EuPRAXIA@SPARC_LAB

Massimo.Ferrario@LNF.INFN.IT

On behalf of the EuPRAXIA@SPARC_LAB collaboration

Pre-Direttivo INFN – 26 October 2017

Future of Accelerators

LINAC16, East Lansing, 27 September 2016

Walter Wuensch, CERN

New EU Design Study Approved

3 years – 3 MEuro (→212 kEuro INFN) Coordinator: G. D'Auria (Elettra)

The key objective of the CompactLight Design Study is to demonstrate, through a conceptual design, the feasibility of an innovative, compact and cost effective FEL facility suited for user demands identified in the science case.

Plasma Accelerator

Size versus Energy

electron linear accelerators

Eupra IA

EUROPEAN PLASMA RESEARCH ACCELERATOR WITH EXCELLENCE IN APPLICATIONS

EuPRAXIA Design Study Approved as HORIZON 2020 INFRADEV, 4 years, 3 M€ Coordinator: Ralph Assmann (DESY)

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 653782.

Motivations

PRESENT EXPERIMENTS

Demonstrating **100 GV/m** routinely

Demonstrating **GeV** electron beams

Demonstrating basic **quality**

EuPRAXIA INFRASTRUCTURE

Engineering a high quality, compact plasma accelerator

5 GeV electron beam for the 2020's

Demonstrating user readiness

Pilot users from FEL, HEP, medicine, ...

PRODUCTION FACILITIES

Plasma-based **linear** collider in 2040's

Plasma-based **FEL** in 2030's

Medical, industrial applications soon

tesy R. Assmanr

Participating Institutions

16 beneficiaries, 16 associated partners

- •What is the governance model?
- •What is the intended user community?
- •Will it be open access?
- Apply for H2020 preparatory phase (PP)?

•Support will be provided by Horizon2020 and MIUR for the implementation (PP) and operation of the research infrastructures listed on the ESFRI Roadmap and ERIC.

Location of possible sites within EU

EuPRAXIA site studies:

- Design study is site independent
- Five possible sites have been discussed so far
- We invite the suggestions of additional sites

Eli Beamlines Prague, Czech Republic

Eupraxia@sparc_lab

- D. Alesini, M. P. Anania, R. Bedogni, M. Bellaveglia, A. Biagioni, F. Bisesto, E. Brentegani, B. Buonomo, P.L. Campana, G. Campogiani, S. Cantarella, F. Cardelli, M. Castellano, E. Chiadroni, R. Cimino, R. Clementi, M. Croia, A. Curcio, G. Costa, S. Dabagov, M. Diomede, A. Drago, D. Di Giovenale, G. Di Pirro, A. Esposito, M. Ferrario, F. Filippi, O. Frasciello, A. Gallo, A. Ghigo, A. Giribono, S. Guiducci, S. Incremona, F. Iungo, V. Lollo, A. Marcelli, A. Marocchino, V. Martinelli, A. Michelotti, C. Milardi, L. Pellegrino, L. Piersanti, S. Pioli, R. Pompili, R. Ricci, S. Romeo, U. Rotundo, L. Sabbatini, O. Sans Plannell, J. Scifo, B. Spataro, A. Stecchi, A. Stella, V. Shpakov, C. Vaccarezza, A. Vannozzi, A. Variola, F. Villa, M. Zobov.
- INFN Laboratori Nazionali di Frascati
- A. Bacci, F. Broggi, C. Curatolo, I. Debrot, A. R. Rossi, L. Serafini. INFN Sezione di Milano
- D. Cirrincione, A.Vacchi. INFN Sezione di Trieste
- G. A. P. Cirrone, G. Cuttone, V. Scudieri. INFN Laboratori Nazionali del Sud
- M. Artioli, M.Carpanese, F.Ciocci, D.Dattoli, S.Licciardi, F.Nguyen, S. Pagnutti, A.Petralia, E. Sabia. ENEA Frascati and Bologna
- L. Gizzi, L. Labate. CNR INO, Pisa
- R. Corsini, A. Grudiev, N. Catalan Lasheras, A. Latina, D. Schulte, W. Wuensch. CERN, Geneva
- C. Andreani, A. Cianchi, G. Festa, V. Minicozzi, S. Morante, R. Senesi, F. Stellato. Universita' degli Studi di Roma Tor Vergata and Sezione INFN
- V. Petrillo, M. Rossetti. Universita' degli Studi di Milano and Sezione INFN
- G. Castorina, L. Ficcadenti, S. Lupi, M. Marongiu, F. Mira, A. Mostacci. Universita' degli Studi di Roma Sapienza and Sezione INFN
- S. Bartocci, C. Cannaos, M. Faiferri, R. Manca, M. Marini, C. Mastino, D. Polese, F. Pusceddu, E. Turco. Università degli Studi di Sassari, Dip. di Architettura, Design e Urbanistica ad Alghero
- M. Coreno, G. D'Auria, S. Di Mitri, L. Giannessi, C. Masciovecchio. ELETTRA Sincrotrone Trieste
- A. Ricci. RICMASS, Rome International Center for Materials Science Superstripes
- A. Zigler. Hebrew University of Jerusalem J. B. Rosenzweig. University of California Los Aangeles

	WG O – Project Management	
	0.1 Executive summary	(M. Ferrario)
	WG 1 – Electron beam design and optimization	
	1.1 Advanced High Brightness Photo-injector	(E. Chiadroni)
	1.2 HB Linac technology,	(A. Gallo)
	1.3 Linac design and parameters	(C. Vaccarezza)
	WG 2 – Laser design and optimization	
	2.1 FLAME upgrade	(M. P. Anania)
	2.2 Advanced Laser systems	(L. Gizzi)
	WG 3 – Plasma Accelerator	
	3.1 PWFA beam line	(A. Marocchino)
	3.2 LWFA beam line	(A. R. ROSSI)
	3.3 Plasma and Beam Diagnostics	(A. Clanchi)
CDR O	4 1 Conventional and Plasma driven FEL	(V Petrillo)
	4 2 Advanced FEL schemes	(G Dattoli)
delivery	4.3 Photon beam lines	(F. Villa)
	4.4 FEL user applications	(F. Stellato)
	WG 5 – Radiation sources and user beam lines	
Dy	5.1 Advanced (dielectric) THz source	(S. Lupi)
Autumn	5.2 Compton source	(C. Vaccarezza)
Autumn	5.3 Secondary Particle Sources	(LNS)?
	5.4 Laser-driven neutron source	(Ulanchi)
	WC 6 - I ow Enorgy Portial Optician	(F. Valence)
	6 1 Advanced positron sources	(A Variola)
	6.2 Fundamental physics experiments LabAstro	(C. Gatti)
	6.3 Plasma driven photon collider	(L. Serafini)
	WOR Infrastructure	
	7] Civil Engineering and conventional plants	(II Botundo)
	72 Control system	(G Di Pirro)
	7.3 Radiation Safety	(A Esposito)

- Candidate LNF to host EuPRAXIA (1-5 GeV)
- FEL user facility (1 GeV 3nm)
- Advanced Accelerator Test facility (LC) + CERN

- 500 MeV by RF Linac + 500 MeV by Plasma (LWFA or PWFA)
- 1 GeV by X-band RF Linac only
- Final goal compact 5 GeV accelerator

Accelerator (X-band EU frequency – 100 Hz?)

													10.5r	n	
							R	62.5 I F & po upplies	m wer		6				7.5m
1		11.3	m	× _{	3.8 m	×	12	55 m 2 m	>		13.9 m	>	5 m	> ;	>
8r		Injecto	Dr	Li	inac 1	- 000 - <u>-</u>	Со	mpres	sor		nac 2		P	lasma	
12	3.4	4.4.4	2.2	2.2.2	2.2		25252	2.2		2.2		2.2.2			2.2.2.2

- Injector:
 - Gun+solenoid
 - 3x 3m s-band sectons
- Linac 1:
 - 8x 0.5m x-band sections
 - Matching Quads

- Compressor:
 - 2.19° deflection
- Linac 2:
 - 14x 0.5m x-band sections
 - Matching Quads
- Plasma:
 - PMQ matching
 - 0.6 m capillary

30 pC beam Start To End Simulations

External Injection (LWFA or PWFA)

FEL driven by LWFA

At 30 m 6.4 10¹¹ photons 5.2 10¹¹ photons 3.6 10¹¹ photons

Growth of the radiation along the undulator

FEL driven by PLASMA

	Units	1 GeV PWFA	1 GeV LWFA
		with Undulator	with Undulator
		Tapering	Tapering
Bunch charge	nC	29	26.5
Bunch length rms	fs	11.5	8.4
Peak current	k A	2.6	3.15
Ren rate	Hz	10	10
Rms Fnergy Snread	0/2	0.73	0.81
Slice Energy Spread	/0 0/	0.75	0.015
Average Dream	/0	0.022	0.013
emittance	μm	0.0	0.47
Slice norm. emittance	μm	0.39-0.309	0.47
Slice Length	μm	1.39	1.34
Radiation wavelength	nm	2.79	2.7
ρ	x 10 ⁻³	2	2
Undulator period	cm	1.5	1.5
K		0.987	1.13
Undulator length	m	30	30
Saturation power	GW	0.850-1.2	1.3
Energy	μJ	63	63.5
Photons/pulse		8.8 x 10 ¹¹	8.6 x 10 ¹¹
Bandwidth	%	0.35	0.42
Divergence	μrad	49	56
Rad. size	μm	210	160
Brilliance per shot	(s mm ²	$0.83 \ge 10^{27}$	$1.22 \text{ x} 10^{27}$
	$mrad^2bw$		

FEL driven by X-band only

	Units	1 GeV with X- band linac only 100 pC	1 GeV with X- band linac only 200 pC
Bunch charge	pC	100	200
Bunch length rms	fs	38.2	55.6
Peak current	kA	2.	1.788
Rep. rate	Hz	10	10
Rms Energy Spread	%	0.1	0.05
Slice Energy Spread	%	0.018	0.02
Average Rms norm.	μm	0.5	0.5
emittance			
Slice norm. emittance	μm	0.35-0.24	0.4-0.37
Slice Length	μm	1.25	1.66
Radiation wavelength	nm	2.4 (0.52 keV)	2.87(0.42 keV)
ρ	x 10 ⁻³	1.9(1.7)	1.55(1.38)
Undulator period	cm	1.5	1.5
K		0.987	0.987
Saturation length	m	15-25	16-30
Saturation power	GW	0.361-0.510	0.120-0.330
Energy	μJ	48-70	64-177
Photons/pulse		5.9-8.4 x 10 ¹¹	$9.3-25.5 \times 10^{11}$
Bandwidth	%	0.13-2.8	0.24-0.46
Divergence	µrad	17.5-16	28-27
Rad. size	μm	65-75	120-200
Brilliance per shot	(s mm ²	Fx3.8-2.2 10 ²⁸	Fx2.5-1.4 11 ²⁷
	$mrad^2bw$ (‰)) ⁻¹		

X-band Linac

ORGANISATION EUROPÉENNE POUR LA RECHERCHE NUCLÉAIRE CERNeuropean organization for nuclear research

GENEVE, SUBSE GENEVA, SWITZERLAND

Mail address: CERN ATS-DO CLIC Project Office CH-1211 GENEVE 23 Switzerland

Téléphone/Telephone : Direct : +41 22 767 3706 Central/Exchange : +41 22 767 6111

E-mail : steinar.stapnes@cern.ch

Votre référence/Your reference: Notre référence/Our reference: Dr Pierluigi Campana Director INFN Via Enrico Fermi 40 00044 Frascati RM Italy

Geneva, 23 June 2017

Dear Dr Campana,

We wish to provide our very strong support for the EuSPARC project being proposed by INFN Frascati. We sincerely believe that this is an excellent choice for the future of the laboratory. It is also very important for the CERN and the CLIC collaboration. We have discussed with INFN leaders and elaborated a mutually beneficial program of exchange of hardware and staff to advance both the EuSPARC and CLIC projects.

One of the key areas of the CLIC is the high-gradient, X-band radio frequency accelerator of the main linac. Significant resources have been invested to develop the necessary technology and considerable progress has been made and demonstrated by testing prototype systems in test stands at CERN. The EuSPARC proposal is an opportunity to now implement this accelerator technology on a much larger scale than is possible in our test facilities. EuSPARC will provide important benefits for high-gradient X-band technology including industrialization, larger-scale series production and long-term user operation.

For these reasons, we have identified an initial set of collaboration activities. At the core is the loan to Frascati of a 50 MW X-band klystron in order to jointly set up a local high-gradient testing facility. INFN would complete the test stand including the modulator and supporting infrastructure and then carry out high-gradient testing. Preparation for the test stand in Frascati would involve training INFN staff at CERN on the existing test stands. The experts would return to Frascati to build and operate the test stand there, experience which is directly applicable to EuSPARC linac. Overall this would be part of the strategy to introduce this innovative accelerator technology which will become a core component of the EuSPARC facility.

EuSPARC, with its high-gradient accelerator and very low emittance beam, will in the longer term provide a unique and important opportunity for the CLIC study for beam testing. This includes experiments and tests in a number of areas including beam dynamics, rf systems and beam instrumentation. Finally, the Frascati-based test stand and then the EuSPARC facility will provide important continuity for a long-standing and very productive collaboration which extends back to the early days of CTF3.

Sincerely,

Prof. Steinar Stapnes CERN Linear Collider Study Leader

Mr Winh

Dr Walter Wuensch CLIC X-Band Activity Leader

Ti:Sa FLAME laser

Parameters of the 500 TW laser

Parameters	FLAME today	FLAME upgrated
Wavelength [nm]	800	800
Bandwidth [nm]	60-80	60-80
Repetition rate [Hz]	10	1-5
Max energy before compression [J]	7	20
Max energy on target [J]	4	13
Min pulse length [fs]	25	25
Max power [TW]	250	500
Contrast ratio	10 ¹⁰	10 ¹⁰

Comparison between the parameters of the actual FLAME system and the upgraded FLAME system.

Eupraxia@SPARC_LAB synchronization system

Synchronization system: A fine temporal alignment among all the relevant sub-system oscillators that guarantees temporal coherence of their outputs (precision ~10fs)
Tasks: triggers to sub systems (RF pulses, laser amplifiers, BPM, injection/extraction kickers), event tagging
Layout: 1 Electrical and 1 Optical Master Oscillator, 3 RF extractors, 2 optical link ends (diagnostics and users)

Target Normal Sheath Acceleration

Plasma-based acceleration techniques

resonant-PWFA

A train of three electron bunches (driver bunches) is sent through a capillary discharge
A resonant plasma wave is then excited in plasma

•A fourth electron beam (witness

beam) uses this wave to be accelerated

n_e = 2x10¹⁶ cm⁻³ λ_p = 300μm Capillary 1mm Hydrogen

external injection LWFA

A laser beam excites plasma waves in a capillary filled with gas
A high brightness electron beam uses this wave to be accelerated

> $n_e = 1 \times 10^{17} \text{ cm}^{-3}$ $\lambda_p = 100 \mu \text{m}$ Capillary 100 μm Hydrogen

SPARC_LAB Plasma Vacuum Chamber

Capillary Discharge at SPARC_LAB

Plasma capillary

Courtesy of V. Lollo

Plasma source

This scheme can be reproduced for tens-of-centimetre capillaries. This single unit can be integrated simply by adding more units obtaining up to tens of centimetre capillaries homogenously ionized and controlled independently one to each other, leading to the desired length of plasma (almost 30 cm) with the proper density (10¹⁷ cm⁻³) required for this project.

• 500 MeV by RF Linac + 500 MeV by Plasma

• 1 GeV by RF Linac only (EuSPARC)

SASE FEL studies

 $1 + \frac{K^2}{2} + \gamma^2 \vartheta^2$ $\frac{u}{2}$ λ_{rad}

KYMA Δ undulator: designed by ENEA Frascati, constructed by Kyma Trieste, tested on beam at SPARC_LAB

• DELTA like undulator $\lambda_u = 1.4$ cm, gap g = 5mm, Br = 1.22T.

Undulator tested in two stage SASE-FEL: 630nm to 315 nm

L'iniziativa EuPRAXIA@SPARC_LAB è valutata, quindi, di grande rilevanza scientifica per Elettra, che la considera sinergica con le proprie attività di ricerca.

Con la presente lettera Elettra intende esprimere, perciò, il proprio interesse a collaborare con INFN alla preparazione del TDR di EuPRAXIA@SPARC_LAB, con particolare attenzione allo sviluppo del linac in banda X, alla concezione di ondulatori compatti, allo studio degli schemi FEL più adatti allo scopo e alla progettazione delle relative linee di luce. Allo scopo di favorire la collaborazione con INFN in questi campi, Elettra potrà rendersi disponibile ad ospitare giovani ricercatori per brevi periodi di training.

Cordiali saluti

Il Presidente e Amministratore Delegato Prof. Alfonso Franciosi

Science with FEL

Ultra-Small

Ultra-Fast

Photon beam line

Defininig aperture

Coherent Imaging @ EuSPARC/EuPRAXA

2 key issues: brilliance and coherence of the FEL radiation

1 experimental station performing coherent imaging experiments

Many applications, ranging from biological systems to condensed matter physics

Coherent Diffraction Pattern

Water Window Coherent Imaging of biological systems

Energy region between oxygen and carbon K-edge 2D and 3D images of biological samples will be obtained

viruses, cells, organelles, protein fibrils...

Metal-insulating transitions

Colossal magnetoresistance

Skyrmions, spintronics

Nanoparticles and plasma

Condensed-matter

phenomena

High Temperature superconductors

Colossal Magnetoresistance 3d Orbital Types

The Experimental Endstation

Parameters	Expected values						
R a d i a ti o n	2-4 nm (310-620						
wavelength	eV)						
Photons per pulse*	1-7 x 10 ¹¹						
Pulse length	10-50 fs						
(FWHM)							
Repetition rate	10-100 Hz						
Bandwidth (FWHM)	1 eV						

A versatile, state-of-the art, fully equipped experimental station (and a transport line) will be necessary to exploit the brilliant, ultra-short and

coherent FEL pulses

Eupraxia@sparc_lab

- 09.2014 Proposal submission
- 07.2015 Approval
- 11.2015 Start of EuPRAXIA project
- 2016 Organization (collaboration agreements, ...). Hiring dedicated personnel. Ten workshops on EuPRAXIA/EuroNNAc matters. Decision parameters for first study versions.
- 08.2019 Application to ESFRI roadmap for 2020 update
- 10.2019 Final conceptual design report and end design study
- 2020 Construction decision
- 2021 2025 Construction
- 2025 2035 Operation

ESFRI =

European Strategy for Future Research Infrastructures

EuPRAXIA@SPARC_LAB timeline

Year	r 2017 2018				2019 2020						2021					2022				2023								
Month	3	6	9	12	3	6	9	12	3	6	9	12	3	6	9	12	3	6	9	12	3	6	9	12	3	6	9	12
EuPRAXIA														ļ <u> </u>								<u>[]</u>	ļļ					
Design Study & ESFRI																												
Preparatory Phase																												
				()																								
EuPRAXIA@SPARC_LAB																												
Machine Conceptual Design Report																												
Machine Technical Design Report																												
																						i — Ì.			i i			
New building design																												
New building authorisation requests																												
New building tender				[]					-		_					-												
New building construction																												
X-band R&D]		Į į	i — i					
X-band LINAC tender																-						i (
X-band LINAC realization and test																												
X-band LINAC installation and comm	ission	ing																										
					_				_				_	_		-												
Plasma Accelerator R&D																												
Plasma Accelerator Tender					-									_														
Plasma Accelerator Installation		í í																			2							
Plasma Accelerator Commissioning																												
FEL undulator, optics and user tender																												
FEL undulator characterisation																												
FEL installation in the new building																									-			
FEL commissioning																				-								
User Beam Line R&D									_					_			_											
User Beam Line Tender and Constructi	ion																											
User Beam Line Installation				i – ji																								
User Beam Line Commissioning																												
FLAME upgrade tender																												
FLAME components test																									0			
FLAME installation in the new buildin	g																											
FLAME commissioning up to 500 TW	1																											

Eupraxia@Sparc_Lab

- X-band RF technology implementation, CLIC collaborations
- Science with short wavelength Free Electron Laser (FEL)
- Physics with high powerlasers and secondary particle generation
- R&D on compact radiation sources for medical applications
- Detector development for X-ray FEL
- Science with THz radiation sources
- Nuclear photonics with γ-rays Compton sources
- R&D on polarized positron sources
- Quantum aspects of beam physics, Quantum-FEL development
- R&D in accelerator physics and industrial spin off

Thank for your attention