy fluctuations leads to curved spectral distributions of
particles. This is carried out using an MC approach.

In our simulations, we considered 105 particles injected into
the system with a cold mono-energetic distribution of Lorentz
factors, with γ0 = 1. To compare these results with the ones
presented in Section 2, we remind the reader that in the MC
approach, the duration of the acceleration process t is the
equivalent of the number of acceleration steps (ns) used in
the statistical picture and that the probability of the particle
to be upscattered or downscattered in the MC realizations
can be expressed in the statistical approach as P (ε > 1)
and P (ε < 1), respectively. The scattering probability of the
particles is dictated by the intensity of resonant waves in the
turbulent magnetic power spectrum. As a working hypothesis,
we assume that particles interact with a turbulent magnetic field
whose power spectrum is expressed by Equation (12). In each
scattering, the particles have a probability of (1 + βA)/2 of
being upscattered and a probability of (1 − βA)/2 of being
downscattered. The energy dispersion of the particle due to
resonant scattering with Alfvén waves will be ⟨∆E2⟩ ∝ (EβA)2t ,
where E = mec

2γ . Using the very good approximation for
the variance of the product of n uncorrelated random variables
(Goodman 1962)

σ 2(Πxi) = Π⟨xi⟩2Σ
(

σ 2
xi

⟨xi⟩2

)

(21)
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for the number of steps undergone by a particle is given
by a Poisson law, it is possible to show that the energy
distribution follows a log-parabola whose curvature term
depends on the inverse of the mean number of steps mul-
tiplied by the duration of the acceleration process.

2.2. Diffusion equation approach

The above statistical description provides an intuitive
link between the curvature in the energy distribution of
accelerated particles and the presence of a randomiza-
tion process, such as the dispersion in the energy gain or
in the number of acceleration steps. However, this ap-
proach does not give a complete physical description of
the processes responsible for the systematic and stochas-
tic energy gain, ignoring other physical processes, such
as the radiative cooling and injection rates, or the accel-
eration energy dependence, necessary to give a complete
description of the particles energy distribution evolution.
A physical self-consistent description of stochastic accel-
eration in a time-dependent fashion, can be achieved
through a kinetic equation approach. Employing the
quasi-linear approximation with the inclusion of momen-
tum diffusion term (Ramaty 1979; Becker et al. 2006),
the equation governing the temporal evolution of n(γ)
is:
∂n(γ, t)

∂t
=

∂

∂γ

{

− [S(γ, t) +DA(γ, t)]n(γ, t)
}

(11)

+
∂

∂γ

{

Dp(γ, t)
∂n(γ, t)

∂γ

}

−
n(γ, t)

Tesc(γ)
+Q(γ, t)

where Dp(γ, t) is the momentum diffusion coefficient,
DA(γ, t) = (2/γ)Dp(γ, t) is the average energy change
term resulting from the momentum-diffusion process,
and S(γ, t) = −C(γ, t) + A(γ, t) is an extra term de-
scribing systematic energy loss (C) and/or gain (A), and
Q(γ, t) is the injection term. In the standard diffusive
shock acceleration scenario, there are several possibilities
for which one can expect that energy gain fluctuations
will occur, due to the momentum diffusion term. In par-
ticular, for the case of a turbulent magnetized medium,
the advection of particles towards the shock due to pitch
angle scattering may be accompanied by stochastic mo-
mentum diffusion mechanism. In this scenario, parti-
cles embedded in a magnetic field with both an ordered
(B0) and turbulent (δB) component, exchange energy
with resonant plasma waves, and the related diffusion
coefficient is determined by the spectrum of the plasma
waves. Following the approach of Becker et al. (2006)
we describe the energy distribution W (k) in terms of the
wave number k = 2π/λ with a power-law :

W (k) =
δB(k)2

8π
=

δB(k0)2

8π

(

k

k0

)

−q

. (12)

with q = 2 for the “hard-sphere” spectrum, q = 5/3 for
the Kolmogorov spectrum, and q = 3/2 for the Kraich-
nan spectrum, the total energy density in the fluctuations
being

UδB =

∫ kmax

k0

W (k)dk . (13)

Under these assumptions the momentum-diffusion coef-
ficient reads (O’Sullivan et al. 2009):

Dp ≈ β2
A

(δB

B0

)2( ρg
λmax

)q−1 p2c2

ρgc
(14)

where βA = VA/c and VA is the Alfven waves velocity,
ρg = pc/qB is the Larmor radius, and λmax is the maxi-
mum wavelength of the Alfven waves spectrum. The ac-
celeration time for particles with Lorentz factor γ, whose
Larmor radii resonate with one particular magnetic field
turbulence length-scale, is dictated by the momentum
diffusion coefficient (Dp) as,

tacc ≈
p2

Dp
=

ρg(γ0)

c β2
A

(

B2
0

δB2

)
∣

∣

∣

∣

γ0

(

γ

γ0

)2−q

. (15)

The spatial diffusion coefficient relates to the momentum
diffusion coefficient through the relation, DxDp ≈ p2β2

A
(Skilling 1975), hence the escape time of the particles
from the acceleration region of size R, depends on the
spatial diffusion coefficient through the relation,

tesc ≈
R2

Dx
≈

R2

(cβA)
2 tacc

. (16)

The coefficients in Eq. 12, and their related time scales,
can be expressed as a power-law in terms of the Lorentz
factor (γ):

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

Dp(γ) = Dp0

(

γ
γ0

)q

, tD = 1
Dp0

(

γ
γ0

)2−q

DA(γ) = 2Dp0

(

γ
γ0

)q−1
, tDA = 1

2Dp0

(

γ
γ0

)2−q

A(γ) = Ap0γ, tA = 1
A0

(17)
where Dp0, and A0 have the dimension of the inverse
of a time. Analytical solutions of the diffusion equa-
tion for relativistic electrons are frequently discussed in
the literature since the early work by Kardashev (1962),
in particular for the case of the “hard-sphere” approx-
imation. Neglecting the S and Tesc terms in Eq. 12,
and using a mono-energetic and instantaneous injection
(n(γ, 0) = N0δ(γ − γ0)), the solution of the diffusion
equation is (Melrose 1969; Kardashev 1962):

n(γ, t) =
N0

γ
√

4πDp0t
exp

{

−
[ln(γ/γ0)− (Ap0 −Dp0)t]2

4Dp0t

}

,

(18)
ie. a log-parabolic distribution, whose curvature term is:

r =
ce

4Dp0 t
∝

1

Dp0t
(19)

This result is fully consistent with that found in the sta-
tistical description, indeed Eq. 18 and Eq. 8 have the
same functional form in both the statistical and in the
diffusion equation scenario, with t playing the role of ns,
Dp0 the role of the variance of the energy gain (σ2

ε), and
Ap0 the role of log ε̄. Hence we can write:

Dp0 ∝
(σε

ε̄

)2
(20)

It is interesting to note, that in the case of the “hard-
sphere” approximation, the curvature term is simply
dictated by the ratio of the diffusive acceleration time
(tD) to the evolution time (t).
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where Dp(γ , t) is the momentum-diffusion coefficient,
DA(γ , t) = (2/γ )Dp(γ , t) is the average energy change term
resulting from the momentum-diffusion process, and S(γ , t) =
−C(γ , t) + A(γ , t) is an extra term describing systematic en-
ergy loss (C) and/or gain (A), and Q(γ , t) is the injection term.
In the standard diffusive shock acceleration scenario, there are
several possibilities for which one can expect that energy gain
fluctuations will occur, due to the momentum-diffusion term. In
particular, for the case of a turbulent magnetized medium, the
advection of particles toward the shock due to pitch angle scat-
tering may be accompanied by stochastic momentum-diffusion
mechanism. In this scenario, particles embedded in a magnetic
field with both an ordered (B0) and turbulent (δB) component,
exchange energy with resonant plasma waves, and the related
diffusion coefficient is determined by the spectrum of the plasma
waves. Following the approach of Becker et al. (2006), we de-
scribe the energy distribution W (k) in terms of the wave number
k = 2π/λ with a PL

W (k) = δB(k)2

8π
= δB(k0)2

8π

(
k

k0

)−q

, (12)

with q = 2 for the “hard-sphere” spectrum, q = 5/3 for
the Kolmogorov spectrum, and q = 3/2 for the Kraichnan
spectrum, the total energy density in the fluctuations being

UδB =
∫ kmax

k0

W (k)dk. (13)

Under these assumptions, the momentum-diffusion coefficient
reads (O’Sullivan et al. 2009)

Dp ≈ β2
A

(
δB

B0

)2 ( ρg

λmax

)q−1 p2c2

ρgc
, (14)

where βA = VA/c and VA is the Alfvén waves velocity,
ρg = pc/qB is the Larmor radius, and λmax is the maximum
wavelength of the Alfvén waves spectrum. The acceleration time
for particles with Lorentz factor γ , whose Larmor radii resonate
with one particular magnetic field turbulence length scale, is
dictated by the momentum-diffusion coefficient (Dp) as

tacc ≈ p2

Dp

= ρg(γ0)
cβ2

A

(
B2

0

δB2

)∣∣∣∣
γ0

(
γ

γ0

)2−q

. (15)

The spatial diffusion coefficient relates to the momentum-
diffusion coefficient through the relation, DxDp ≈ p2β2

A
(Skilling 1975), hence the escape time of the particles from the
acceleration region of size R depends on the spatial diffusion
coefficient through the relation

tesc ≈ R2

Dx

≈ R2

(cβA)2 tacc
. (16)

The coefficients in Equation (11), and their related timescales,
can be expressed as a PL in terms of the Lorentz factor (γ )

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Dp(γ ) = Dp0

(
γ
γ0

)q

, tD = 1
Dp0

(
γ
γ0

)2−q

DA(γ ) = 2Dp0

(
γ
γ0

)q−1
, tDA = 1

2Dp0

(
γ
γ0

)2−q

A(γ ) = Ap0γ , tA = 1
A0

, (17)

where Dp0 and A0 have the dimension of the inverse of a time.
Analytical solutions of the diffusion equation for relativistic
electrons have frequently been discussed in the literature since
the early work by Kardashev (1962), in particular for the
case of the “hard-sphere” approximation. Neglecting the S and
Tesc terms in Equation (11), and using a mono-energetic and
instantaneous injection (n(γ , 0) = N0δ(γ − γ0)), the solution
of the diffusion equation is (Melrose 1969; Kardashev 1962)

n(γ , t) = N0

γ
√

4πDp0t
exp

{
− [ln(γ /γ0) − (Ap0 − Dp0)t]2

4Dp0t

}
,

(18)
i.e., a log-parabolic distribution, whose curvature term is

r = ce

4Dp0t
∝ 1

Dp0t
. (19)

This result is fully consistent with that found in the statistical
description; indeed, Equations (18) and (8) have the same
functional form in both the statistical and in the diffusion
equation scenario, with t playing the role of ns, Dp0 the role
of the variance of the energy gain (σ 2

ε ), and Ap0 the role of
log ε̄. Hence we can write

Dp0 ∝
(σε

ε̄

)2
. (20)

It is interesting to note that in the case of the “hard-sphere”
approximation, the curvature term is simply dictated by the
ratio of the diffusive acceleration time (tD) to the evolution
time (t).

3. NUMERICAL APPROACH: MONTE CARLO
SIMULATION WITH MAGNETIC TURBULENCE

In this section, we demonstrate explicitly how the introduction
of energy fluctuations leads to curved spectral distributions of
particles. This is carried out using an MC approach.

In our simulations, we considered 105 particles injected into
the system with a cold mono-energetic distribution of Lorentz
factors, with γ0 = 1. To compare these results with the ones
presented in Section 2, we remind the reader that in the MC
approach, the duration of the acceleration process t is the
equivalent of the number of acceleration steps (ns) used in
the statistical picture and that the probability of the particle
to be upscattered or downscattered in the MC realizations
can be expressed in the statistical approach as P (ε > 1)
and P (ε < 1), respectively. The scattering probability of the
particles is dictated by the intensity of resonant waves in the
turbulent magnetic power spectrum. As a working hypothesis,
we assume that particles interact with a turbulent magnetic field
whose power spectrum is expressed by Equation (12). In each
scattering, the particles have a probability of (1 + βA)/2 of
being upscattered and a probability of (1 − βA)/2 of being
downscattered. The energy dispersion of the particle due to
resonant scattering with Alfvén waves will be ⟨∆E2⟩ ∝ (EβA)2t ,
where E = mec

2γ . Using the very good approximation for
the variance of the product of n uncorrelated random variables
(Goodman 1962)

σ 2(Πxi) = Π⟨xi⟩2Σ
(

σ 2
xi

⟨xi⟩2

)

(21)
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Table 1. Model parameters for the 1997 April flare of Mkn 501.

Date s r N γ0 γp V Ee νLν(S R) νLν(IC) B δ

cm−3 104 105 cm3 1044 erg 1039erg/s 1039erg/s G
SSC - 1 zone
Apr. 07 1.12 0.81 4.25 4.80 1.67 1.57 × 1047 91.0 8.70 4.47 0.10 15
Apr. 16 1.18 0.70 30.0 8.70 3.36 1.72 × 1046 90.6 34.60 21.4 0.14 15
SSC - 2 zones
Apr. 07 (Z1) 1.14 0.81 4.6 4.0 1.35 1.2 × 1047 57.9 8.71 3.42 0.14 15
Apr. 11 (Z2) 1.2 1.00 1050 14 3.52 9.2 × 1040 0.156 6.92 1.44 1.5 15
Apr. 16 (Z2) 1.2 1.33 250 20 3.95 9.2 × 1043 6.12 29.5 14.1 0.2 15

V is the volume of the emitting region; Ee is the total energy of radiating electrons; νLν(S R, IC) are the SED peak values of SR and IC compo-
nents, respectively.

10
-11

10
-10

10
-9

νF
ν   

(e
rg

 s-1
 c

m
-2

)
10

16 10
17

10
18

10
19

10
20

10
21

10
22

10
23

10
24

10
25

10
26 10

27
10

28

ν (Hz)

10
-11

10
-10

10
-9

Fig. 10. Two spectral energy distributions of Mkn 501 during the
low and high states observed on 7 and 16 April 1997, respectively.
X-ray points are from Paper II, TeV points are simultaneous CAT data
(Djannati-Atai et al. 1999) and soolid lines are the spectra computed
in a 1-zone SSC model for the SR and IC components. In the up-
per panel IC, spectra have been absorbed (dashed lines) by interaction
with infrared EBL photons according to the LLL model by Dwek &
Krennich (2005). In the lower panel EBL absorption was neglected.

The LLL model could then be considered an upper limit to the
extragalactic background.

As proposed in Paper II we considered a two-zone
SSC model. A first zone (Z1) is responsible for the “slowly”
variable emission, whereas the second zone (Z2) is the source
of the high-energy flare: the observed fluxes are then the sum of
these two contributions. We used the April 7 emission as repre-
sentative of the “slowly” variable state (Z1) and added the flar-
ing component (Z2) to match the April 11 and 16 high states.
In this way the stability of the flux at energies ≤1 keV is easily
explained by the fact that the emission from Z2 is negligible
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Fig. 11. Two spectral energy distributions of Mkn 501 during the high
states observed on 7, 11 April 1997 (upper panel) and 7, 16 April 1997
(lower panel). X-ray points are from Paper II, and TeV points are si-
multaneous CAT data (Djannati-Atai et al. 1999). Thin solid lines are
the spectra computed in a 2-zone SSC model for the SR and IC com-
ponents, dashed lines are the spectra of the high-energy flaring com-
ponent, and the thick solid line is that of a slowly evolving component.

when compared with that of Z1. The results of these calcu-
lations are represented in the SEDs of Fig. 11. We met some
difficulty in obtaining a solution capable of modelling the ob-
served spectral curvature mostly in the highest state. In fact,
to deplete the SR from Z2 below ∼1 keV, we need an electron
population with a very low emissivity in this band. This can
be obtained only by introducing a low energy cut-off, with the
consequence of a high curvature of the low energy portion of
IC spectra at TeV energies. The values of parameters for this
2-zone SSC model are also given in Table 1.
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per panel IC, spectra have been absorbed (dashed lines) by interaction
with infrared EBL photons according to the LLL model by Dwek &
Krennich (2005). In the lower panel EBL absorption was neglected.

The LLL model could then be considered an upper limit to the
extragalactic background.

As proposed in Paper II we considered a two-zone
SSC model. A first zone (Z1) is responsible for the “slowly”
variable emission, whereas the second zone (Z2) is the source
of the high-energy flare: the observed fluxes are then the sum of
these two contributions. We used the April 7 emission as repre-
sentative of the “slowly” variable state (Z1) and added the flar-
ing component (Z2) to match the April 11 and 16 high states.
In this way the stability of the flux at energies ≤1 keV is easily
explained by the fact that the emission from Z2 is negligible
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Fig. 11. Two spectral energy distributions of Mkn 501 during the high
states observed on 7, 11 April 1997 (upper panel) and 7, 16 April 1997
(lower panel). X-ray points are from Paper II, and TeV points are si-
multaneous CAT data (Djannati-Atai et al. 1999). Thin solid lines are
the spectra computed in a 2-zone SSC model for the SR and IC com-
ponents, dashed lines are the spectra of the high-energy flaring com-
ponent, and the thick solid line is that of a slowly evolving component.

when compared with that of Z1. The results of these calcu-
lations are represented in the SEDs of Fig. 11. We met some
difficulty in obtaining a solution capable of modelling the ob-
served spectral curvature mostly in the highest state. In fact,
to deplete the SR from Z2 below ∼1 keV, we need an electron
population with a very low emissivity in this band. This can
be obtained only by introducing a low energy cut-off, with the
consequence of a high curvature of the low energy portion of
IC spectra at TeV energies. The values of parameters for this
2-zone SSC model are also given in Table 1.
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simply explained in terms of the energy dependence of the par-
ticle acceleration probability (see next section), is that the low
energy segment of the spectrum follows a single power law
with photon index α0 and that the log-parabolic bending be-
comes apparent only above a critical value Ec. This behaviour
can be described by the following model that takes into account
the continuity conditions on the flux and on α(E) at Ec:

F(E) = K(E/E1)−α0 , E ≤ Ec

F(E) = K(E/Ec)b Log(Ec/E1)

× (E/E1)−(α0+b Log(E/Ec )), E > Ec. (6)

3. Statistical particle acceleration
and log-parabolic spectra

In Paper I we showed that a log-parabolic distribution is not
only a simple mathematical tool for spectral modelling, but that
it also relates to the physics of the statistical acceleration pro-
cess under some simple hypotheses. In the following, we ex-
tend the considerations of Paper I. The results, useful to derive
some relations between the acceleration parameters, should not
be considered as a complete theory of energy-dependent accel-
eration. To confirm the main findings of this approach, more
detailed analytical and numerical calculations are necessary,
but such a detailed theoretical approach is beyond the purpose
of the present paper.

3.1. Energy distribution of accelerated particles

The energy spectrum of particles accelerated by some statisti-
cal mechanism, e.g. a shock wave or a strong perturbation mov-
ing down a jet, is given by a power law (Bell 1978; Blandford
& Ostriker 1978; Michel 1981). In Paper I we showed that a
log-parabolic energy spectrum is obtained when the condition
that the acceleration probability p is independent of energy is
released and that its value at the step i satisfies a power law
relation as:

pi = g/γ
q
i , (i = 0, 1, 2, ...) (7)

where g and q are positive constants. Such a situation can occur,
for instance, when particles are confined by a magnetic field
with a confinement efficiency that decreases for an increasing
gyration radius. In Paper I (Sect. 6.1) we found that the integral
energy distribution of accelerated particles is given by a log-
parabolic law:

N(>γ) = N0(γ/γ0)−[s−1+r Log(γ/γ0)], (8)

with

s = −
Log(g/γq

0)

Log ε
− q − 2

2
, (9)

r =
q

2 Log ε
, (10)

where γ0 is the minimum Lorentz factor in Eq. (7). As already
discussed in Paper I the differential energy distribution N(γ) is
not an exact log-parabolic law, but differs from it only by a log-
arithmic term and can be approximated well by a log-parabola

with a very similar curvature over an energy range of several
decades.

Shock wave acceleration is not the only statistical mecha-
nism active in non-thermal sources. For instance, electron ac-
celeration can occur in magnetohydrodynamical turbulence in
which regions of magnetic field reconnection can develop in
a very stochastic way. Recently, Nodes et al. (2004) presented
the results of the numerical simulations of a relativistic particle
acceleration in a three-dimensional turbulent electromagnetic
field configuration, also taking their SR into account. These
authors found energy spectral distributions that where signif-
icantly flatter than s = 2 and, in a few cases, characterised
by a steepening spectral index at high energies. We verified
that over sufficiently wide energy ranges, the spectra given by
Nodes et al. (2004) are represented well by a log-parabolic law
or by a combination of a power law and a parabola. The re-
sulting curvature parameters are generally small, but probably
the curvature depends on the distribution and size of the ac-
celeration regions, so one can expect that, under different as-
sumptions, it could be higher. Nodes et al. (2004) computed
the emerging SR spectra, which show an appreciable curvature
over a few decade frequency range.

Statistical acceleration is not the only way to obtain curved
electron spectra. Energy distributions showing a rather mild
curvature have also been obtained in blazar physics. To model
the SED of MeV blazars, Sikora et al. (2002) assumed that
electrons are accelerated via a two-step process with a broken
power-law energy distribution as injection. When the cooling
effects are taken into account, the resulting electron spectrum
(see, for instance, Fig. 6 in their paper) can be described well
by a log-parabola over a range that is wider than three decades,
as we verified (in this case we found r = 0.44).

The assumption of Eq. (7) about the energy dependence of
the acceleration probability can be modified to take other es-
cape processes into account. For instance, one can assume that
the acceleration probability is constant for low energies and
that it begins to decrease above a critical Lorentz factor γa (see,
for instance Eq. (23) in Paper I). An approximate expression for
the energy distribution of accelerated particles under this con-
dition for γ ≪ γa should follow a power law with spectral index
s0 = −(Log g)/(Log ε), while for γ ≫ γa it will approximate a
log-parabolic spectrum like Eq. (8):

N(γ) = N0 (γ/γ0)−s0 γ ≤ γ0

N(γ) = N0 (γ/γ0)−(s0+r Log(γ/γ0)) γ > γ0, (11)

where for the sake of simplicity we take γ0 = γa. In addition to
the power law and log-parabolic segments, we can also expect
a sharp high-energy cutoff that appears when losses make the
acceleration process highly inefficient.

4. Spectral properties of the emitted radiation

4.1. Synchrotron spectrum

It is important to know the relations between the spectral pa-
rameters a and b of the emitted radiation and those of the elec-
tron population, namely s and r. The spectral distribution of
the SR by relativistic electrons having a log-parabolic energy
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Figure 8. Left panel: evolution of the particle spectrum for continuous injection, R = 1 × 1015 cm, B = 1.0 G, and q = 2. Right panel: evolution of the
curvature r3p .
(A color version of this figure is available in the online journal.)

at high energies, hence we evaluate the curvature only at γ3p

(i.e., the representation useful to compare it to the synchrotron
SED emission). Spectral curvatures are generally milder than
the impulsive injection. In the left panel of Figure 8, we
plot the r–t trend both for the case of impulsive (red lines)
and continuous (blue lines) injections, the curvature in the
continuous injection case are systematically lower in the pre-
equilibrium phases and in the acceleration-dominated stage the
trend is again consistent with the “hard-sphere” approximation
and statistical approaches. The slope of the electron distribution
in the PL tail is ≈1.06, in good agreement with the predicted
one ≈1 + tmin−acc/(2tesc) = 1.075, consistent with the results of
Katarzyński et al. (2006).

5. EVOLUTION OF THE SPECTRAL PARAMETERS OF
SYNCHROTRON AND IC EMISSION

The most relevant parameters describing the SED of SSC
sources provided by observations are the peak energies and
curvatures of the synchrotron and IC components. We denote
these curvature parameters by bs and bc, respectively, and by
Es, Ec, and Ss, Sc, we denote the corresponding SED peak
energies and flux values. We use νs and νc to indicate the
corresponding SED peak frequencies. In the following, we
describe the results of the relations between these parameters
assuming that electrons are injected into the acceleration region
with a quasi mono-energetic spectrum with γinj ≈ 10 and using
an injection time of 104 s. We use the same working hypothesis
for the momentum-diffusion coefficient as in Section 4.1 and
add a systematic acceleration time for the first-order process
tA = 1.5×103 s, in order to produce Es values ranging between
optical and hard X-ray energies. We set the radius of the region
at R = 2 × 1015 cm and the same duration for the injection
and acceleration processes, namely, 104 s. We varied the other
parameters of the model, B, q, and Dp0 to verify how they affect
the relation between the observable ones. All the parameters and
their variation ranges are summarized in Table 2.

A phenomenological approach, based on the δ-function ap-
proximation (Tramacere et al. 2007, 2009; Massaro et al. 2006,
2004), is useful to address the expected relation between the cur-
vature parameters and their connections with the peak energies

Table 2
Parameters’ Values Adopted in the Numerical Solutions of
the Diffusion Equation for the Cases Studied in Section 5

Parameter Range

R (cm) 2 × 1015

B (G) [0.01, 1.0]
Linj (erg s−1) 1038

q [3/2, 2]
tA (s) 1.8 × 103

tD0 = 1/DP 0 (s) [1.5, 25] × 104

Tinj (s) 104

Tesc (R/c) 2.0
Duration (s) 104

γinj 10.0

and flux values. According to the standard synchrotron theory
(e.g., Rybicki & Lightman (1986)), in the δ-function approxi-
mation, the synchrotron SED peak value and the corresponding
peak energy can be expressed by the following relations:

Ss(Es) ∝ n(γ3p)γ 3
3pB2δ4

Es ∝ γ 2
3pBδ, (28)

which implies
Ss ∝ (Es)α, (29)

where α = 1.5 applies for changes of γ3p leaving constant
n(γ3p), α = 2 for variations of B only, and α = 4 when the
main driver is δ. For a log-parabolic-shaped n(γ ) we have

log(γ3p) = log(γp) +
3
2r

(30)

and, using the relation bs ≈ r/5 (Massaro et al. 2004), or, more
precisely, from the analysis presented in Section 4.2, bs ≃ r3p/5.
It follows that

log(Es) ∝ 2 log(γp) +
3

5bs

. (31)

The relation between bs and Es is

bs = a

log(Es/E0)
, (32)

with a = 3/5 = 0.6.
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Fig. 11. SSC fits of three different observations with simultaneous UVOT XRT and BAT data. Left panels show the SSC model, from top to bottom:
solid circles represent data from 2006 April 22, 2006 June 23, and 2006 July 15 Swift observations. Green triangles show Swift-XRT data on 2005
March 31 from Tramacere et al. (2007b). Solid grey polygons represent non-simultaneous EBL corrected TeV data. Solid gray squares represent
the high state on 2001 observed by Whipple, data from Albert et al. (2007). Solid gray diamonds represent the average 2004-2005 TeV spectrum
as observed by MAGIC (Albert et al. 2007). Solid gray right triangles represent the average spectrum from December 2005 to February 2006 as
observed by TACTIC (Yadav et al. 2007). The solid red triangle represents a Whipple observation on June 18, 19, 21 from Lichti et al. (2008), that
is very close in time to our 2006 June 23 data set. The solid lines represent the best fit by a SSC model to our simultaneous Swift observation, and
the dashed line is the best SSC fit to the Swift data on 03/31/2005. The dotted lines represent the modelling of the galaxy contribution by means
of black body spectral shape. Right panels show the electron distributions for the SSC models in the left panels. The solid lines in the right panels
represent the electron distributions for the best fit models of the three 2006 Swift observations, the dotted lines represent the extrapolation of the
LP branch of the LPPL distribution, and the dashed lines represent the electron distribution for the 2005 March 31 data.

Table 4. SSC best-fit model results for the 2006 Swift observations and using as electron distribution a log-parabola with a power-law low-energy
branch (Eq. (13)).

Date B R δ N(∗) r s γc(∗∗) γLP
p (∗ ∗ ∗) γmax γmin ue/ub

G cm cm−3

22-04-2006 0.1 2.1 × 1015 25 13.5 0.75 2.30 1.75 × 105 2.0 × 103 2.5 × 106 1.1 × 103 119
23-06-2006 0.1 2.1 × 1015 25 15.0 0.65 2.30 2.85 × 105 4.8 × 103 4.0 × 106 1.1 × 103 135
15-07-2006 0.1 2.1 × 1015 25 21.0 0.85 2.32 2.50 × 105 1.0 × 104 3.0 × 106 1.1 × 103 185

8. SED modelling and GeV/MeV predictions

We model the SEDs of three observations with simultaneous
XRT, BAT , and UVOT data, using a standard one-zone SSC sce-
nario. The only useful TeV data found in the literature are from
Whipple observations on June 18, 19, and 21 (Lichti et al. 2008).
Almost simultaneous only with the 06/23/2006 Swift pointing,
these data provide only the TeV flux, without giving a descrip-
tion of the spectrum. For this reason, they are only used to esti-
mate the TeV flux level during that pointing.

To estimate the spectral and flux range of variability, we
also plot Swift-XRT data from 2005 March 31 (Tramacere
et al. 2007a), and some TeV SEDs representing the source in

different flaring states (Albert et al. 2007; Yadav et al. 2007) (see
left panel of Fig. 11).

The 2006 SEDs that we want to model have a power-law
spectral dependence between the UVOT and XRT bands. As
described in Sect. 7, the most generic distribution accounting
for this spectral shape is a power-law at low energy with a log-
parabolic high-energy branch (Eq. (13)). In contrast, the 2005
March 31 SED can be modelled using a log-parabolic elec-
tron distribution that we express in terms of the peak energy as
(LPEP):

n(γ) = K 10−r (log(γ/γp))2
. (15)
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Fig. 1.—Probability of return to shock downstream as a function ofP (m )ret d

ingress downstream pitch angle cosine for , 100. Note that the prob-m G p 2d s

ability is defined for ! owing to shock crossing conditions on1 ≤ m ≤ bd sFd

.md

Fig. 3.—Spectrum of particles escaping downstream (thick line) as a function
of momentum after 20 cycles for ; the thin lines show the spectraG p 100s

of particles escaping downstream after each cycle.

Fig. 2.—Averaged energy gain per cycle (diamonds) andu r d r u d r
(triangles) for .u r d G p 100s

Fig. 4.—Average return probabilities (open squares), average energy gain
per cycle (open diamonds), and spectral slope (filled circles) as a function of
. The dotted line shows the approximation to the spectral slope given by theGs

Bell formula using the average return probabilities and energy gains (see text).

(diamonds) and (triangles) foru r d r u d r u r d G ps
. This energy gain is defined as the ratio of the average100

energies at the end and at the beginning of the cycle ,Ae S Ae Sf i

with . The average energyAeS { dm de ef (m, e)/ dm de f (m, e)! !
gain in each cycle subsequent to first shock crossing is !1.93
per cycle for , and this asymptotic valueu r d r u G p 100s

is reached immediately after the first cycle. This is a rather
dramatic confirmation of the analytical expectations of Gallant
& Achterberg (1999) and Achterberg et al. (2001), which had
argued that only the first cycle should yield a gain ≈ since2Gs
the anisotropy of the distribution function upstream is so pro-
nounced that the gain in subsequent cycles is reduced to ≈2.
An example of the spectrum of accelerated particles for

after 20 cycles is shown in Figure 3; theG p 100 u r d r us

thin lines in this figure show the fractions of particles that2n"1fout
escape after shock crossings. One clearly sees in this2n" 1
figure the piling up of populations of particles of ever decreasing
size (owing to finite escape probability) and ever increasing en-
ergy, which gives rise to the accelerated population f pout

. The spectral index of the escaping population for2n"1" foutn
is here (incorporating the error dueG p 100 s p 2.26! 0.04s

to the dependence of P on rigidity), in excellent agreement with

previous results by Bednarz & Ostrowksi (1998), Kirk et al.
(2000), and Achterberg et al. (2001).
Finally, in Figure 4, we give the average return probabilities

(open squares), average asymptotic energy gains (diamonds),
and spectral indices (filled circles) for values of com-Gs
prised between 2 and 100. The average return probabilities
shown in this figure are the return probabilities shown
in Figure 1 weighted by the corresponding asymptotic
downstream ingress pitch angle distribution, i.e., AP S pret

. A naive unweightedi n i i n i ilim P (m ) f (m )dm / f (m )dm! !n r "# ret d d d d d d d

average of the return probability shown in Figure 1 for G ps
would give 0.33, whereas the weighted average gives 0.40:100

the difference is directly related to the strong anisotropy at
shock crossing.
The standard nonrelativistic formula for the (energy) spectral

index s (Bell 1978), , with the av-s p 1! log AP S/ log AgS AgSret
erage energy gain, is in relatively good agreement with the slopes
obtained, provided one uses the weighted average for the return
probability as above (see Fig. 4). A more general formula, which
includes relativistic effects, has been proposed by Vietri (2003):

. One can derive this formula and variants of its!1AP SAg S p 1ret

Lemoine,Pelletier 2003

Tramacere +2009

r~0.7-0.8<<req~6 
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Figure 10. Upper left panel: synchrotron (red lines) and IC (red lines) average SEDs for each different value of tD0 in the range reported in Table 2, with q = 2. Blue
points represent the position of ES,C and SS,C . The purple, orange, and green line represent the PL best fit of the ES–SS and EC–SC trends. Upper right panel: bs and
bc, for each average SED in the right panel, as a function of Dp0. Dashed lines represent the PL best fit of the b–Dp0 trend. Lower left panel: the bs–Es trend obtained
by means of a log-parabolic best fit of the averaged SEDs plotted in the upper right panel. Lower right panel: same as in the lower left panel, for bc–Ec.
(A color version of this figure is available in the online journal.)

which we assume to vary in the range [1.5×104, 2.4×105] s−1,
studying how the main spectral parameters change. In the
top left panel of Figure 10, we plot averaged SEDs for each
different value of Dp0. The top right panel shows the trend of bc
versus Dp0. As expected, for larger values of Dp0, the curvature
measured at the peak energy is smaller. The trend is described
by a PL with an exponent of about −0.6 for Dp0 ! 2×10−5 s−1

and with an exponent of about −0.25 for Dp0 " 2 × 10−5 s−1.
This break clearly shows the transition between the TH and
KN regimes (marked by a vertical dashed line); indeed it
happens for the same values of Dp0 corresponding to the
TH/KN transition in both the Dp0–bc trend and the Ec–bc
plot (occurring at Ec ≈ 1 GeV; see the bottom right panel
in Figure 10). The break in the Dp0–bs trend happens when
electrons radiating at Es enter the KN cooling region, hence,
due to the lower cooling level (compared to the TH cooling
regime, on the left side of the vertical dashed line), the curvature
decreases.

Blue filled circles in the top left panel represent the peak
positions for both SED components. For the synchrotron com-
ponent, according to Equation (29), the exponent α in the case
of n(γ3) = const, should be 1.5, while the results of the com-
putations give α = 0.6. This difference is due to the fact that
we inject in the mono-energetic initial distribution always the
same total power that corresponds to the same number of parti-

cles. When the peak energy increases the distribution becomes
broader, implying that the same total number of particles is
spread over a larger energy interval and the number of particles
contributing to the synchrotron peak emission decreases. Con-
sequently, the Ss–Es trend gets softer compared to the predicted
value of 1.5.

We verified quantitatively this effect by computing the trend
n(γ3p) versus γ 2

3p, and found a PL relation with an exponent
of about 0.98, in nice agreement with the difference between
the exponent of 1.5 and that resulting in our simulations. In
the bottom panels of Figure 10, we plot bs versus Es (left)
and bc versus Ec (right). The Sc–Ec relation can be fitted by
a PL (orange line, top left panel in Figure 10) with the same
exponent of the Es–Ss relation, as long as the IC scattering, at
Ec and above, happens in TH regime. When the KN suppression
becomes relevant (green line, top left panel in Figure 10), the
exponent is larger and is close to unity.

The synchrotron trend (the bottom left panel in Figure 10)
clearly shows the expected anti-correlation between the peak
energy and the spectral curvature, which is well fit by the
function given in Equation (32), with a = 0.68, not very
different from 0.6, obtained for the δ-function approximation of
the synchrotron emission, and assuming that n(γ ) has a purely
log-parabolic shape. A simple PL fit of the same points returns
an exponent −0.14.
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Figure 10. Upper left panel: synchrotron (red lines) and IC (red lines) average SEDs for each different value of tD0 in the range reported in Table 2, with q = 2. Blue
points represent the position of ES,C and SS,C . The purple, orange, and green line represent the PL best fit of the ES–SS and EC–SC trends. Upper right panel: bs and
bc, for each average SED in the right panel, as a function of Dp0. Dashed lines represent the PL best fit of the b–Dp0 trend. Lower left panel: the bs–Es trend obtained
by means of a log-parabolic best fit of the averaged SEDs plotted in the upper right panel. Lower right panel: same as in the lower left panel, for bc–Ec.
(A color version of this figure is available in the online journal.)

which we assume to vary in the range [1.5×104, 2.4×105] s−1,
studying how the main spectral parameters change. In the
top left panel of Figure 10, we plot averaged SEDs for each
different value of Dp0. The top right panel shows the trend of bc
versus Dp0. As expected, for larger values of Dp0, the curvature
measured at the peak energy is smaller. The trend is described
by a PL with an exponent of about −0.6 for Dp0 ! 2×10−5 s−1

and with an exponent of about −0.25 for Dp0 " 2 × 10−5 s−1.
This break clearly shows the transition between the TH and
KN regimes (marked by a vertical dashed line); indeed it
happens for the same values of Dp0 corresponding to the
TH/KN transition in both the Dp0–bc trend and the Ec–bc
plot (occurring at Ec ≈ 1 GeV; see the bottom right panel
in Figure 10). The break in the Dp0–bs trend happens when
electrons radiating at Es enter the KN cooling region, hence,
due to the lower cooling level (compared to the TH cooling
regime, on the left side of the vertical dashed line), the curvature
decreases.

Blue filled circles in the top left panel represent the peak
positions for both SED components. For the synchrotron com-
ponent, according to Equation (29), the exponent α in the case
of n(γ3) = const, should be 1.5, while the results of the com-
putations give α = 0.6. This difference is due to the fact that
we inject in the mono-energetic initial distribution always the
same total power that corresponds to the same number of parti-

cles. When the peak energy increases the distribution becomes
broader, implying that the same total number of particles is
spread over a larger energy interval and the number of particles
contributing to the synchrotron peak emission decreases. Con-
sequently, the Ss–Es trend gets softer compared to the predicted
value of 1.5.

We verified quantitatively this effect by computing the trend
n(γ3p) versus γ 2

3p, and found a PL relation with an exponent
of about 0.98, in nice agreement with the difference between
the exponent of 1.5 and that resulting in our simulations. In
the bottom panels of Figure 10, we plot bs versus Es (left)
and bc versus Ec (right). The Sc–Ec relation can be fitted by
a PL (orange line, top left panel in Figure 10) with the same
exponent of the Es–Ss relation, as long as the IC scattering, at
Ec and above, happens in TH regime. When the KN suppression
becomes relevant (green line, top left panel in Figure 10), the
exponent is larger and is close to unity.

The synchrotron trend (the bottom left panel in Figure 10)
clearly shows the expected anti-correlation between the peak
energy and the spectral curvature, which is well fit by the
function given in Equation (32), with a = 0.68, not very
different from 0.6, obtained for the δ-function approximation of
the synchrotron emission, and assuming that n(γ ) has a purely
log-parabolic shape. A simple PL fit of the same points returns
an exponent −0.14.
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a probe for B-driven flares evolving to the KN regime. The Es–bs
plot in the bottom left panel of Figure 11 confirms the cooling
signature discussed above, showing bs uncorrelated with Es as
long as γ3p ≪ γeq, and an increasing value of bs with Es almost
stable, when γ3p ! γeq.

6. SPECTRAL EVOLUTION OF HIGH ENERGY FLARES
OF BRIGHT HBL OBJECTS

The previous considerations on the spectral evolution of
SSC sources, in which high energy electrons are accelerated
in a relatively short timescale by stochastic processes, can be
successfully applied to describe the behavior of some bright
HBLs objects. These sources are, in fact, characterized by
having the synchrotron peak in the UV/X-ray range and the
IC peak in γ rays up to TeV energies. Several flares, observed
simultaneously in both these ranges, exhibited SEDs very well
described by a log-parabolic law, whose parameters, particularly
their curvature, are estimated with high accuracy. A similar
analysis for low-energy peaked BL Lac objects is much more
difficult because the peak of their synchrotron component is
typically in the infrared range and the available simultaneous
multifrequency data are extremely few. Tramacere et al. (2007,
2009) and Tramacere (2007) pointed out that the observed
anticorrelation between Es and bs in the synchrotron SED of
Mrk 421 can provide a clear signature of a stochastic component
in the acceleration process. In the same analysis, these authors
also presented an interesting correlation between Es and Ss.
Massaro et al. (2008) found that the Es–bs and Es–Ss trends
hold also for a larger sample of 11 HBLs, strengthening the
hypothesis that a common accelerative mechanism may drive
such physical processes for this class of active galactic nuclei.
To give a theoretical framework to these phenomenological
relations, we try to reproduce both the Es–bs and Es–Ss relations
derived from the data of the aforementioned papers. In the
following, we will consider the data of Mrk 421 from Tramacere
et al. (2007, 2009) collected over a period of 13 years, and
of six HBL objects from Massaro et al. (2008): Mrk 180,
Mrk 501, PKS 0548−322, PKS 1959−650, 1H 1426+428,
covering a period of about 11 years and including both quiescent
and flaring states. The sources from Massaro et al. (2008) were
chosen because the data are good enough to safely constrain both
curvature and Es values, and because the observed variations of
the sample luminosity are compatible with the assumption to be
driven by changes of Es.

Following the analysis presented in Section 5, we con-
sider two scenarios in which these trends are driven by the
momentum-diffusion term. In the first case, the momentum dif-
fusion changes because of variations of Dp0, due to changes of
δB/B or βA, but the turbulence spectrum (q = 2) remains sta-
ble. In the second scenario, the turbulence spectrum is variable
with q ranging in [3/2, 2]. We use the same method described
in Section 5 to compute the averaged SEDs for each value of Dp
(or q); computations are performed for three values of the mag-
netic field B = 0.05, 0.1, and 0.2 G. All the model parameters
are summarized in Table 3.

The comparison with the data can be affected by an obser-
vational bias due to the limited energy range of detectors. In
fact, when the peak energy is close to the limits the curvature
is not well estimated because one can use only a portion of
the parabola below or above the peak. Generally, curvatures
lower than the actual ones are obtained. The energy range [0.5,
100.0] keV is the typical spectral window covered by X-ray and
hard-X-ray detectors. In our analysis, we used this fixed window

Table 3
Parameters’ Values Adopted in the Numerical Solutions of the Diffusion

Equation to Reproduce the Observed Trends of the HBLs Reported in Section 6

Parameter D Trend q Trend

R (cm) 3 × 1015 . . .

B (G) [0.05, 0.2] . . .

Linj (Es–bs trend) (erg s−1) 5 × 1039 . . .

Linj (Es–Ls trend) (erg s−1) 5 × 1038, 5 × 1039 . . .

q 2 [3/2, 2]
tA (s) 1.2 × 103 . . .

tD0 = 1/DP 0 (s) [1.5 × 104, 1.5 × 105] 1.5 × 104

Tinj (s) 104 . . .

Tesc (R/c) 2.0 . . .

Duration (s) 104 . . .

γinj 10.0 . . .

to take into account this possible bias in the observed data when
Es is variable.

6.1. Es–bs Relation

The Es–bs trend, and in particular the anticorrelation between
these two observables parameters, is the strongest signature of
a stochastic component in the acceleration.

In Figure 12, we report the scatter plot in the Es–bs plane
for the six considered sources. The left panel reports the results
obtained by changing the value of Dp0: the green dashed lines
describe the trend resulting from a log-parabolic fit of the
synchrotron SED over a decade in energy centered on Es; the
purple lines represent the same trend obtained by fitting a log-
parabola in the fixed spectral window [0.5, 100.0] keV. Both
these trends are compatible with the data and track the predicted
anticorrelation between Es and bs. Purple data, however, give a
better description, hinting that the “window” effect could be a
real bias. Each of the three lines was computed for a different
value of the magnetic field. It is remarkable that the variation
of a single parameter, Dp0, can describe the observed behavior.
The dispersion in the data is relevant and can be related to the
variation of B (as partially recovered by numerical computation),
or by different values of the beaming factor, R, and Linj, during
different flares, and for different objects.

The dot-dashed thick line represents the best fit of the ob-
served data by means of Equation (32), and returns a value of
a ≈ 0.6, as expected from theoretical predictions for the case of
the δ-approximation, and pure log-parabolic electron distribu-
tion. This fitted line is also compatible with the numerical trend
shown by the purple lines. Note that the observed curvature val-
ues are in the range [0.1, 0.5], corresponding to r3p ∼ [0.5, 3.0].
According to the results presented in Section 4.2, the expected
equilibrium curvature in the synchrotron emission, in the full
KN or TH regime, and for q = 2, should be of r3p ≈ 6.0 and of
r3p ≈ 5.0 in the intermediate regime. In the case of q = 3/2, the
equilibrium curvature should be r3p ∼ 3.0. This is perhaps an
interesting hint that, both in the flaring and the quiescent states,
for q = 2, the distribution is always far from equilibrium. In
the case of q = 3/2, only for Es " 1.5 keV is the curvature
compatible with the equilibrium (r3p ≃ 3.0, corresponding to
bs ∼ 0.6). For larger values of Es, we find again curvature
well below the equilibrium value. These results provide a good
constraint on the values of the magnetic field B " 0.1 G.

The q-driven trend (right panel) is also compatible with the
data, but for values of Es " 1 keV, the Dp0-driven case seems to
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Figure 12. Left panel: the Es–bs trend observed for the six HBLs in our sample. The dashed green lines represent the trend reproduced by the stochastic acceleration
model, for the parameters reported in Table 3 and for the D trend; the different lines corresponding to three different values of B reported in Table 3. The purple lines
represent the trend obtained by fitting the numerically computed SED over a fixed spectral window in the range 0.5–100 keV. Right panel: the same as in the left panel
for the case of the q trend.
(A color version of this figure is available in the online journal.)

describe better the observed behavior, but any firm conclusion
is not possible because of the dispersion of the data.

6.2. Es–Ls Trend

As a last benchmark for the stochastic acceleration model, we
reproduce the observed correlation between Es and Ss, which
follows naturally from the variations of Dp0 and q. Considering
that the redshifts of the six considered HBL objects are different,
we prefer to use their peak luminosity Ls = Ss4πD2

L, where
DL is the luminosity distance.4 To account for the different
jet power of sources, we considered two data subsets, and we
assumed Linj = 5 × 1039 erg s−1 for the first subset (top panels
of Figure 13) and Linj = 5 × 1038 for the second (bottom panels
of Figure 13). In the left panels of Figure 13, we report the Dp0-
driven trend and in the right panels we show the q-driven trend.
Solid lines represent the trend obtained by deriving Ls from
the log-parabolic best fit of the numerically computed SEDs,
centered on Es; dashed lines are the trends obtained by fitting
the numerical results in the fixed energy window [0.5, 100] keV.

Both results give a good description of the observed data
and their shapes are similar. Solid lines follow well a PL with
an exponent of about 0.6, while the windowed trends (dashed
lines) show a break around 1 keV and the exponent below this
energy turns to about 1.5. A similar break at the same energy can
be noticed in the points of Mrk 421 in the Es–Ss plot presented
by Tramacere et al. (2009), who found an exponent of ∼1.1 and
of ∼0.4 below and above 1 keV, respectively. This could again
be an indication that the observed values are actually affected
by the bias.

7. DISCUSSION

Broadband observations of non-thermal sources have shown
that the spectral curvature at the peaks of their SEDs can
now be measured with good accuracy. In this paper, we have
presented, using different approaches, the relevance of these
data for the understanding of the competition between statistical
acceleration and radiation losses. First, using a simple statistical

4 We used a flat cosmology model with H0 = 73 km s−1 Mpc−1, Ωmatter =
0.27, and Ωvacuum = 0.73.

approach and MC calculations, we have shown that the log-
parabolic energy distribution of the relativistic electron is a
good picture in the first phases before equilibrium is reached.
In this case, the curvature decreases with time and, therefore,
with increasing peak energies. This evolution is confirmed by
numerical solutions of the diffusion equation taking properly
into account both stochastic acceleration and radiative SSC
cooling. The major results can be summarized as follows.

The evolution of the electron energy distributions (Section 4)
shows that:

1. In the case of synchrotron and SSC cooling, and for all the
values of B and R, as long as the distribution is far from
equilibrium, the trend on r is dictated by Dp and is well
described by Equation (19).

2. When the distributions approach equilibrium, the value of r
is determined by the shape of the equilibrium distribution,
which is a relativistic Maxwellian, with the sharpness of
the cutoff determined by both q and the IC cooling regime.

3. In the case of q = 2, and for equilibrium energies implying
that IC cooling happens either in the TH regime or in the
extreme KN regime (IC cooling negligible compared to the
synchrotron one), the numerical solution of the diffusion
equation follows the analytical prediction (f = 1, that
holds for any γ̇ ∝ γ 2), and the corresponding equilibrium
curvature is r3p ≈ 6.0 (bs ≈ 1.2). In the case of q = 3/2,
the equilibrium curvature is r3p ≈ 3.0 (bs ≈ 0.6). These
limiting values could be a useful observational test to find
cooling-dominated flares with the distribution approaching
to the equilibrium.

4. When cooling is in the intermediate regime between TH
and KN and for the q = 2 case, the condition f = 1 fails,
and the end values of r decrease, strongly depending on the
balance between UB and the seed IC photon energy (Uph)
numerical computations are necessary to evaluate the right
value of r at equilibrium.

The analysis of the spectral evolution of SSC emission
(Section 5) shows that:

1. Changes of Dp0 (or q) imply that the curvature and peak
energy of the synchrotron emission are anticorrelated;
the Es–bs trend can be phenomenologically described by
Equation (32).
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Figure 13. Left panels: the Es–Ls trend observed for six HBLs in our sample; the top panel corresponds to the case of Linj = 5 × 1039 erg s−1; the bottom panel
corresponds to the case of Linj = 5 × 1038. The solid black lines represent the trend reproduced by stochastic acceleration model, for the parameters reported in
Table 3 and for the D trend, the different lines corresponding to three different values of B reported in Table 3. The dashed lines represent the trend obtained by fitting
the numerically computed SED over a fixed spectral window in the range 0.5–100 keV. Right panels: the same as in the left panel for the case of the q trend.
(A color version of this figure is available in the online journal.)

2. The Ec–bc trend presents a clear signature of the transition
from the TH to the KN regime. In particular, when the IC
scattering approaches the KN regime we observe a sharp
change in the bc, with a positive correlation with Ec, while
in the TH regime the correlation is negative as in the case
of the Es–bc.

3. The magnetic field plays a relevant role on the cooling
process and B-driven variations present relevant differences
compared to those due to Dp0 (and q).

In particular, for the B-driven case, we note first that the Es–Ss
correlation follows the prediction of the synchrotron theory and
shows the PL relationship with Es ∝ (Ss)∼2.0. On the contrary,
in the case of Dp0 and q changes, we find Es ∝ (Ss)0.6. Another
relevant difference in the B-driven case is the evolution of Sc.
For the case of Dp0- and q-driven trends, Sc relates to Ec through
a PL with exponent of about [0.7, 0.8]. On the contrary, for the
B-driven case with IC scattering in the full KN regime, the value
of Ec is almost constant and uncorrelated with Sc (see Figure 11)
due to the kinematic limit of the KN regime. Ec starts to decrease
when B is enough large to make the cooling process dominant.
This is an interesting signature that could be easily checked in
the observed data.

The comparison of the Es–bs and Es–Ss trends, obtained
through several X-ray observations of six HBL objects spanning
a period of many years, with those predicted by the stochastic
acceleration model, shows very good agreement. We are able to
reproduce these long-term behaviors by changing the value of
only one parameter (Dp0 or q). Interestingly, the Es–Ss relation
follows naturally from that between Es and bs. This result is
quite robust and hints at a common accelerative scenario acting
in the jets of HBLs.

As a last remark, we note that very recently Massaro &
Grindlay (2011) also find that in the case of GRBs a Es–bs

trend similar to that observed in the case of HBL objects. They
measured values of the curvature up to 1.0, typically higher than
in HBLs. It is interesting to note that the value of 1.0 is close
to the limit of ∼1.2 that we predict in the case of distributions
approaching the equilibrium in either TH or KN regime for
q = 2.
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where Dp(γ , t) is the momentum-diffusion coefficient,
DA(γ , t) = (2/γ )Dp(γ , t) is the average energy change term
resulting from the momentum-diffusion process, and S(γ , t) =
−C(γ , t) + A(γ , t) is an extra term describing systematic en-
ergy loss (C) and/or gain (A), and Q(γ , t) is the injection term.
In the standard diffusive shock acceleration scenario, there are
several possibilities for which one can expect that energy gain
fluctuations will occur, due to the momentum-diffusion term. In
particular, for the case of a turbulent magnetized medium, the
advection of particles toward the shock due to pitch angle scat-
tering may be accompanied by stochastic momentum-diffusion
mechanism. In this scenario, particles embedded in a magnetic
field with both an ordered (B0) and turbulent (δB) component,
exchange energy with resonant plasma waves, and the related
diffusion coefficient is determined by the spectrum of the plasma
waves. Following the approach of Becker et al. (2006), we de-
scribe the energy distribution W (k) in terms of the wave number
k = 2π/λ with a PL

W (k) = δB(k)2

8π
= δB(k0)2

8π

(
k

k0

)−q

, (12)

with q = 2 for the “hard-sphere” spectrum, q = 5/3 for
the Kolmogorov spectrum, and q = 3/2 for the Kraichnan
spectrum, the total energy density in the fluctuations being

UδB =
∫ kmax

k0

W (k)dk. (13)

Under these assumptions, the momentum-diffusion coefficient
reads (O’Sullivan et al. 2009)

Dp ≈ β2
A

(
δB

B0

)2 ( ρg

λmax

)q−1 p2c2

ρgc
, (14)

where βA = VA/c and VA is the Alfvén waves velocity,
ρg = pc/qB is the Larmor radius, and λmax is the maximum
wavelength of the Alfvén waves spectrum. The acceleration time
for particles with Lorentz factor γ , whose Larmor radii resonate
with one particular magnetic field turbulence length scale, is
dictated by the momentum-diffusion coefficient (Dp) as

tacc ≈ p2

Dp

= ρg(γ0)
cβ2

A

(
B2

0

δB2

)∣∣∣∣
γ0

(
γ

γ0

)2−q

. (15)

The spatial diffusion coefficient relates to the momentum-
diffusion coefficient through the relation, DxDp ≈ p2β2

A
(Skilling 1975), hence the escape time of the particles from the
acceleration region of size R depends on the spatial diffusion
coefficient through the relation

tesc ≈ R2

Dx

≈ R2

(cβA)2 tacc
. (16)

The coefficients in Equation (11), and their related timescales,
can be expressed as a PL in terms of the Lorentz factor (γ )

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Dp(γ ) = Dp0

(
γ
γ0

)q

, tD = 1
Dp0

(
γ
γ0

)2−q

DA(γ ) = 2Dp0

(
γ
γ0

)q−1
, tDA = 1

2Dp0

(
γ
γ0

)2−q

A(γ ) = Ap0γ , tA = 1
A0

, (17)

where Dp0 and A0 have the dimension of the inverse of a time.
Analytical solutions of the diffusion equation for relativistic
electrons have frequently been discussed in the literature since
the early work by Kardashev (1962), in particular for the
case of the “hard-sphere” approximation. Neglecting the S and
Tesc terms in Equation (11), and using a mono-energetic and
instantaneous injection (n(γ , 0) = N0δ(γ − γ0)), the solution
of the diffusion equation is (Melrose 1969; Kardashev 1962)

n(γ , t) = N0

γ
√

4πDp0t
exp

{
− [ln(γ /γ0) − (Ap0 − Dp0)t]2

4Dp0t

}
,

(18)
i.e., a log-parabolic distribution, whose curvature term is

r = ce

4Dp0t
∝ 1

Dp0t
. (19)

This result is fully consistent with that found in the statistical
description; indeed, Equations (18) and (8) have the same
functional form in both the statistical and in the diffusion
equation scenario, with t playing the role of ns, Dp0 the role
of the variance of the energy gain (σ 2

ε ), and Ap0 the role of
log ε̄. Hence we can write

Dp0 ∝
(σε

ε̄

)2
. (20)

It is interesting to note that in the case of the “hard-sphere”
approximation, the curvature term is simply dictated by the
ratio of the diffusive acceleration time (tD) to the evolution
time (t).

3. NUMERICAL APPROACH: MONTE CARLO
SIMULATION WITH MAGNETIC TURBULENCE

In this section, we demonstrate explicitly how the introduction
of energy fluctuations leads to curved spectral distributions of
particles. This is carried out using an MC approach.

In our simulations, we considered 105 particles injected into
the system with a cold mono-energetic distribution of Lorentz
factors, with γ0 = 1. To compare these results with the ones
presented in Section 2, we remind the reader that in the MC
approach, the duration of the acceleration process t is the
equivalent of the number of acceleration steps (ns) used in
the statistical picture and that the probability of the particle
to be upscattered or downscattered in the MC realizations
can be expressed in the statistical approach as P (ε > 1)
and P (ε < 1), respectively. The scattering probability of the
particles is dictated by the intensity of resonant waves in the
turbulent magnetic power spectrum. As a working hypothesis,
we assume that particles interact with a turbulent magnetic field
whose power spectrum is expressed by Equation (12). In each
scattering, the particles have a probability of (1 + βA)/2 of
being upscattered and a probability of (1 − βA)/2 of being
downscattered. The energy dispersion of the particle due to
resonant scattering with Alfvén waves will be ⟨∆E2⟩ ∝ (EβA)2t ,
where E = mec

2γ . Using the very good approximation for
the variance of the product of n uncorrelated random variables
(Goodman 1962)

σ 2(Πxi) = Π⟨xi⟩2Σ
(

σ 2
xi

⟨xi⟩2

)

(21)
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where Dp(γ , t) is the momentum-diffusion coefficient,
DA(γ , t) = (2/γ )Dp(γ , t) is the average energy change term
resulting from the momentum-diffusion process, and S(γ , t) =
−C(γ , t) + A(γ , t) is an extra term describing systematic en-
ergy loss (C) and/or gain (A), and Q(γ , t) is the injection term.
In the standard diffusive shock acceleration scenario, there are
several possibilities for which one can expect that energy gain
fluctuations will occur, due to the momentum-diffusion term. In
particular, for the case of a turbulent magnetized medium, the
advection of particles toward the shock due to pitch angle scat-
tering may be accompanied by stochastic momentum-diffusion
mechanism. In this scenario, particles embedded in a magnetic
field with both an ordered (B0) and turbulent (δB) component,
exchange energy with resonant plasma waves, and the related
diffusion coefficient is determined by the spectrum of the plasma
waves. Following the approach of Becker et al. (2006), we de-
scribe the energy distribution W (k) in terms of the wave number
k = 2π/λ with a PL

W (k) = δB(k)2

8π
= δB(k0)2

8π

(
k

k0

)−q

, (12)

with q = 2 for the “hard-sphere” spectrum, q = 5/3 for
the Kolmogorov spectrum, and q = 3/2 for the Kraichnan
spectrum, the total energy density in the fluctuations being

UδB =
∫ kmax

k0

W (k)dk. (13)

Under these assumptions, the momentum-diffusion coefficient
reads (O’Sullivan et al. 2009)

Dp ≈ β2
A

(
δB

B0

)2 ( ρg

λmax

)q−1 p2c2

ρgc
, (14)

where βA = VA/c and VA is the Alfvén waves velocity,
ρg = pc/qB is the Larmor radius, and λmax is the maximum
wavelength of the Alfvén waves spectrum. The acceleration time
for particles with Lorentz factor γ , whose Larmor radii resonate
with one particular magnetic field turbulence length scale, is
dictated by the momentum-diffusion coefficient (Dp) as

tacc ≈ p2

Dp

= ρg(γ0)
cβ2

A

(
B2

0

δB2

)∣∣∣∣
γ0

(
γ

γ0

)2−q

. (15)

The spatial diffusion coefficient relates to the momentum-
diffusion coefficient through the relation, DxDp ≈ p2β2

A
(Skilling 1975), hence the escape time of the particles from the
acceleration region of size R depends on the spatial diffusion
coefficient through the relation

tesc ≈ R2

Dx

≈ R2

(cβA)2 tacc
. (16)

The coefficients in Equation (11), and their related timescales,
can be expressed as a PL in terms of the Lorentz factor (γ )

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Dp(γ ) = Dp0

(
γ
γ0

)q

, tD = 1
Dp0

(
γ
γ0

)2−q

DA(γ ) = 2Dp0

(
γ
γ0

)q−1
, tDA = 1

2Dp0

(
γ
γ0

)2−q

A(γ ) = Ap0γ , tA = 1
A0

, (17)

where Dp0 and A0 have the dimension of the inverse of a time.
Analytical solutions of the diffusion equation for relativistic
electrons have frequently been discussed in the literature since
the early work by Kardashev (1962), in particular for the
case of the “hard-sphere” approximation. Neglecting the S and
Tesc terms in Equation (11), and using a mono-energetic and
instantaneous injection (n(γ , 0) = N0δ(γ − γ0)), the solution
of the diffusion equation is (Melrose 1969; Kardashev 1962)

n(γ , t) = N0

γ
√

4πDp0t
exp

{
− [ln(γ /γ0) − (Ap0 − Dp0)t]2

4Dp0t

}
,

(18)
i.e., a log-parabolic distribution, whose curvature term is

r = ce

4Dp0t
∝ 1

Dp0t
. (19)

This result is fully consistent with that found in the statistical
description; indeed, Equations (18) and (8) have the same
functional form in both the statistical and in the diffusion
equation scenario, with t playing the role of ns, Dp0 the role
of the variance of the energy gain (σ 2

ε ), and Ap0 the role of
log ε̄. Hence we can write

Dp0 ∝
(σε

ε̄

)2
. (20)

It is interesting to note that in the case of the “hard-sphere”
approximation, the curvature term is simply dictated by the
ratio of the diffusive acceleration time (tD) to the evolution
time (t).

3. NUMERICAL APPROACH: MONTE CARLO
SIMULATION WITH MAGNETIC TURBULENCE

In this section, we demonstrate explicitly how the introduction
of energy fluctuations leads to curved spectral distributions of
particles. This is carried out using an MC approach.

In our simulations, we considered 105 particles injected into
the system with a cold mono-energetic distribution of Lorentz
factors, with γ0 = 1. To compare these results with the ones
presented in Section 2, we remind the reader that in the MC
approach, the duration of the acceleration process t is the
equivalent of the number of acceleration steps (ns) used in
the statistical picture and that the probability of the particle
to be upscattered or downscattered in the MC realizations
can be expressed in the statistical approach as P (ε > 1)
and P (ε < 1), respectively. The scattering probability of the
particles is dictated by the intensity of resonant waves in the
turbulent magnetic power spectrum. As a working hypothesis,
we assume that particles interact with a turbulent magnetic field
whose power spectrum is expressed by Equation (12). In each
scattering, the particles have a probability of (1 + βA)/2 of
being upscattered and a probability of (1 − βA)/2 of being
downscattered. The energy dispersion of the particle due to
resonant scattering with Alfvén waves will be ⟨∆E2⟩ ∝ (EβA)2t ,
where E = mec

2γ . Using the very good approximation for
the variance of the product of n uncorrelated random variables
(Goodman 1962)

σ 2(Πxi) = Π⟨xi⟩2Σ
(

σ 2
xi

⟨xi⟩2

)

(21)
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Table 1: Parameters values adopted in the numerical solutions of the diffusion equation for

the cases studied in Sec. 4

impulsive inj. cont. inj.

R (cm) 5 × 1013, 1 × 1015 - - -

B (G) 0.1, 1.0 - - -

Linj (erg/s) 1039 - 1037 -

q 2 3/2 2 3/2

tD0
= 1/DP0 (s) 1 × 104 1 × 103 1 × 104 1 × 103

Tinj (s) 100 - 1 × 104 -

Tesc (R/c) ∞ - 2 -

Duration (s) 1 × 105 - - -

γinj 10.0 - 10.0 -

a stable value.230

The equilibrium distribution reached through stochastic acceleration, is described by a

relativistic Maxwellian (Stawarz & Petrosian 2008),

n(γ) ∝ γ2 exp
[ −1

f(q, γ̇)

( γ

γeq

)f(q,γ̇)]

, (26)

where f(q, γ̇) is a function depending on the exponent of the diffusion coefficient and on the

cooling process, and γeq is the Lorentz factor that satisfies the condition tcool(γ) = tacc(γ)

and is given by

γeq =
1

taccC0(UB + FKN(γ))
∝

R3

taccB2fKN

(27)

with tacc equal to the fastest acceleration time scale among tA, tD, tDA.231

Using a power-law form for the acceleration terms, and in the case of only synchrotron232

losses (or any cooling process that can be expressed as a power-law function of γ), it is possible233
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where βA = VA/c and VA is the Alfven waves velocity, ρg = pc/qB is the Larmor radius, and104

λmax is the maximum wavelength of the Alfven waves spectrum. The acceleration time for105

particles with Lorentz factor γ, whose Larmor radii resonate with one particular magnetic106

field turbulence length-scale, is dictated by the momentum diffusion coefficient (Dp) as,107

tacc ≈
p2

Dp

=
ρg(γ0)

c β2
A

(

B2
0

δB2

)
∣

∣

∣

∣

γ0

(

γ

γ0

)2−q

. (15)

The spatial diffusion coefficient relates to the momentum diffusion coefficient through the108

relation, DxDp ≈ p2β2
A (Skilling 1975), hence the escape time of the particles from the109

acceleration region of size R, depends on the spatial diffusion coefficient through the relation,110

tesc ≈
R2

Dx

≈
R2

(cβA)2 tacc
. (16)

The coefficients in Eq. 11, and their related time scales, can be expressed as a power-law in

terms of the Lorentz factor (γ):
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, tDA = 1

2Dp0

(

γ
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)2−q

A(γ) = Ap0γ, tA = 1
A0

(17)

where Dp0, and A0 have the dimension of the inverse of a time. Analytical solutions of

the diffusion equation for relativistic electrons are frequently discussed in the literature

since the early work by Kardashev (1962), in particular for the case of the “hard-sphere”

approximation. Neglecting the S and Tesc terms in Eq. 11, and using a mono-energetic

and instantaneous injection (n(γ, 0) = N0δ(γ − γ0)), the solution of the diffusion equation is

(Melrose 1969; Kardashev 1962):

n(γ, t) =
N0

γ
√

4πDp0t
exp

{

−
[ln(γ/γ0) − (Ap0 − Dp0)t]2

4Dp0t

}

, (18)

ie. a log-parabolic distribution, whose curvature term is:

r =
ce

4Dp0 t
∝

1

Dp0t
(19)
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Figure 12. Left panel: the Es–bs trend observed for the six HBLs in our sample. The dashed green lines represent the trend reproduced by the stochastic acceleration
model, for the parameters reported in Table 3 and for the D trend; the different lines corresponding to three different values of B reported in Table 3. The purple lines
represent the trend obtained by fitting the numerically computed SED over a fixed spectral window in the range 0.5–100 keV. Right panel: the same as in the left panel
for the case of the q trend.
(A color version of this figure is available in the online journal.)

describe better the observed behavior, but any firm conclusion
is not possible because of the dispersion of the data.

6.2. Es–Ls Trend

As a last benchmark for the stochastic acceleration model, we
reproduce the observed correlation between Es and Ss, which
follows naturally from the variations of Dp0 and q. Considering
that the redshifts of the six considered HBL objects are different,
we prefer to use their peak luminosity Ls = Ss4πD2

L, where
DL is the luminosity distance.4 To account for the different
jet power of sources, we considered two data subsets, and we
assumed Linj = 5 × 1039 erg s−1 for the first subset (top panels
of Figure 13) and Linj = 5 × 1038 for the second (bottom panels
of Figure 13). In the left panels of Figure 13, we report the Dp0-
driven trend and in the right panels we show the q-driven trend.
Solid lines represent the trend obtained by deriving Ls from
the log-parabolic best fit of the numerically computed SEDs,
centered on Es; dashed lines are the trends obtained by fitting
the numerical results in the fixed energy window [0.5, 100] keV.

Both results give a good description of the observed data
and their shapes are similar. Solid lines follow well a PL with
an exponent of about 0.6, while the windowed trends (dashed
lines) show a break around 1 keV and the exponent below this
energy turns to about 1.5. A similar break at the same energy can
be noticed in the points of Mrk 421 in the Es–Ss plot presented
by Tramacere et al. (2009), who found an exponent of ∼1.1 and
of ∼0.4 below and above 1 keV, respectively. This could again
be an indication that the observed values are actually affected
by the bias.

7. DISCUSSION

Broadband observations of non-thermal sources have shown
that the spectral curvature at the peaks of their SEDs can
now be measured with good accuracy. In this paper, we have
presented, using different approaches, the relevance of these
data for the understanding of the competition between statistical
acceleration and radiation losses. First, using a simple statistical

4 We used a flat cosmology model with H0 = 73 km s−1 Mpc−1, Ωmatter =
0.27, and Ωvacuum = 0.73.

approach and MC calculations, we have shown that the log-
parabolic energy distribution of the relativistic electron is a
good picture in the first phases before equilibrium is reached.
In this case, the curvature decreases with time and, therefore,
with increasing peak energies. This evolution is confirmed by
numerical solutions of the diffusion equation taking properly
into account both stochastic acceleration and radiative SSC
cooling. The major results can be summarized as follows.

The evolution of the electron energy distributions (Section 4)
shows that:

1. In the case of synchrotron and SSC cooling, and for all the
values of B and R, as long as the distribution is far from
equilibrium, the trend on r is dictated by Dp and is well
described by Equation (19).

2. When the distributions approach equilibrium, the value of r
is determined by the shape of the equilibrium distribution,
which is a relativistic Maxwellian, with the sharpness of
the cutoff determined by both q and the IC cooling regime.

3. In the case of q = 2, and for equilibrium energies implying
that IC cooling happens either in the TH regime or in the
extreme KN regime (IC cooling negligible compared to the
synchrotron one), the numerical solution of the diffusion
equation follows the analytical prediction (f = 1, that
holds for any γ̇ ∝ γ 2), and the corresponding equilibrium
curvature is r3p ≈ 6.0 (bs ≈ 1.2). In the case of q = 3/2,
the equilibrium curvature is r3p ≈ 3.0 (bs ≈ 0.6). These
limiting values could be a useful observational test to find
cooling-dominated flares with the distribution approaching
to the equilibrium.

4. When cooling is in the intermediate regime between TH
and KN and for the q = 2 case, the condition f = 1 fails,
and the end values of r decrease, strongly depending on the
balance between UB and the seed IC photon energy (Uph)
numerical computations are necessary to evaluate the right
value of r at equilibrium.

The analysis of the spectral evolution of SSC emission
(Section 5) shows that:

1. Changes of Dp0 (or q) imply that the curvature and peak
energy of the synchrotron emission are anticorrelated;
the Es–bs trend can be phenomenologically described by
Equation (32).
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a probe for B-driven flares evolving to the KN regime. The Es–bs
plot in the bottom left panel of Figure 11 confirms the cooling
signature discussed above, showing bs uncorrelated with Es as
long as γ3p ≪ γeq, and an increasing value of bs with Es almost
stable, when γ3p ! γeq.

6. SPECTRAL EVOLUTION OF HIGH ENERGY FLARES
OF BRIGHT HBL OBJECTS

The previous considerations on the spectral evolution of
SSC sources, in which high energy electrons are accelerated
in a relatively short timescale by stochastic processes, can be
successfully applied to describe the behavior of some bright
HBLs objects. These sources are, in fact, characterized by
having the synchrotron peak in the UV/X-ray range and the
IC peak in γ rays up to TeV energies. Several flares, observed
simultaneously in both these ranges, exhibited SEDs very well
described by a log-parabolic law, whose parameters, particularly
their curvature, are estimated with high accuracy. A similar
analysis for low-energy peaked BL Lac objects is much more
difficult because the peak of their synchrotron component is
typically in the infrared range and the available simultaneous
multifrequency data are extremely few. Tramacere et al. (2007,
2009) and Tramacere (2007) pointed out that the observed
anticorrelation between Es and bs in the synchrotron SED of
Mrk 421 can provide a clear signature of a stochastic component
in the acceleration process. In the same analysis, these authors
also presented an interesting correlation between Es and Ss.
Massaro et al. (2008) found that the Es–bs and Es–Ss trends
hold also for a larger sample of 11 HBLs, strengthening the
hypothesis that a common accelerative mechanism may drive
such physical processes for this class of active galactic nuclei.
To give a theoretical framework to these phenomenological
relations, we try to reproduce both the Es–bs and Es–Ss relations
derived from the data of the aforementioned papers. In the
following, we will consider the data of Mrk 421 from Tramacere
et al. (2007, 2009) collected over a period of 13 years, and
of six HBL objects from Massaro et al. (2008): Mrk 180,
Mrk 501, PKS 0548−322, PKS 1959−650, 1H 1426+428,
covering a period of about 11 years and including both quiescent
and flaring states. The sources from Massaro et al. (2008) were
chosen because the data are good enough to safely constrain both
curvature and Es values, and because the observed variations of
the sample luminosity are compatible with the assumption to be
driven by changes of Es.

Following the analysis presented in Section 5, we con-
sider two scenarios in which these trends are driven by the
momentum-diffusion term. In the first case, the momentum dif-
fusion changes because of variations of Dp0, due to changes of
δB/B or βA, but the turbulence spectrum (q = 2) remains sta-
ble. In the second scenario, the turbulence spectrum is variable
with q ranging in [3/2, 2]. We use the same method described
in Section 5 to compute the averaged SEDs for each value of Dp
(or q); computations are performed for three values of the mag-
netic field B = 0.05, 0.1, and 0.2 G. All the model parameters
are summarized in Table 3.

The comparison with the data can be affected by an obser-
vational bias due to the limited energy range of detectors. In
fact, when the peak energy is close to the limits the curvature
is not well estimated because one can use only a portion of
the parabola below or above the peak. Generally, curvatures
lower than the actual ones are obtained. The energy range [0.5,
100.0] keV is the typical spectral window covered by X-ray and
hard-X-ray detectors. In our analysis, we used this fixed window

Table 3
Parameters’ Values Adopted in the Numerical Solutions of the Diffusion

Equation to Reproduce the Observed Trends of the HBLs Reported in Section 6

Parameter D Trend q Trend

R (cm) 3 × 1015 . . .

B (G) [0.05, 0.2] . . .

Linj (Es–bs trend) (erg s−1) 5 × 1039 . . .

Linj (Es–Ls trend) (erg s−1) 5 × 1038, 5 × 1039 . . .

q 2 [3/2, 2]
tA (s) 1.2 × 103 . . .

tD0 = 1/DP 0 (s) [1.5 × 104, 1.5 × 105] 1.5 × 104

Tinj (s) 104 . . .

Tesc (R/c) 2.0 . . .

Duration (s) 104 . . .

γinj 10.0 . . .

to take into account this possible bias in the observed data when
Es is variable.

6.1. Es–bs Relation

The Es–bs trend, and in particular the anticorrelation between
these two observables parameters, is the strongest signature of
a stochastic component in the acceleration.

In Figure 12, we report the scatter plot in the Es–bs plane
for the six considered sources. The left panel reports the results
obtained by changing the value of Dp0: the green dashed lines
describe the trend resulting from a log-parabolic fit of the
synchrotron SED over a decade in energy centered on Es; the
purple lines represent the same trend obtained by fitting a log-
parabola in the fixed spectral window [0.5, 100.0] keV. Both
these trends are compatible with the data and track the predicted
anticorrelation between Es and bs. Purple data, however, give a
better description, hinting that the “window” effect could be a
real bias. Each of the three lines was computed for a different
value of the magnetic field. It is remarkable that the variation
of a single parameter, Dp0, can describe the observed behavior.
The dispersion in the data is relevant and can be related to the
variation of B (as partially recovered by numerical computation),
or by different values of the beaming factor, R, and Linj, during
different flares, and for different objects.

The dot-dashed thick line represents the best fit of the ob-
served data by means of Equation (32), and returns a value of
a ≈ 0.6, as expected from theoretical predictions for the case of
the δ-approximation, and pure log-parabolic electron distribu-
tion. This fitted line is also compatible with the numerical trend
shown by the purple lines. Note that the observed curvature val-
ues are in the range [0.1, 0.5], corresponding to r3p ∼ [0.5, 3.0].
According to the results presented in Section 4.2, the expected
equilibrium curvature in the synchrotron emission, in the full
KN or TH regime, and for q = 2, should be of r3p ≈ 6.0 and of
r3p ≈ 5.0 in the intermediate regime. In the case of q = 3/2, the
equilibrium curvature should be r3p ∼ 3.0. This is perhaps an
interesting hint that, both in the flaring and the quiescent states,
for q = 2, the distribution is always far from equilibrium. In
the case of q = 3/2, only for Es " 1.5 keV is the curvature
compatible with the equilibrium (r3p ≃ 3.0, corresponding to
bs ∼ 0.6). For larger values of Es, we find again curvature
well below the equilibrium value. These results provide a good
constraint on the values of the magnetic field B " 0.1 G.

The q-driven trend (right panel) is also compatible with the
data, but for values of Es " 1 keV, the Dp0-driven case seems to
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a probe for B-driven flares evolving to the KN regime. The Es–bs
plot in the bottom left panel of Figure 11 confirms the cooling
signature discussed above, showing bs uncorrelated with Es as
long as γ3p ≪ γeq, and an increasing value of bs with Es almost
stable, when γ3p ! γeq.

6. SPECTRAL EVOLUTION OF HIGH ENERGY FLARES
OF BRIGHT HBL OBJECTS

The previous considerations on the spectral evolution of
SSC sources, in which high energy electrons are accelerated
in a relatively short timescale by stochastic processes, can be
successfully applied to describe the behavior of some bright
HBLs objects. These sources are, in fact, characterized by
having the synchrotron peak in the UV/X-ray range and the
IC peak in γ rays up to TeV energies. Several flares, observed
simultaneously in both these ranges, exhibited SEDs very well
described by a log-parabolic law, whose parameters, particularly
their curvature, are estimated with high accuracy. A similar
analysis for low-energy peaked BL Lac objects is much more
difficult because the peak of their synchrotron component is
typically in the infrared range and the available simultaneous
multifrequency data are extremely few. Tramacere et al. (2007,
2009) and Tramacere (2007) pointed out that the observed
anticorrelation between Es and bs in the synchrotron SED of
Mrk 421 can provide a clear signature of a stochastic component
in the acceleration process. In the same analysis, these authors
also presented an interesting correlation between Es and Ss.
Massaro et al. (2008) found that the Es–bs and Es–Ss trends
hold also for a larger sample of 11 HBLs, strengthening the
hypothesis that a common accelerative mechanism may drive
such physical processes for this class of active galactic nuclei.
To give a theoretical framework to these phenomenological
relations, we try to reproduce both the Es–bs and Es–Ss relations
derived from the data of the aforementioned papers. In the
following, we will consider the data of Mrk 421 from Tramacere
et al. (2007, 2009) collected over a period of 13 years, and
of six HBL objects from Massaro et al. (2008): Mrk 180,
Mrk 501, PKS 0548−322, PKS 1959−650, 1H 1426+428,
covering a period of about 11 years and including both quiescent
and flaring states. The sources from Massaro et al. (2008) were
chosen because the data are good enough to safely constrain both
curvature and Es values, and because the observed variations of
the sample luminosity are compatible with the assumption to be
driven by changes of Es.

Following the analysis presented in Section 5, we con-
sider two scenarios in which these trends are driven by the
momentum-diffusion term. In the first case, the momentum dif-
fusion changes because of variations of Dp0, due to changes of
δB/B or βA, but the turbulence spectrum (q = 2) remains sta-
ble. In the second scenario, the turbulence spectrum is variable
with q ranging in [3/2, 2]. We use the same method described
in Section 5 to compute the averaged SEDs for each value of Dp
(or q); computations are performed for three values of the mag-
netic field B = 0.05, 0.1, and 0.2 G. All the model parameters
are summarized in Table 3.

The comparison with the data can be affected by an obser-
vational bias due to the limited energy range of detectors. In
fact, when the peak energy is close to the limits the curvature
is not well estimated because one can use only a portion of
the parabola below or above the peak. Generally, curvatures
lower than the actual ones are obtained. The energy range [0.5,
100.0] keV is the typical spectral window covered by X-ray and
hard-X-ray detectors. In our analysis, we used this fixed window

Table 3
Parameters’ Values Adopted in the Numerical Solutions of the Diffusion

Equation to Reproduce the Observed Trends of the HBLs Reported in Section 6

Parameter D Trend q Trend

R (cm) 3 × 1015 . . .

B (G) [0.05, 0.2] . . .

Linj (Es–bs trend) (erg s−1) 5 × 1039 . . .

Linj (Es–Ls trend) (erg s−1) 5 × 1038, 5 × 1039 . . .

q 2 [3/2, 2]
tA (s) 1.2 × 103 . . .

tD0 = 1/DP 0 (s) [1.5 × 104, 1.5 × 105] 1.5 × 104

Tinj (s) 104 . . .

Tesc (R/c) 2.0 . . .

Duration (s) 104 . . .

γinj 10.0 . . .

to take into account this possible bias in the observed data when
Es is variable.

6.1. Es–bs Relation

The Es–bs trend, and in particular the anticorrelation between
these two observables parameters, is the strongest signature of
a stochastic component in the acceleration.

In Figure 12, we report the scatter plot in the Es–bs plane
for the six considered sources. The left panel reports the results
obtained by changing the value of Dp0: the green dashed lines
describe the trend resulting from a log-parabolic fit of the
synchrotron SED over a decade in energy centered on Es; the
purple lines represent the same trend obtained by fitting a log-
parabola in the fixed spectral window [0.5, 100.0] keV. Both
these trends are compatible with the data and track the predicted
anticorrelation between Es and bs. Purple data, however, give a
better description, hinting that the “window” effect could be a
real bias. Each of the three lines was computed for a different
value of the magnetic field. It is remarkable that the variation
of a single parameter, Dp0, can describe the observed behavior.
The dispersion in the data is relevant and can be related to the
variation of B (as partially recovered by numerical computation),
or by different values of the beaming factor, R, and Linj, during
different flares, and for different objects.

The dot-dashed thick line represents the best fit of the ob-
served data by means of Equation (32), and returns a value of
a ≈ 0.6, as expected from theoretical predictions for the case of
the δ-approximation, and pure log-parabolic electron distribu-
tion. This fitted line is also compatible with the numerical trend
shown by the purple lines. Note that the observed curvature val-
ues are in the range [0.1, 0.5], corresponding to r3p ∼ [0.5, 3.0].
According to the results presented in Section 4.2, the expected
equilibrium curvature in the synchrotron emission, in the full
KN or TH regime, and for q = 2, should be of r3p ≈ 6.0 and of
r3p ≈ 5.0 in the intermediate regime. In the case of q = 3/2, the
equilibrium curvature should be r3p ∼ 3.0. This is perhaps an
interesting hint that, both in the flaring and the quiescent states,
for q = 2, the distribution is always far from equilibrium. In
the case of q = 3/2, only for Es " 1.5 keV is the curvature
compatible with the equilibrium (r3p ≃ 3.0, corresponding to
bs ∼ 0.6). For larger values of Es, we find again curvature
well below the equilibrium value. These results provide a good
constraint on the values of the magnetic field B " 0.1 G.

The q-driven trend (right panel) is also compatible with the
data, but for values of Es " 1 keV, the Dp0-driven case seems to
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Fig. 2. Top left panel: typical HSPs SEDs. the red line represents the synchrotron component, the green line represents the SSC component, the
purple vertical dotted lines represent the 100 MeV - 10 GeV band, the blue vertical dotted lines represent the 10-100 keV band. The oblique black
line, overlapping the synchrotron component, represent the expected power-law trends predicted by Eq. 6, and Eq. 6. Top right panel: �� vs. s
trend, obtained by fitting the numerical SEDs, in the Optical/UV band, for the synchrotron component (red solid circles), and in the 100 MeV -
100 GeV band, for the SSC emission (solid green circles). The blue dashed lines represent the trend predicted by Eq. 7. Bottom left panel: typical
HSPs scenario, for three di⇥erent values of�min=1 (solid lines), �min=1.5⇥103 (dashed lines), and �min=105 (dashed-dotted lines). Same color code
as in the top left panel. The blue solid line, represents the trend predicted in the case of �min⇤1 (Eq. 8). Bottom right panel: �� vs. �min trend, for
s = 1.8, obtained by fitting the numerical SEDs, in the Optical/UV band, for the synchrotron component (red solid circles), and in the 100 MeV
- 100 GeV band, for the SSC emission (solid green circles). The blue dashed line represents the trend predicted by Eq. 7, for s = 1.8. The purple
dashed line, represents the asymptotic trend predicted by Eq. 8. The gray-shaded area, represents the �X range, predicted by Eq. 7, for s ranging
in [1.5 ÷ 2.5]

by extragalactic background light (EBL). Indeed, the absence of
a significant curvature in the Fermi-LAT spectra, and the typi-
cally low redshift of Fermi-LAT HSPs, suggests that EBL con-
tribution at GeV energies is negligible (at least for the current
analysis)

4.3. s vs. �� trend: numerical results

In the top right panel of Fig. 2 we show the trend of s vs.
�� (green solid circles), compared to the trend of the syn-
chrotron photon index in the Optical/UV band (red solid circles).
The index �� has been evaluated by fitting the numerical SED in
the 100 MeV - 100 GeV range, and the Optical/UV synchrotron
photon index, by fitting in the range ⇥ = 1014 Hz - 1015 Hz,

range. By comparing the s vs.�� trend, with the one predicted
by Eq. 7 (blue dashed line), we observe that, as expected, �� fol-
lows the same trend of the synchrotron emission, but showing
values of �� softer than those predicted by Eq. 7. This bias,
as anticipated, depends on the position of the IC energy peak,
and on the transition form TH to KN regime, anyhow, the lower
panel of Fig. 2 shows that the relative deviation is of the order
of ⌅ (15 � 20)%, still acceptable to use �� as a tracker of s. In
the MC approach section we will give a more precise estimate
of this bias, by exploring a large volume of the SSC parameter
space.
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energy can be expressed by the following relations:317

Ss(Es) ∝ n(γ3p)γ
3
3pB

2δ4 (28)

Es ∝ γ2
3pBδ.

which implies

Ss ∝ (Es)
α, (29)

where α = 1.5 applies for changes of γ3p leaving constant n(γ3p), α = 2 for variations of B

only, and α = 4 when the main driver is δ. For a log-parabolic shaped n(γ) we have:

log(γ3p) = log(γp) +
3

2r
(30)

and, using the relation bs ≈ r/5 (Massaro et al. 2004), or, more precisely, from the analysis

presented in Sec. 4.2, bs ≃ r3p/5. It follows:

log(Es) ∝ 2 log(γp) +
3

5b
. (31)

The relation between bs and Es is:

bs =
a

log(Es/E0)
(32)

with a = 3/5 = 0.6318

The spectral properties of the IC emission are more complex, depending on the transition319

from the TH to the KN regime (see Massaro et al. 2006, for a detailed discussion). In the320

former case, the curvature is close to that of the synchrotron emission, but systematically321

smaller due to the energy redistribution by the scattering process. In the transition to the322

KN regime, the energy of IC photons will approach γmec2, hence the IC spectral shape will323

reflect that of the high-energy tail of n(γ), and the curvature bc will be closer to that of the324

electrons. Then, provided the IC scattering happens in TH regime, the trends involving bc325

are expected to be similar to those of bs, but showing systematically bc < bs. As the KN326

regime is approached, bc changes differently from bs, converging towards r.327
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Figure 9. Left panels: evolution of synchrotron (black dashed lines) and IC (red dashed lines) SEDs, for the case of tD0 = 1.5 × 104 s and q = 2 (top panel), and
for the case of tD(γinj) ≈ 6.3 × 104 s and q = 3/2 (bottom panel). All the other parameters are as reported in Table 2. The solid lines represent the SEDs averaged
over the full simulation period, and the blue dashed lines (top panel) represent the SEDs corresponding to the transition from TH to KN regime. Right panels: the
temporal evolution of bs (black squares) and bc (red squares) as a function of t/tD0 , for the case of q = 2 (top panel), and q = 3/2 (bottom panel). The cyan line (top
panel) represents the bs trend predicted for the synchrotron emission in the case of the δ-approximation. The dashed lines (top panel) represent the PL best fit of both
bs (purple) and bc (blue) trends.
(A color version of this figure is available in the online journal.)

The spectral properties of the IC emission are more complex,
depending on the transition from the TH to the KN regime (see
Massaro et al. 2006 for a detailed discussion). In the former
case, the curvature is close to that of the synchrotron emission
but systematically smaller due to the energy redistribution by the
scattering process. In the transition to the KN regime, the energy
of IC photons will approach γmec

2, hence the IC spectral shape
will reflect that of the high-energy tail of n(γ ) and the curvature
bc will be closer to that of the electrons. Then, provided the
IC scattering happens in the TH regime, the trends involving
bc are expected to be similar to those of bs, but systematically
show bc < bs . As the KN regime is approached, bc changes
differently from bs, converging toward r.

5.1. Temporal Evolution of bs and bc

We compute the evolution of bs and bc, as a function of the
time, for the case of tD0 = 1.5 × 104 s, B = 0.1 G, and q = 2,
using a temporal mesh of 2 s. We plot in the top left panel of
Figure 9 the instantaneous SEDs at steps of 200 s: the solid
lines represent the synchrotron and IC SEDs averaged over the
full duration of the acceleration process (104 s). As the time
is increased, the peak energy of both the synchrotron and IC
SEDs moves toward higher energies with a broadening of the
spectral distribution. The corresponding evolution of curvature

parameters is reported in the top right panel: bs has a trend
similar to that of the electron distribution, with bs ∝ (t/tD0)−α

and α ≃ 0.6 (for comparison the cyan solid line represents
the r3p/5 trend, as predicted by the S δ-approximation). The
trend of bc, as expected, is more complex because of the
transition from TH to KN regime. For t/tacc ! 0.4, it follows
the same trend of bs but with systematically lower values.
For t/tacc " 0.4, when the TH–KN transition occurs, bc
increases with time, approaching toward the electron curvature
r value. This transition starts for values of Es ≈ 5 × 10−3 keV
(νs ≈ 1014 Hz) and Ec ≈ 0.05 GeV (νc ≈ 1022 Hz); and the
corresponding SEDs are plotted by blue thick-dashed lines in
the left panel of Figure 9.

In the bottom panels of Figure 9, we show the case of
q = 3/2. The synchrotron curvature quickly approaches the
equilibrium value of bs ≈ 0.6, consistent with the equilibrium
value r3p ≈ 3.0 discussed in Section 4.2. In this case we do
not observe the TH/KN transition in the IC curvature, since the
lower values of Es and Ec keep the IC scattering mainly in the
TH regime.

5.2. Es–Ss and Es–bs as a Function of Dp0 and q

The other parameter affecting the evolution of the spectral
distributions is the diffusion coefficient Dp0 (see Equation (15)),

10

q=2
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Figure 3. Left panel: the tD acceleration time as a function of λmax, for q = 2, δB/B = 0.1, and βA = 0.5. The vertical lines represent the Larmor radius for γ = 105

(red line), γ = 1.5 × 107 (cyan line), and γ = 108 (orange line). Right panel: the tD acceleration time for the same parameters as in the left panel, for the case of
q = 3/2 and as function of γ , for the two different cases of λmax = 3 × 1010 cm (black line) and λmax = 1 × 1015 cm (purple line). The thick black line shows tD, for
the case of λmax = 3 × 1010 cm, limited to the highest acceleration energy of the particles constrained by the resonant scattering limit: ρg = λmax.
(A color version of this figure is available in the online journal.)

Figure 4. Left panels: evolution of the particle spectrum with impulsive injection and no escape for the case of R = 1×1015 cm and q = 2. Upper panels represent the
temporal evolution of n(γ ); lower panels represent the temporal evolution of γ 3n(γ ). Solid lines represent the case of SSC cooling. Red and blue solid lines represent
the final state for B = 1.0 G and B = 0.1 G, respectively. Green solid lines represent the temporal evolution, for B = 0.1 G, with step of 0.8 × tD . The dashed lines
represent the final stage in the case of only synchrotron cooling. The vertical dot-dashed lines represent the equilibrium energy in the case of only synchrotron cooling.
Right panels: evolution of the curvature as a function of t/tD0 . Upper panel: curvature r evaluated at γp , for the case of SSC cooling (solid red and blue lines) and for
the case of only synchrotron cooling (dashed red and blue lines). The solid green line represents the prediction from Equation (19). Lower panel: the same as in the
upper panel, for the curvature r3p evaluated at γ3p (open and filled circles) compared to the case of r (solid lines).
(A color version of this figure is available in the online journal.)

Table 1
Parameters’ Values Adopted in the Numerical Solutions of the Diffusion

Equation for the Cases Studied in Section 4

Parameter Impulsive Inj. Cont. Inj.

R (cm) 5 × 1013, 1 × 1015 . . . . . . . . .

B (G) 0.1, 1.0 . . . . . . . . .

Linj (erg s−1) 1039 . . . 1037 . . .

q 2 3/2 2 3/2
tD0 = 1/DP 0 (s) 1 × 104 1 × 103 1 × 104 1 × 103

Tinj (s) 100 . . . 1 × 104 . . .

Tesc (R/c) ∞ . . . 2 . . .

Duration (s) 1 × 105 . . . . . . . . .

γinj 10.0 . . . 10.0 . . .

4.2. Impulsive Injection

In the left panels of Figure 4 and Figure 5, we plot the
evolution of energy distribution n(γ , t) (upper panels) and of

γ 3n(γ , t) (lower panels) in the case of the impulsive injection
without escape, for q = 2, and for two values of R: 1 ×
1015 cm (Figure 4) and 5 × 1013 cm (Figure 5). We inject
a quasi-monoenergetic electron distribution with γinj ≈ 10.
The γ 3n(γ , t) representation is useful to compare the results
concerning n(γ ) presented in this section, with those regarding
the synchrotron emission presented in Section 5. We denote by
γp the peak energy of n(γ ) and by r the curvature evaluated
by means of a log-parabolic best fit over a one decade-broad
interval centered at γp. γ3p and r3p represent the peak of γ 3n(γ )
and its curvature, respectively. In the right panels of Figures 4
and 5, we report on the corresponding temporal evolutions of
the curvatures under the effect of both momentum diffusion and
cooling terms. The solid black line corresponds to t = 0.2× tacc,
where tacc = tD0 is the acceleration time due to momentum
diffusion. As the time increases, the diffusion term acts on the
distribution by means of both DA and Dp. The effect of the latter
is to make the distribution broader.
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where βA = VA/c and VA is the Alfven waves velocity, ρg = pc/qB is the Larmor radius, and104

λmax is the maximum wavelength of the Alfven waves spectrum. The acceleration time for105

particles with Lorentz factor γ, whose Larmor radii resonate with one particular magnetic106

field turbulence length-scale, is dictated by the momentum diffusion coefficient (Dp) as,107

tacc ≈
p2

Dp

=
ρg(γ0)

c β2
A

(

B2
0

δB2

)
∣

∣

∣

∣

γ0

(

γ

γ0

)2−q

. (15)

The spatial diffusion coefficient relates to the momentum diffusion coefficient through the108

relation, DxDp ≈ p2β2
A (Skilling 1975), hence the escape time of the particles from the109

acceleration region of size R, depends on the spatial diffusion coefficient through the relation,110

tesc ≈
R2

Dx

≈
R2

(cβA)2 tacc
. (16)

The coefficients in Eq. 11, and their related time scales, can be expressed as a power-law in

terms of the Lorentz factor (γ):
⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

Dp(γ) = Dp0

(

γ
γ0

)q

, tD = 1
Dp0

(

γ
γ0

)2−q

DA(γ) = 2Dp0

(

γ
γ0

)q−1
, tDA = 1

2Dp0

(

γ
γ0

)2−q

A(γ) = Ap0γ, tA = 1
A0

(17)

where Dp0, and A0 have the dimension of the inverse of a time. Analytical solutions of

the diffusion equation for relativistic electrons are frequently discussed in the literature

since the early work by Kardashev (1962), in particular for the case of the “hard-sphere”

approximation. Neglecting the S and Tesc terms in Eq. 11, and using a mono-energetic

and instantaneous injection (n(γ, 0) = N0δ(γ − γ0)), the solution of the diffusion equation is

(Melrose 1969; Kardashev 1962):

n(γ, t) =
N0

γ
√

4πDp0t
exp

{

−
[ln(γ/γ0) − (Ap0 − Dp0)t]2

4Dp0t

}

, (18)

ie. a log-parabolic distribution, whose curvature term is:

r =
ce

4Dp0 t
∝

1

Dp0t
(19)
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Figure 11. Same as in Figure 10, for different values of B in the range reported in Table 2.
(A color version of this figure is available in the online journal.)

We also investigate the role of q on the spectral evolution,
setting its variation range to [3/2, 2], i.e., from the Kraichnan
to the “hard-sphere” case. The relations between the spectral
parameters are very similar to those found in the previous case
with Ss ∝ E0.6

s and Sc ∝ E0.9
c . Also in this case, the synchrotron

component follows the expectation with a lower curvature for
harder turbulence spectra, and the IC trend shows the transition
from TH to KN regime. The PL best fit of S(Es) versus Es gives
a = 0.88, larger than that obtained for the case of Dp0. In fact,
for values of q lower than 2, corresponding to less turbulence and
hence diffusion, the curvature gets higher values and the peak
energy lower values, compared to the “hard-sphere” case. The
PL fit for bs versus Es returns an exponent of −0.16, practically
coincident with the previous one, indicating that the average
properties of these parameters are the same in both the q and
Dp0 cases.

5.3. Es,c–Ss,c and Es,c–bs,c as a Function of B

The magnetic field B drives the radiative losses which affect
the evolution of the spectral parameters. In Section 4, we showed
that different cooling conditions, and the transition from TH
to KN, can determine very different values of γeq for the
same acceleration conditions. Assuming that the acceleration
timescale is independent of the magnetic field, Equation (27)
shows that γeq ∝ 1/B2, implying that, as long as B is small
enough to result in γ3p ≪ γeq, the evolution of n(γ ) around
the peak value is dominated by the acceleration terms, while for

values of B resulting in γ3p ! γeq the evolution obtains a notable
contribution due to cooling. In the top left panel of Figure 11,
we plot the averaged SEDs. According to Equations (28) and
(29), the synchrotron peak value should scale as Ss ∝ (Es)2.
Indeed, for values of B " 0.2 G we obtain an exponent equal
to 2.04, very close to the value found with the δ-approximation.
For higher values of the magnetic field, Es is anti-correlated
with Ss. This behavior represents a cooling signature due to
the decreasing value γeq for increasing B values, with γeq
getting closer to γ3p. This is confirmed both by the shape of
the synchrotron SEDs and by the bs–B plot (top right panel in
Figure 11). Indeed, S SEDs for B ! 0.2 G exhibit an exponential
decay, meaning that the distributions have reached, or are close
to reaching, the equilibrium energy. Consistently with the S
shape evolution, the bs–B relation shows an almost stable value
of bs for B " 0.2 G and an increasing trend for B ! 0.2 G. This
change, in both the Ss–Es and bs–B trends, is interesting and can
provide a useful phenomenological tool for understanding the
evolution of non-thermal sources. Another interesting feature is
shown in the Sc–Ec plot: for B " 0.2 G the IC peak energy
is practically constant, as expected in the KN limit from the
kinematical limit relating the scattered photons energy to that of
the electrons: hνIC ≈ γmec

2. In fact, photons at energies ≈Ec

are produced in the KN regime and for B " 0.2 G the electron
peak energy γ3p is constant, so Ec must also be constant. For
B ! 0.2 G, γ3p decreases because of cooling, and, accordingly,
Ec also decreases. This is another interesting test that can provide
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which implies
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α, (29)
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and, using the relation bs ≈ r/5 (Massaro et al. 2004), or, more precisely, from the analysis
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with a = 3/5 = 0.6318
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former case, the curvature is close to that of the synchrotron emission, but systematically321

smaller due to the energy redistribution by the scattering process. In the transition to the322

KN regime, the energy of IC photons will approach γmec2, hence the IC spectral shape will323

reflect that of the high-energy tail of n(γ), and the curvature bc will be closer to that of the324

electrons. Then, provided the IC scattering happens in TH regime, the trends involving bc325

are expected to be similar to those of bs, but showing systematically bc < bs. As the KN326

regime is approached, bc changes differently from bs, converging towards r.327
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Figure 9. Left panels: evolution of synchrotron (black dashed lines) and IC (red dashed lines) SEDs, for the case of tD0 = 1.5 × 104 s and q = 2 (top panel), and
for the case of tD(γinj) ≈ 6.3 × 104 s and q = 3/2 (bottom panel). All the other parameters are as reported in Table 2. The solid lines represent the SEDs averaged
over the full simulation period, and the blue dashed lines (top panel) represent the SEDs corresponding to the transition from TH to KN regime. Right panels: the
temporal evolution of bs (black squares) and bc (red squares) as a function of t/tD0 , for the case of q = 2 (top panel), and q = 3/2 (bottom panel). The cyan line (top
panel) represents the bs trend predicted for the synchrotron emission in the case of the δ-approximation. The dashed lines (top panel) represent the PL best fit of both
bs (purple) and bc (blue) trends.
(A color version of this figure is available in the online journal.)

The spectral properties of the IC emission are more complex,
depending on the transition from the TH to the KN regime (see
Massaro et al. 2006 for a detailed discussion). In the former
case, the curvature is close to that of the synchrotron emission
but systematically smaller due to the energy redistribution by the
scattering process. In the transition to the KN regime, the energy
of IC photons will approach γmec

2, hence the IC spectral shape
will reflect that of the high-energy tail of n(γ ) and the curvature
bc will be closer to that of the electrons. Then, provided the
IC scattering happens in the TH regime, the trends involving
bc are expected to be similar to those of bs, but systematically
show bc < bs . As the KN regime is approached, bc changes
differently from bs, converging toward r.

5.1. Temporal Evolution of bs and bc

We compute the evolution of bs and bc, as a function of the
time, for the case of tD0 = 1.5 × 104 s, B = 0.1 G, and q = 2,
using a temporal mesh of 2 s. We plot in the top left panel of
Figure 9 the instantaneous SEDs at steps of 200 s: the solid
lines represent the synchrotron and IC SEDs averaged over the
full duration of the acceleration process (104 s). As the time
is increased, the peak energy of both the synchrotron and IC
SEDs moves toward higher energies with a broadening of the
spectral distribution. The corresponding evolution of curvature

parameters is reported in the top right panel: bs has a trend
similar to that of the electron distribution, with bs ∝ (t/tD0)−α

and α ≃ 0.6 (for comparison the cyan solid line represents
the r3p/5 trend, as predicted by the S δ-approximation). The
trend of bc, as expected, is more complex because of the
transition from TH to KN regime. For t/tacc ! 0.4, it follows
the same trend of bs but with systematically lower values.
For t/tacc " 0.4, when the TH–KN transition occurs, bc
increases with time, approaching toward the electron curvature
r value. This transition starts for values of Es ≈ 5 × 10−3 keV
(νs ≈ 1014 Hz) and Ec ≈ 0.05 GeV (νc ≈ 1022 Hz); and the
corresponding SEDs are plotted by blue thick-dashed lines in
the left panel of Figure 9.

In the bottom panels of Figure 9, we show the case of
q = 3/2. The synchrotron curvature quickly approaches the
equilibrium value of bs ≈ 0.6, consistent with the equilibrium
value r3p ≈ 3.0 discussed in Section 4.2. In this case we do
not observe the TH/KN transition in the IC curvature, since the
lower values of Es and Ec keep the IC scattering mainly in the
TH regime.

5.2. Es–Ss and Es–bs as a Function of Dp0 and q

The other parameter affecting the evolution of the spectral
distributions is the diffusion coefficient Dp0 (see Equation (15)),
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time, for the case of tD0 = 1.5 × 104 s, B = 0.1 G, and q = 2,
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is increased, the peak energy of both the synchrotron and IC
SEDs moves toward higher energies with a broadening of the
spectral distribution. The corresponding evolution of curvature

parameters is reported in the top right panel: bs has a trend
similar to that of the electron distribution, with bs ∝ (t/tD0)−α

and α ≃ 0.6 (for comparison the cyan solid line represents
the r3p/5 trend, as predicted by the S δ-approximation). The
trend of bc, as expected, is more complex because of the
transition from TH to KN regime. For t/tacc ! 0.4, it follows
the same trend of bs but with systematically lower values.
For t/tacc " 0.4, when the TH–KN transition occurs, bc
increases with time, approaching toward the electron curvature
r value. This transition starts for values of Es ≈ 5 × 10−3 keV
(νs ≈ 1014 Hz) and Ec ≈ 0.05 GeV (νc ≈ 1022 Hz); and the
corresponding SEDs are plotted by blue thick-dashed lines in
the left panel of Figure 9.

In the bottom panels of Figure 9, we show the case of
q = 3/2. The synchrotron curvature quickly approaches the
equilibrium value of bs ≈ 0.6, consistent with the equilibrium
value r3p ≈ 3.0 discussed in Section 4.2. In this case we do
not observe the TH/KN transition in the IC curvature, since the
lower values of Es and Ec keep the IC scattering mainly in the
TH regime.

5.2. Es–Ss and Es–bs as a Function of Dp0 and q

The other parameter affecting the evolution of the spectral
distributions is the diffusion coefficient Dp0 (see Equation (15)),
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Fig. 7. The SR and SSC spectral energy distributions emitted by
an electron population with power-law log-parabolic distributions
(Eq. (11)), computed for r values in the interval 0.50−1.20. Upper
panel: spectra for γ0 = 103; lower panel: spectra for γ0 = 2 × 104.
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Fig. 8. Dependence of the peak frequencies upon the particle char-
acteristic energies in the SED of a single zone SSC model. Upper
panel: frequency of SSC peak vs. electron Lorentz factors of the peaks
for r values in the interval 0.50–1.90, the three curves correspond to
γ0 = 103 (filled circles), 5 × 103 (open cicrcles), 104 (crosses). Lower
panel: ratio between the peak frequencies of IC and SR components
for the same values of the spectral parameters.

to 1.2 and γ0 equal to 103 (upper panel) and 2 × 104 (lower
panel). The upper cut-off of the energy electron spectrum was
fixed at γct = 5 × 107. In the upper panel of Fig. 8, we plot-
ted the peak frequency of the IC component νpC vs. γp for

γ0 = 103, 5 × 103, 104 and r ranging from 0.5 to 1.9. These
curves are useful for understanding at which electron peak
energy the IC emission is dominated by the Thomson or the
Klein-Nishina regime. We stress that this does not imply that
the largest contribution to the emission around νpC is due to
electrons exactly at γp. We computed these energies and found
that, for the highest value of γ0, the difference is on the order
of a few percent, while for the lowest γ0 and r = 1.7 the great-
est contribution to the IC peak is produced by electrons having
γ ≃ 6.3 × 103, while γp is at 1.4 × 104. It is of course impossi-
ble to derive a simple rule because of the number of parameters
involved. Figure 8 (upper panel) shows that as γp increases, the
corresponding νpC grows slower and slower indicating that the
Klein-Nishina suppression becomes more efficient. A second
way to show the relation between SR and IC components is
given in the lower panel of Fig. 8, where we plotted the ratio
νpC/νpS vs. γp: this ratio increases until the Thomson scattering
is dominant and reaches the maximum at the transition to the
Klein-Nishina regime.

The IC spectra show an evident curvature that is not uni-
vocally related to the r as in the SR case. Spectral curvature,
in fact, depends on several parameters in a complex way. The
spectral shape is generally different from a log-parabola, and
it can be approximated by this function only in a limited fre-
quency interval. Consequently, the estimate of the curvature
parameter depends on the postion and amplitude of this inter-
val. In particular, the curvature depends on the intrinsic elec-
tron spectral curvature, the energy of SR photons, and on the
energy of the electrons that mostly contribute to the emis-
sion in the selected interval. These energies, in fact, deter-
mine if the scatterings happen in the Thomson limit or in the
Klein-Nishina regime. We obtained spectra with a curvature
less pronounced than SR only for γ0 = 103 (i.e. for domi-
nant Thomson scattering) and b evaluated in an interval around
the peak. In all the other cases, higher b values of IC spec-
trum resulted. Figure 9 shows some examples: the curvature
parameter b of the IC spectrum, computed in a single zone
SSC model, was evaluated in three adjacent frequency inter-
vals, each having an amplitude of about a decade starting from
the peak frequency. When the main contribution to IC emis-
sion comes from Thomson scatterings, the curvature is closer
to that of SR (solid line), and it approaches that of the elec-
tron spectrum (dashed-dotted line) when the fraction of inter-
actions in the Klein-Nishina regime increases. The two pan-
els correspond to γ0 values differing by a factor of 20. In the
upper panel, IC emission is dominated by Thomson scattering
in the two first intervals, while in the lower panel the curva-
ture approaches that of the electrons because the majority of
interactions are in the Klein-Nishina regime. This property is
really useful because a simultaneous measure of the curvature
parameters of SR and IC emissions can help to discriminate be-
tween the two regimes of Compton scattering and to constrain
the spectral parameters of emitting electrons.

5. The X-ray and TeV emission from Mkn 501

In Paper II we presented the results of analysing all BeppoSAX
observations of the nearby HBL object Mkn 501 using
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Figure 10. Upper left panel: synchrotron (red lines) and IC (red lines) average SEDs for each different value of tD0 in the range reported in Table 2, with q = 2. Blue
points represent the position of ES,C and SS,C . The purple, orange, and green line represent the PL best fit of the ES–SS and EC–SC trends. Upper right panel: bs and
bc, for each average SED in the right panel, as a function of Dp0. Dashed lines represent the PL best fit of the b–Dp0 trend. Lower left panel: the bs–Es trend obtained
by means of a log-parabolic best fit of the averaged SEDs plotted in the upper right panel. Lower right panel: same as in the lower left panel, for bc–Ec.
(A color version of this figure is available in the online journal.)

which we assume to vary in the range [1.5×104, 2.4×105] s−1,
studying how the main spectral parameters change. In the
top left panel of Figure 10, we plot averaged SEDs for each
different value of Dp0. The top right panel shows the trend of bc
versus Dp0. As expected, for larger values of Dp0, the curvature
measured at the peak energy is smaller. The trend is described
by a PL with an exponent of about −0.6 for Dp0 ! 2×10−5 s−1

and with an exponent of about −0.25 for Dp0 " 2 × 10−5 s−1.
This break clearly shows the transition between the TH and
KN regimes (marked by a vertical dashed line); indeed it
happens for the same values of Dp0 corresponding to the
TH/KN transition in both the Dp0–bc trend and the Ec–bc
plot (occurring at Ec ≈ 1 GeV; see the bottom right panel
in Figure 10). The break in the Dp0–bs trend happens when
electrons radiating at Es enter the KN cooling region, hence,
due to the lower cooling level (compared to the TH cooling
regime, on the left side of the vertical dashed line), the curvature
decreases.

Blue filled circles in the top left panel represent the peak
positions for both SED components. For the synchrotron com-
ponent, according to Equation (29), the exponent α in the case
of n(γ3) = const, should be 1.5, while the results of the com-
putations give α = 0.6. This difference is due to the fact that
we inject in the mono-energetic initial distribution always the
same total power that corresponds to the same number of parti-

cles. When the peak energy increases the distribution becomes
broader, implying that the same total number of particles is
spread over a larger energy interval and the number of particles
contributing to the synchrotron peak emission decreases. Con-
sequently, the Ss–Es trend gets softer compared to the predicted
value of 1.5.

We verified quantitatively this effect by computing the trend
n(γ3p) versus γ 2

3p, and found a PL relation with an exponent
of about 0.98, in nice agreement with the difference between
the exponent of 1.5 and that resulting in our simulations. In
the bottom panels of Figure 10, we plot bs versus Es (left)
and bc versus Ec (right). The Sc–Ec relation can be fitted by
a PL (orange line, top left panel in Figure 10) with the same
exponent of the Es–Ss relation, as long as the IC scattering, at
Ec and above, happens in TH regime. When the KN suppression
becomes relevant (green line, top left panel in Figure 10), the
exponent is larger and is close to unity.

The synchrotron trend (the bottom left panel in Figure 10)
clearly shows the expected anti-correlation between the peak
energy and the spectral curvature, which is well fit by the
function given in Equation (32), with a = 0.68, not very
different from 0.6, obtained for the δ-function approximation of
the synchrotron emission, and assuming that n(γ ) has a purely
log-parabolic shape. A simple PL fit of the same points returns
an exponent −0.14.
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Figure 3. Left panel: the tD acceleration time as a function of λmax, for q = 2, δB/B = 0.1, and βA = 0.5. The vertical lines represent the Larmor radius for γ = 105

(red line), γ = 1.5 × 107 (cyan line), and γ = 108 (orange line). Right panel: the tD acceleration time for the same parameters as in the left panel, for the case of
q = 3/2 and as function of γ , for the two different cases of λmax = 3 × 1010 cm (black line) and λmax = 1 × 1015 cm (purple line). The thick black line shows tD, for
the case of λmax = 3 × 1010 cm, limited to the highest acceleration energy of the particles constrained by the resonant scattering limit: ρg = λmax.
(A color version of this figure is available in the online journal.)

Figure 4. Left panels: evolution of the particle spectrum with impulsive injection and no escape for the case of R = 1×1015 cm and q = 2. Upper panels represent the
temporal evolution of n(γ ); lower panels represent the temporal evolution of γ 3n(γ ). Solid lines represent the case of SSC cooling. Red and blue solid lines represent
the final state for B = 1.0 G and B = 0.1 G, respectively. Green solid lines represent the temporal evolution, for B = 0.1 G, with step of 0.8 × tD . The dashed lines
represent the final stage in the case of only synchrotron cooling. The vertical dot-dashed lines represent the equilibrium energy in the case of only synchrotron cooling.
Right panels: evolution of the curvature as a function of t/tD0 . Upper panel: curvature r evaluated at γp , for the case of SSC cooling (solid red and blue lines) and for
the case of only synchrotron cooling (dashed red and blue lines). The solid green line represents the prediction from Equation (19). Lower panel: the same as in the
upper panel, for the curvature r3p evaluated at γ3p (open and filled circles) compared to the case of r (solid lines).
(A color version of this figure is available in the online journal.)

Table 1
Parameters’ Values Adopted in the Numerical Solutions of the Diffusion

Equation for the Cases Studied in Section 4

Parameter Impulsive Inj. Cont. Inj.

R (cm) 5 × 1013, 1 × 1015 . . . . . . . . .

B (G) 0.1, 1.0 . . . . . . . . .

Linj (erg s−1) 1039 . . . 1037 . . .

q 2 3/2 2 3/2
tD0 = 1/DP 0 (s) 1 × 104 1 × 103 1 × 104 1 × 103

Tinj (s) 100 . . . 1 × 104 . . .

Tesc (R/c) ∞ . . . 2 . . .

Duration (s) 1 × 105 . . . . . . . . .

γinj 10.0 . . . 10.0 . . .

4.2. Impulsive Injection

In the left panels of Figure 4 and Figure 5, we plot the
evolution of energy distribution n(γ , t) (upper panels) and of

γ 3n(γ , t) (lower panels) in the case of the impulsive injection
without escape, for q = 2, and for two values of R: 1 ×
1015 cm (Figure 4) and 5 × 1013 cm (Figure 5). We inject
a quasi-monoenergetic electron distribution with γinj ≈ 10.
The γ 3n(γ , t) representation is useful to compare the results
concerning n(γ ) presented in this section, with those regarding
the synchrotron emission presented in Section 5. We denote by
γp the peak energy of n(γ ) and by r the curvature evaluated
by means of a log-parabolic best fit over a one decade-broad
interval centered at γp. γ3p and r3p represent the peak of γ 3n(γ )
and its curvature, respectively. In the right panels of Figures 4
and 5, we report on the corresponding temporal evolutions of
the curvatures under the effect of both momentum diffusion and
cooling terms. The solid black line corresponds to t = 0.2× tacc,
where tacc = tD0 is the acceleration time due to momentum
diffusion. As the time increases, the diffusion term acts on the
distribution by means of both DA and Dp. The effect of the latter
is to make the distribution broader.
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Figure 5. Left panels: the same as in Figure 4, for the case of R = 5 × 1013 cm. Upper right panel: the same as in Figure 4 for the case of R = 5 × 1013 cm. Lower
right panel: the evolution of the curvature r3p for the case R = 5 × 1013 cm.
(A color version of this figure is available in the online journal.)

One can distinguish three phases: in the first one the energy
of particles increases and the curvature parameter decreases
following a law r ∝ t−1 in agreement with the statistical
scenario of Section 2 and with the Equation (19), independent of
the magnetic field strength (B = 1.0 G and B = 0.1 G) and of
the source size, because the accelerative contribution dominates
over the radiative losses; in the second phase, the radiation losses
become relevant and the distribution approaches the equilibrium
with an increase of the curvature; and in the third phase, the
balance between acceleration and radiation losses is established
and the curvature reaches a stable value.

The equilibrium distribution reached through stochas-
tic acceleration, is described by a relativistic Maxwellian
(Schlickeiser 1985; Stawarz & Petrosian 2008),

n(γ ) ∝ γ 2 exp
[ −1
f (q, γ̇ )

( γ

γeq

)f (q,γ̇ )
]
, (26)

where f (q, γ̇ ) is a function depending on the exponent of the
diffusion coefficient and on the cooling process and γeq is the
Lorentz factor that satisfies the condition tcool(γ ) = tacc(γ ) and
is given by

γeq = 1
taccC0(UB + FKN(γ ))

, (27)

with tacc equal to the fastest acceleration timescale among
tA, tD, and tDA. In the case of Compton-dominated cooling
we have γeq ∝ (R2/taccB

2fKN), while in the case of strong
KN regime, or in general for synchrotron-dominated cooling,
we have γeq ∝ (1/taccB

2). Using a PL form for the acceleration
terms, and in the case of only synchrotron losses (or any cooling
process that can be expressed as a PL function of γ ), it is
possible to give an analytic expression of f (q, γ̇ ) (Katarzyński
et al. 2006; Stawarz & Petrosian 2008). The expectation for
synchrotron and IC/TH cooling process and for q = 2 is
f (q, γ̇ ) = 3 − q = 1. The curvature resulting from a log-
parabolic fit over a decade centered on γp is r ≈ 2.5 and
r3p ≈ 6.0 in the case of γ3p.

We first discuss the case of R = 1015 cm (Figure 4) with
only synchrotron cooling (dashed lines, left panels). In terms of
behavior, we note that for the larger value of B (1.0 G; red lines,

right panels), the r–t trend departs from the purely accelerative
one (r ∝ t−1; green lines, right panels) early (relative to the
B = 0.1 G case; blue lines in the right panels). This happens
because the synchrotron equilibrium energy (vertical dot-dashed
lines, left panels) is lower in the case of B = 1.0 G. For both
values of B, the final values of r are close to the synchrotron
equilibrium value of ≈2.5. When IC cooling is also taken into
account, the final values of the curvature in n(γ ) are r ≈ 2.5
and r ≈ 0.6 for B = 0.1 G and B = 1.0 G, respectively. This
difference is due to the different IC cooling regimes for the two
cases. To show clearly the complexity of the transition from
the TH to the KN regime, and its dependence on R and B, in
Figure 6 we plot the ratio γ̇IC/γ̇Synch. (solid lines), and Uph/UB

(dashed lines), as a function of γ and normalized to unity, for
the case of q = 2, for the final step of the temporal evolution.
As long as the ratio Uph/UB is close to γ̇IC/γ̇Synch., electrons
cool in the full TH regime, and C(γ ) = C0γ

2(UB + Uph). On
the contrary, when the electrons radiate in the full KN regime
γ̇IC/γ̇Synch. ≪ Uph/UB . In this case, due to the inefficient KN
cooling regime we have γ̇Synch. ≫ γ̇IC, and the cooling term is
dominated by the synchrotron component: C(γ ) ≈ C0γ

2UB . In
the intermediate cases, it is difficult to estimate analytically the
ratio γ̇IC/γ̇Synch..

For B = 1.0 G, the SSC equilibrium is reached at γ ≈ 3×104

and the SSC cooling occurs between the KN and TH regimes
(see the top right panel in Figure 6), hence the value of f is
different from unity, as predicted for the case of full IC/TH or
synchrotron cooling. When B = 0.1 G, the equilibrium energy
is γ ≈ 107 and electrons are in extreme KN cooling (see the
top left panel in Figure 6), synchrotron losses are much higher
than those due to IC scattering, and again r reaches the previous
value of ≈2.5. It is also interesting to note the difference in the
trends of r–t and r3p–t. In the latter case, the trend departs from
the purely accelerative regime earlier (see Figure 4, lower right
panel) since the electrons with energies close to γ3p are more
energetic than those close to γp, and thus have much shorter
cooling times.

The results for the compact region (R = 5 × 1013 cm)
are plotted in Figure 5. Considering that the injected electron
luminosity is the same (see Table 1), we expect a different

7

R= 1015 cm

R= 1013 cm



effect of λmax, λcoher

B=1.0 G, tD0=1E3 s,q=2.0, λmax=1015 cm 

B=1.0 G, tD0=1E3 s,q=2.0, λmax=109 cm 

beq~1.0

beq~0.7

synch. peak curvature


