Verifiche sperimentali del principio di equivalenza con sistemi quantistici

Fiodor Sorrentino INFN Genova

Testing the weak equivalence principle with quantum sensors

Fiodor Sorrentino INFN Genova

Outline

- Introduction
 - the weak equivalence principle: a pillar of general relativity
 - classical WEP tests: state of the art
- Atomic quantum sensors
 - Precision gravity measurements
 - Fundamental physics tests and applications
- WEP tests with atomic probes
 - recent results and ongoing experiments
 - WEP for anti-matter
 - spin-gravity coupling
 - a quantum test of the weak equivalence principle
- Prospects

Tests of the weak equivalence principle

Limits of general relativity (INFIN

- General Relativity provides a complete description gravity
- many predictions of GR were confirmed with amazing accuracy:
 - Geodetic Deviation
 - Frame Dragging
 - Gravitational Lensing
 - Black Holes
 - Gravitational Redshift
 - Gravity Waves
- So far, no direct experimental test identified any violation of GR principles
- However there are several reasons to look for theories beyond GR
 - GR is not sufficient to explain the modern cosmological observations
 - a standard cosmological model has to include dark matter and an expanding universe
 - hierarchy problem: why the weak force is 10³² times stronger than gravity?
 - GR is not compatible with quantum mechanics

Limits of general relativity CINFN

- GR experimental proofs are all related to the case of very weak limit
- Exploration of the strong regime has just started with Gravitational Waves detection
- Precision laboratory tests of gravity
 - one of the most rapidly growing subfields of modern physics
 - laboratory and space-based experiments are designed to test the foundations of General Relativity and to probe theories that predict deviations from General Relativity.
 - starting point: GR is a complete gauge theory based on the assumption of Einstein Equivalence Principle (EEP)
 - new physics can be hidden beyond the violation of this assumption

Beyond GR

- EEP tests are interpreted after two different approaches:
- SME: Standard Model Extension (domain of particle physicists)
 - generalization of the usual Standard Model and General Relativity allowing for violations of Lorentz and CPT symmetry
 - violation is controlled by a set of coefficients whose values can be determined or constrained by experiment
 - Colladay, D., and V. A. Kostelecký, 1997, Phys. Rev. D 55, 6760. Colladay, D., and V. A. Kostelecký, 1998, Phys. Rev. D 58, 116002.
- PPN: Parameterized Post Newtonian formalism (domain of gravitational physicists)
 - Einstein's equation of Gravity expressed in terms of lowest-order deviation from the Newton's law.
 - a set of parameters are defined, in which a general theory of gravity can differ from GR gravity
 - holds in the case of weak field limit
 - Will, C. M. Theory and Experiment in Gravitational Physics, University Press, Cambridge, 1993

The Einstein Equivalence Principle (EEP)

Local Lorentz Invariance (LLI):

- The result of any non-gravitational experiment is independent of the speed of the apparatus (in free fall)
- tested with great precision on a variety of experiments spanning from high energy physics to optical interferometry

Local Position Invariance (LPI):

- The result of any non-gravitational experiment is independent of where and when it is brought to completion in the Universe
- Tested by measuring the gravitational red shift

Universality of Free Fall (UFF or WEP):

 If an uncharged test body is placed at an initial event in space-time and given an initial velocity there, then its subsequent trajectory will be independent of its internal structure and composition

WEP and GR

- The two different definitions of mass (i.e. inertial, gravitational) are equivalent;
 - bodies of different constitution feel the same acceleration.
- in classical physics, it is not entirely clear why this is the case. Early experiments were already performed by Galileo, Newton, Bessel; much more accurate ones between 1906-1909 by Eötvös
- in GR, gravity is explained geometrically: matter deforms space and time and all bodies are following the straightest lines in this distorted geometry
 - no need for different mass-definitions like Newton:
 - (a) force acting on a body depends on its gravitational mass
 - (b) but the reaction on this force depends on the body's inertial mass
- in GR, all bodies feel the same acceleration because their motion is determined by the very same space-time around them

Classical WEP tests

- Measure differential acceleration of two bodies with different composition
- Equivalent to test the equivalence of gravitational and inertial mass
- Null test: much higher precision than red shift measurements
- Experimental precision expressed in terms of the Eötvösparameter

$$\eta_{A-B} = 2 \times \frac{|a_A - a_B|}{|a_A + a_B|} = 2 \times \frac{|(m_i/m_g)_A - (m_i/m_g)_B|}{|(m_i/m_g)_A + (m_i/m_g)_B|}$$

- Free fall experiments on Earth
- Torsion balances
- Astronomical observations
- Free fall experiments in microgravity

- First demonstration of UFF by Galileo, using both simple pendula and inclined planes
- Free fall experiments on Earth limited by the control of release velocity, and limited free fall time

Torsion balances

- two test-masses of different composition with equal weight -> equal gravitational mass
- a net torque will show up if the equivalence principle is violated
- original experiment by Eötvös in early 19th century reached 10-9 precision on Eötvös parameter
- refined versions improved over one century up to 10⁻¹³ precision
- limited by noise and biases from suspension and gravity gradient

LLR

- Differential acceleration of Earth and moon
- Monitor the Earth-Moon distance with cm precision via laser ranging, using a set of corner-cube retroreflectors installed on Moon's surface

ground observatory

Apollo 15 rs retroreflectors Testing the equivalence principle...

corner cubes F. Sorrentino

Apollo 11 retroreflectors

Apollo 14 retroreflectors

13

WEP tests in microgravity CINFIN

- MICROSCOPE (CNES), now flying: target 10-15
- GG proposal (ASI): target 10-17

traînee Compensee pour l'Observation du Principe d'Equivalence

Micro-satellite of the CNES Myriade series equiped with field emission electric thrusters.

> Instruments: Two differential accelerometers.

Equivalence Principle Test

Sun synchronous polar orbit at 700 km

Lifetime 1 year

36 yr

14 yr

State of the art

Authors	Apparatus	Source mass	Materials	$\eta \equiv \Delta a/a$			
Eötvös et al. ≈1900 collected in Ann. Phys. 1922	Torsion balance. Not rotating. No signal modulation	Earth	Many combinations	10-8 ÷10-9			
Roll, Krotkov & Dicke Ann. Phys. 1964	Torsion balance. Not rotating. 24hr modulation by Earth rotation	Sun	Al – Au	(1.3±1)x10 ⁻¹¹			
Braginsky & Panov JETP 1972	Torsion balance. 8TMs. Not rotating. 24hr modulation by Earth rotation	Sun	AI – Pt	(-0.3 ± 0.9)x 10 ⁻¹²			
E. Fischbach et al.: "Reanalysis of the Eötvös Experiment" PRL 1986							
Eöt-Wash, PRD 1994	Rotating torsion balance, ≈ 1hr modulation	Earth	Be – Cu	(-1.9 ± 2.5)x 10 ⁻¹²			
			Be – Al	(-0.2 ± 2.8)x10 ⁻¹²			
Eöt-Wash, PRL 1999	Rotating torsion balance. 1hr to 36' modulation	Sun	Earthlike/ Moonlike	≈10 ⁻¹² (SEP 1.3x10 ⁻³)			
Eöt-Wash, PRL 2008	Rotating torsion balance. 20' modulation	Earth	Be – Ti	(0.3 ± 1.8)x10-13			

from A. Nobili

YEAR OF EXPERIMENT

from Will 2014

Atomic quantum sensors

Atom optics

Lenses

Mirrors

Beam splitters

Testing the equivalence principle...

Atom interferometry

Interference of de Broglie amplitudes

Light-pulse beam splitters + fluorescence detection

Output phase selectively sensitive to different effects (inertial, gravitational, external fields, laser phase/frequency, etc) via choice of quantum states

Quantum noise

Phase difference between the paths:

$$\Delta \Phi = k_e[z(0) - 2z(T) + z(1T)] + \Phi_e$$

$$k_e = k_1 - k_2$$

with
$$z(t) = -gt^2/2 + v_0t + z_0 \& \Phi_e = 0$$

$$\rightarrow \Delta \Phi = k_e g T^2$$

Final population:

$$N_a = N/2(1 + \cos[\Delta\Phi])$$

 $T = 150 \text{ ms} \rightarrow 2\pi = 10^{-6} \text{ g}$ S/N=1000 \rightarrow Sensitivity 10⁻⁹ g/shot

F. Sorrentino

ne equivalence principle...

Acceleration noise

T=5 ms

T=50 msresol. = 2.3×10^{-5} g/shot resol. = 1.0×10^{-6} g/shot

T=150 msresol. = 3.2×10^{-8} g/shot

up to 140 dB CMRR with 1 m separation

F. Sorrentino

G. T. Foster 20t al., Opt. Lett 27, Testing the equivalence principle...

An Al gradiometer

Goal:

Prepare 2 clouds with same velocity at distance of ≈ 35 cm

Multiple samples

PRL 114, 013001 (2015)

PHYSICAL REVIEW LETTERS

week ending 9 JANUARY 2015

Measurement of the Gravity-Field Curvature by Atom Interferometry

G. Rosi, L. Cacciapuoti, F. Sorrentino, M. Menchetti, M. Prevedelli, and G. M. Tino 1,‡

- Use three atomic clouds to measure the vertical derivative of vertical gravity gradient
 - G. Rosi et al., Phys. Rev. Lett. 114, 013001 (2015)
- Scalable to arbitrary large number of samples
- Simultaneous, correlated Al can improve g measurements as well
 - F. Sorrentino et al., Appl. Phys. Lett. 101, 114104 (2012)

g measure with 2 clouds (INFIN)

- Using a dual-cloud Raman interferometer for g measurements
- Simultaneous interferometers allow g measurements in the presence of larger phase noise because of
 - twice larger range for phase retrieval
 - suppressed conversion of amplitude noise into phase noise at the edges of the fringe

F. Sorrentino et al., Appl. Phys. Lett. **101**, 114104 (2012)

Somewhat similar to using a mechanical accelerometer to correct the phase shift from seismic noise, see J. Le Gouët et al., Appl. Phys B 92, 133 (2008)
F. Sorrentino

Testing the equivalence princ Tésting the equivalence principle...

Examples

- Measurement of fundamental constants
 - G
 - fine structure
- Inertial sensing (acceleration, gravity gradient, rotations)
- GR tests (WEP, constraints on ppn parameters, gravito-magnetism, LLI)
- Quantum gravity (energy-momentum dispersion, short-range forces)
- Test of fundamental symmetries (e.g. atom neutrality)
- GW, DM, and more

G measurement

Altmetric: 166

Citations: 122

More detail ≫

Letter

Precision measurement of the Newtonian of gravitational constant using cold atoms

G. Rosi, F. Sorrentino, L. Cacciapuoti, M. Prevedelli & G. M. Tino

Nature **510**, 518–521 (26 June 2014) doi:10.1038/nature13433 Download Citation Received: 10 January 2014 Accepted: 22 April 2014

Published online: 18 June 2014

Testing the equivalence principle...

G measurement

WEP tests with atomic probes

Free-fall experiments revisited (INFN)

Different species/isotopes (INFIN)

- Tests already achieved (at 10⁻⁷÷10⁻⁸ level)
 - 87Rb-85Rb [*A. Bonnin et al., PRA 88, 043615* (2013)
 - K-Rb [D. Schlippert et al., PRL 112, 203002] (2014)
 - 87Sr-88Sr [*M. G. Tarallo et al., PRL 113, 023005* (2014)
 - 87Rb-85Rb [*L. Zhou et al., PRL 115, 013004* (2015)
- Many other planned/ongoing

Search for spin-gravity couplings (INFN)

- Sr isotopes with different spin
- test possible spin-gravity coupling

$$V_{g,A}(z) = (1 + \beta_A + kS_z)m_Agz$$

- measurement of the Eötvös ratio at the 10-7 level
- upper limit on spin-gravity coupling constant

$$k = (0.5 \pm 1.1) \times 10^{-7}$$

M. Tarallo et al., PRL 113, 023005-1 (2014) F. Sorrentino

Testing the equivalence principle...

Tests in microgravity

- Airborne: ICE (CNES)
- Sounding rocket: QUANTUS (DLR)

- STE-QUEST mission proposal
 - Primary Goal: UFF test and red shift measurement
 - Observables: Clock redshift measurements;
 - Differential acceleration measurements of freely falling atoms

Instruments:

- A microwave clock based on laser cooled rubidium atoms;
- A differential atom interferometer operating on the two rubidium isotopes;
- Time and frequency transfer links in the microwave and optical domain for space-toground comparisons of clocks.
- Orbit: Highly elliptical orbit around the Earth
- Type: M-class mission

Tests with anti-matter: AEgIS (INFIN

- No direct measurements with antimatter so far
- Can be done with a beam of anti-Hydrogen:
- 1) Produce ultracold antiprotons (100 mK)
- 2) Accumulate e+
- 3) Form Positronium (Ps) by e+ interaction with porous target
- 4) Laser excite Ps to get Rydberg Ps
- 5) Form Rydberg cold (100 mK) antihydrogen by charge exchange

$$\frac{-}{p + (Ps)^*} \to \overline{H}^* + e^-$$

- 6) Form a beam using an inhomogeneous electric field to accelerate the Rydberg antihydrogen
- 7) The beam flies toward the deflectometer which introduces a spatial modulation in the distribution of the Hbar arriving on the detector
- 8) Extract g from this modulated distribution

A quantum WEP test

ARTICLE

Received 23 Sep 2016 | Accepted 6 Apr 2017 | Published 1 Jun 2017

DOI: 10.1038/ncomms15529

OPEN

Quantum test of the equivalence principle for atoms in coherent superposition of internal energy states

G. Rosi¹, G. D'Amico¹, L. Cacciapuoti², F. Sorrentino³, M. Prevedelli⁴, M. Zych⁵, Č. Brukner^{6,7} & G.M. Tino¹

Quantum formulation of EEPC

- The Einstein Equivalence Principle plays a crucial role in our understanding of gravity. It is based on three conditions:
 - Equivalence between the system's inertia and weight (WEP)
 - Independence of local non-gravitational experiments from the velocity of the free falling reference frame (LLI)
 - Independence of local non-gravitational experiments of their location (LPI)
- Implementing EEP in a non-relativistic quantum theory?

$$\hat{H}_{nr} = m_r c^2 + \frac{\hat{P}^2}{2m_i} + m_g \phi(\hat{Q}) \quad \blacktriangleleft \quad \text{Non-relativistic Hamiltonian with classical potential}$$

$$\hat{M}_{\alpha} := m_{\alpha} \hat{I}_{int} + \frac{\hat{H}_{int,\alpha}}{c^2} \; \alpha = r, i, g,$$

Developing to the first order:

Relativistic time dilation term

$$\hat{H}_{test}^{Q} = m_r c^2 + \hat{H}_{int,r} + \frac{\hat{P}^2}{2m_i} + m_g \phi(\hat{Q}) - \hat{H}_{int,i} \frac{\hat{P}^2}{2m_i^2 c^2} + \hat{H}_{int,g} \frac{\phi(\hat{Q})}{c^2}$$

Zych et al. "Quantum formulation of the Einstein Equivalence Principle", arXiv:1502.00971 (2015)

Quantum formulation of WEP (INFIN

EEP

		WEP	LLI	LPI	# param.
Newtonian	classical & quantum	$m_i = m_g$	I	1	1
Newtonian +	classical	$m_i c^2 + E_i = m_g c^2 + E_g$	$E_r = E_i$	$E_r = E_g$	2n-1
mass-energy equiv.	quantum	$m_i c^2 \hat{I} + \hat{H}_i = m_g c^2 \hat{I} + \hat{H}_g$	$\hat{H}_r = \hat{H}_i$	$\hat{H}_r = \hat{H}_g$	$2n^2 - 1$

Acceleration operator in the Heisenberg picture:

$$\hat{a}_{\hat{H}^Q_{test}} := d^2\hat{Q}/dt^2 = -\frac{1}{\hbar^2}[[\hat{Q},\hat{H}^Q_{test}],\hat{H}^Q_{test}] = -\hat{M}_g\hat{M}_i^{-1}\nabla\!\phi(\hat{Q}) + \frac{i}{\hbar}[\hat{H}_{int,i},\hat{H}_{int,r}]\frac{\hat{P}}{m_ic^2} + \mathcal{O}(1/c^4)$$

$$\hat{M}_g\hat{M}_i^{-1} = \hat{I}_{int} - \hat{\eta} \quad \text{and} \quad \hat{\eta} \approx m_g/m_i(\hat{I} + \hat{H}_{int,g}/m_gc^2 - \hat{H}_{int,i}/m_ic^2)$$

• If $[\hat{H}_{int,i}, \hat{H}_{int,g}] \neq 0$ internal and external degrees of freedom can be entangled

Quantum WEP test

- Quantum formulation of WEP requires
- In QM a state of internal energy can involve superpositions of states
 - validity of the quantum WEP implies equivalence between the offdiagonal elements of the operators
- Let us consider a two level systems (in our case F=1 and F=2 hyperfine ground state of ⁸⁷Rb:

$$\hat{M}_g \hat{M}_i^{-1} \approx \begin{pmatrix} r_1 & r \\ & & \\ r^* & r_2 \end{pmatrix}$$

 r_1 and r_2 are real numbers r_1 is complex: $r=|r|e^{i\varphi}$

Classical WEP: $r_1 = r_2 = 1$

Quantum WEP: r = 0

Quantum WEP test

The AI sensor can measure:

$$a_1=g\langle 1|\hat{M}_g\hat{M}_i^{-1}|1\rangle=gr_1,$$

$$a_2=g\langle 2|\hat{M}_g\hat{M}_i^{-1}|2\rangle=gr_2,$$

$$a_s = g\langle s|\hat{M}_g\hat{M}_i^{-1}|s\rangle = g\left[\frac{r_1+r_2}{2} + |r|\cos(\varphi_r+\gamma)\right]$$

- A classical WEP violation (introduced by diagonal elements $r_{1,2}$) emerges as a differential acceleration proportional to $r_1 r_2$.
- A quantum WEP violation would produce an excess phase noise on the acceleration measurements due to γ (random phase >> 2π).

Quantum WEP test

- Bragg gradiometer to compare free fall accelerations of atoms
 - A. prepared in pure hyperfine states (F = 1, F = 2), and
 - B. atoms prepared in a coherent superposition of two different hyperfine states.

- Superposition state is prepared with RF pulse
- s = $(|1\rangle + |2\rangle ei\gamma)/\sqrt{2}$
- γ: random phase introduced with RF pulse

Quantum WEP test

We realize three possible gradiometric configurations $\rightarrow \Phi_{1-1}$, Φ_{1-2} , Φ_{1-5} Classical WEP test $\rightarrow \delta g_{1-2} \sim (\Phi_{1-1} - \Phi_{1-2}) \rightarrow \eta_{1-2} = (1.4 \pm 2.8) \times 10^{-9}$

Quantum WEP test -> Attributing all observed phase noise on 1-s ellipse to a WEP violation we estimate an upper limit for $|r| \rightarrow r \le 5 \cdot 10^{-8}$.

Black ellipse: 1 – 1 gradiometer

Blue ellipse: 1 – s gradiometer

Black ellipse: 1 – 1 gradiometer

Blue ellipse: 1 – 2 gradiometer

Testing the equivalence principle...

Next steps

- Tiny energy difference between hyperfine states (28 µeV)
- Commutator $[\hat{H}_{int,i}, \hat{H}_{int,g}]$ expected to be proportional to the typical magnitude of H
 - larger ΔE yields to larger effects
- Example: Sr interferometer on clock transition $\Delta E = 1.8 \text{ eV} \left[L.Hu \text{ et al., submitted to PRL (2017)} \right]$
- Additional configurations: entangled states between different isotopes

Prospects

Al sensors: current performance (

Gravimeters

- resolution: 3x10-9 g in 1 second (SYRTE)
- averaging down to 2x10⁻¹⁰ g after 30 min (SYRTE)
- accuracy: 10⁻⁹÷10⁻¹⁰ g, limited by tidal models
 - A. Peters, K.Y. Chung and S. Chu, Nature 400, 849 (1999)
 - H. Müller et al., Phys. Rev. Lett 100, 031101 (2008)
 - M. Hauth et el., Appl. Phys. B 113, 49 (2013)
 - P. Gillot et al., Metrologia 51, L15 (2014)

Gravity gradiometers

- differential acceleration sensitivity: 5x10-9 g in1 s
- 5x10⁻¹¹ g after 10⁴ s
 - F. Sorrentino et al., Phys. Rev. A 89, 023607 (2014)

Rotation sensors

- sensitivity: 6x10⁻¹⁰ rad/s/√Hz
- scale factor stability <5 ppm
- bias stability <70 µdeg/h
 - T. L. Gustavson, A. Landragin and M.A. Kasevich, Class. Quantum Grav. 17, 2385 (2000)
 - D. S. Durfee, Y. K. Shaham, M.A. Kasevich, Phys. Rev. Lett. 97, 240801 (2006)

Potential improvements

$$\Delta \Phi = nkgT^2$$

- Increasing the scale factor
 - Large momentum transfer splitters (increase nk)
 - Large scale AI, or microgravity (increase 7)
- Reducing the phase noise
 - High flux atomic sources (reduce quantum noise)
 - Squeezing (phase noise below standard quantum limit)
- Choice of atomic species
- Interferometer topology

Large momentum transfer (INFIN

- H. Müller et al., PRL **102**, 240403 (2009)
- S.-W. Chiow et al., PRL 107, 130403 (2011)
- G. D. McDonald et al., PRA 88, 053620 (2013)

lesting the equivalence principle...

Long interaction time

- Microgravity: in principle T>10 s
- Increasing T on Earth
 - trapped atoms (Sr)
 - up to 15000 coherent photon recoils
 - decoherence time >500 s
 - G. Ferrari et al., PRL 97, 060402 (2006)
 - V. V. Ivanov et al., PRL 100, 043602 (2008)
 - F. Sorrentino et al., Phys. Rev. A 79, 013409 (2009)
 - M. Tarallo et al., PRA 86, 033615 (2012)
 - free fall
 - requires large vertical size
 - requires very low temperatures (~nK): good for LMT splitter
 - 10 m atomic fountains already operating: Stanford, Wuhan
 - T. Kovachy et al., Nature 528, 530 (2015)
 - next future: Hannover, Firenze
 - expected differential acceleration noise ~10⁻¹³ g/shot

Testing the equivalence principle...

Squeezing

L. Pezzé and A. Smerzi, arXiv:1609.01609v2

TRAPPED IONS

- [1] Sackett et al., 2000
- [2] Meyer et al., 2001
- [3] Leibfried et al., 2003b
- [4] Leibfried et al., 2004
- [5] Leibfried et al., 2005
- [15] Monz et al., 2011
- [29] Bohnet et al., 2016

BOSE-EINSTEIN CONDENSATES

- [6] Estève et al., 2008
- [10] Gross et al., 2010
- [11] Riedel et al., 2010
- [16] Lücke et al., 2011
- [17] Hamley et al., 2012
- [19] Berrada et al., 2013
- [20] Ockeloen et al., 2013
- [22] Strobel et al., 2014
- [24] Muessel et al., 2014
- [25] Muessel et al., 2015
- [30] Kruse et al., 2016

COLD THERMAL ATOMS

- [7] Appel et al., 2009
- [8] Leroux et al., 2010a
- [9] Schleier-Smith et al., 2010b
- [12] Leroux et al., 2010b
- [13] Louchet-Chauvet et al., 2010
- [14] Chen et al., 2011
- [18] Sewell et al., 2012
- [21] Sewell et al., 2014
- [23] Bohnet et al., 2014
- [26] Barontini et al., 2015
- [27] Hosten et al., 2016a
- [28] Cox et al., 2016

Testing the equivalence principle...

Technology readiness

- Commercial atomic gravimeters & gradiometers
 - MuQuans (France)
 - AOSense (USA)
 - AtomSensors (Italy)

- I.C.E. (CNES)
- QUANTUS/MAIUS (DLR)
- S.A.I. (ESA)

G. Tino et al., Precision Gravity Tests with Atom Interferometry in Space, Nuclear Physics B 243, 203 (2013)

LQUANS

Conclusions

- Classical WEP tests reached 10⁻¹³ precision, aiming at 10⁻¹⁵ in the near future
- Precision gravity measurements with atomic quantum sensors
 - atoms are ideal test masses and clocks
 - allow to explore new physics
 - test genuine quantum features of WEP
- Next generation atomic sensors expected to attain extreme precision in the mid-term future