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Standard Model
In the context of  particle physics, the interactions 
between fundamental constituents are described by a 
single theory, the Standard Model (SM), 

– strengthened by the discovery of  the Higgs boson.

Aspects of  SM still lack an explanation and the 
presence of  additional fundamental 
laws/particles (BSM) is suggested by:

• experimental evidence for neutrino oscillations

• the matter/antimatter asymmetry in the Universe

• the necessary existence of  the dark matter



The three frontiers
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Technologic challenges at the 
Energy Frontier
• High energy/Large accelerators 
• Detectors sensitive to signals
• Very strong background rejection
• Reconstruction of  many complex 

events in reasonable amount of  
time

• Big amount of  data to analyze
• Simulation

Energy

CosmicIntensity

Neutrinos
Proton decay

Dark Energy
Gravitational waves

Dark Matter

New Physics

Matter
Antimatter

Origin of  Mass



• World leading particle 
accelerator 
– 26.7 km long, 100m underground in 

Geneva countryside

• p-p or heavy ions collider
• Center-of-mass energy 13TeV
• Rate of  physics process i

• Pile-up

• Luminosity

Large Hadron Collider
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CMS Detector
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• Cylindrical structure, hermetic 
around the beamline

• Produces ~1PB/s 
– To be reduced to O(100PB/y)

• High granularity and low 
occupancy
– Sensitivity to signal

• Primary goals:
– Precision measurements of  the 

observed Higgs boson and its 
compatibility with the Standard Model

– Provide evidence of  physics beyond 
the Standard Model



Structure of  the CMS Detector
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Transverse plane

Longitudinal plane



Only a couple of  weeks ago…
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Two-stages event selection strategy
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Trigger System
• Reduce input rate (40 MHz) to a data rate (~1 kHz) 

that can be stored, reconstructed and analyzed 
Offline maximizing the physics reach of  the 
experiment

Level 1 Trigger
• coarse readout of  the Calorimeters and Muon 

detectors
• implemented in custom electronics, ASICs and 

FPGAs
• output rate limited to 100 kHz by the readout 

electronics

High Level Trigger
• readout of  the whole detector with full granularity
• based on the CMS software, running on 22,000 CPU 

cores
• output rate limited to an average of  ~1 kHz by the 

Offline resources

L1 TriggerHigh-Level Trigger



CMS and LHC Upgrade Schedule
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CMS 
pixel detector upgrade



What we need to do…
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…with flat budget

• This poses some constrain on:
– Throughput: Events/s
– Trigger efficiency
– Events/CHF
– Events/Joule
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Two-stages event selection strategy
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Trigger System
• Reduce input rate (40 MHz) to a data rate (~1 kHz) 

that can be stored, reconstructed and analyzed 
Offline maximizing the physics reach of  the 
experiment

Level 1 Trigger
• coarse readout of  the Calorimeters and Muon 

detectors
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Track Reconstruction
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Combinatorial Kalman Filter
• Track parameterization:

– (1/p, θ, φ, dxy , dsz)

• When multiple measurements are 
compatible with the propagated state vector 
tracking becomes a combinatorial problem

• Track seed important
– Reduces the initial number of  

combinations to update and propagate
– Provides an initial estimate of  the track 

parameters to be used as initial state vector in 
the track building

– Pixel Detector for low occupancy
– Seed is computed in the pixel wrt to a seeding 

region (origin coordinates and size, and 
minimum transverse momentum allowed) 15



Iterative tracking 
• In order to reduce combinatorial complexity, track reconstruction is iterative
• Constrains on seeding region and seeding layers become looser at each iteration

Hits are formed



Iterative tracking 
• In order to reduce combinatorial complexity, track reconstruction is iterative
• Constrains on seeding region and seeding layers become looser at each iteration

A seeding region is defined and seeds are created

Seeding Layers



Iterative tracking 
• In order to reduce combinatorial complexity, track reconstruction is iterative
• Constrains on seeding region and seeding layers become looser at each iteration

Tracks are built starting from seeds

Seeding Layers



Iterative tracking 
• In order to reduce combinatorial complexity, track reconstruction is iterative
• Constrains on seeding region and seeding layers become looser at each iteration

Track fit and selection



Iterative tracking 
• In order to reduce combinatorial complexity, track reconstruction is iterative
• Constrains on seeding region and seeding layers become looser at each iteration

Hits belonging to selected tracks are masked.
A new seeding configuration is used and a new iteration starts



Phase 1 Pixel detector
Starting from 2017 the already complex online and offline track reconstruction has to deal not 
only with a much more crowded environment but also with data coming from a more complex 
detector. 
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Up to 2016

Phase 1
2017-2023

Barrel Pixel (BPIX) Forward Pixel (FPIX)

beam pipe



Pixel Tracks
• Evaluation of  Pixel Tracks combinatorial complexity is dominated by pileup and 

is one of  the main bottlenecks of  the High-Level Trigger and offline 
reconstruction execution times. 

• The CMS HLT farm and its offline computing infrastructure cannot rely 
anymore on an exponential growth of  frequency guaranteed by the 
manufacturers

• Hardware and algorithmic solutions have been studied in the context of  this 
thesis work
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A Parallel Hit-Chain Maker based on 
Cellular Automata

Game of  Tracks
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CPU vs GPU architectures

CPU
GPU
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CPU vs GPU architectures
• Large caches (slow memory accesses to quick 

cache accesses)

• Powerful ALUs

• Low bandwidth to memory (tens GB/s)

In CMS:

 One event per core, thanks to independency of  
events

 Memory footprint a issue

CPU
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CPU vs GPU architectures
• Many Streaming Multiprocessors execute kernels (aka 

functions) using hundreds of  threads concurrently
• High bandwidth to memory (up to 1TB/s)
• Number of  threads in-fly increases with each generation
• In CMS:

– unroll and offload each event’s combinatorics to many 
threads in parallel

GPU
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Compute intensity

P100
• 7.8 TFLOPS DPFP peak throughput
• 900 GB/s peak off-chip HBM2 memory access bandwidth

– 112.5 billion DPFP operands per second
Intel KNL
• 3 TFLOPS DPFP peak throughput
• 500 GB/s High BW memory + DDR4

• To achieve peak throughput, a program must perform 7,800/112.5 = ~70 FP arithmetic 
operations for each double precision operand value fetched from off-chip memory
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Bandwidth
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From RAW to Tracks during run 3
• Profit from the end-of-year upgrade of  the Pixel to redesign the seeding code from scratch

– Exploiting  the information coming from the 4th layer would improve efficiency, b-tag, IP resolution
• Trigger avg latency should stay within 220ms
• Reproducibility of  the results (bit-by-bit equivalence CPU-GPU)
• Integration in the CMS software framework

• Ingredients:
– Massive parallelism within the event
– Independence from thread ordering in algorithms
– Avoid useless data transfers and transformations
– Simple data formats optimized for parallel memory access

• Result:
– A GPU based application that takes RAW data and gives Tracks as result
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Algorithm Stack
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Raw to Digi

Hits - Pixel Clusterizer

Hit Pairs

CA-based Hit Chain Maker

Input, size linear with PU

Output, size ~linear with PU + dependence on fake rate



• Hits on different layers 
• Need to match them and create quadruplets
• Create a modular pattern and reapply it iteratively

32

Existing Triplet Propagation Algorithm



Existing Triplet Propagation Algorithm

• First create doublets from hits of  pairs
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Existing Triplet Propagation Algorithm

• First create doublets from hits of  pairs
• Take a third layer and propagate only the generated doublets
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Existing Triplet Propagation Algorithm

• First create doublets from hits of  pairs
• Take a third layer and propagate only the generated doublets
• Consider a fourth layer and propagate triplets
• Store found quadruplets and start from another pair of  layers
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Existing Triplet Propagation Algorithm
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• First create doublets from hits of  pairs
• Take a third layer and propagate only the generated doublets
• Consider a fourth layer and propagate triplets
• Store found quadruplets and start from another pair of  layers



Existing Triplet Propagation Algorithm

This kind of  algorithm is not very suitable for GPUs:
• Absence of  massive parallelism
• Poor data locality
• Synchronizations due to iterative process
• Very Sparse and dynamic problem (that’s the hardest part, still unsolved)
• Parallelization does not mean making a sequential algorithm run in parallel

– It requires a deep understanding of  the problem, renovation at algorithmic level, understanding of  
the computation and dependencies

37



Cellular Automaton-based Hit Chain-Maker
• The CA is a track seeding algorithm designed for 

parallel architectures
• It requires a list of  layers and their pairings

– A graph of  all the possible connections between 
layers is created

– Doublets aka Cells are created for each pair of  layers (compatible with a region hypothesis)
– Fast computation of  the compatibility between two connected cells
– No knowledge of  the world outside adjacent neighboring cells required, making it easy to parallelize
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Evolution

• If  two cells satisfy all the compatibility requirements they are said to be neighbors and their 
state is set to 0

• In the evolution stage, their state increases in discrete generations if  there is an outer 
neighbor with the same state

• At the end of  the evolution stage the state 
of  the cells will contain the information 
about the length

• If  one is interested in quadruplets, 
there will be surely one starting from 
a state 2 cell, pentuplets state 3, etc.
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Tests and Results: HLT
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Quality criteria

Efficiency: 
• indicates the fraction of  the simulated tracks, Nsim, that have been associated with at least 

one reconstructed track, Nrec

– Association with a simulated track if  more than 75% of  the hits that it contains come from the 
same simulated track

Fake rate:
• the fraction of  all the reconstructed tracks which are not associated uniquely to a 

simulated track

Execution time
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HLT: Simulated Physics Performance PixelTracks

42

• CA Hit-Chain Maker tuned to have same efficiency as Triplet Propagation
• Efficiency significantly larger than 2016, especially in the forward region (|η|>1.5).



HLT: Simulated Physics Performance PixelTracks

43

• Fake rate up to 40% lower than Triplet Propagation
• Two orders of  magnitudes lower than 2016 tracking thanks to higher purity of  quadruplets 

wrt to triplets



Integration in the Cloud and/or HLT Farm

• Different possible ideas depending on :
– the fraction of  the events running tracking 
– other parts of  the reconstruction requiring a GPU

Today

Filter Units

Builder Units
or disk servers

CMS FE, Read-out Units
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Integration in the Cloud/Farm

• Every FU is equipped with GPUs

Option 1

GPU Filter Units

Builder Units
or disk servers
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• Rigid design
+ easiest to implement
+ offline reconstruction would benefit from this 
design
- Requires common acquisition, dimensioning 

• Smarter design
• Requires concept of  locality
• Prefetching data
• Run where data are
• Move data where compute power is



Workflow A

From the framework side
• From the framework point of  view:
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CopyToGPU(A,es)
Raw2Digi(A,B,es)
CopyFromGPU(B)

CopyToGPU(B,es)
Clusterizer(B,C,es)
CopyFromGPU(C)

CopyToGPU(C,es)
CPE(C,D,es)
CopyFromGPU(D)

BProducer

CProducer

DProducer

Workflow B

CopyToGPU(A,es)
Raw2Digi(A,B,es)
Clusterizer(B,C,es)
CPE(C,D,es)
Doublets(D,E,es)
CA(E,F,es)
Fit(F,G,es)
CopyFromGPU(G)

GPU PixelTracksProducer



Workflow C

Enhanced demonstrator
• Using external worker module
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CopyToGPU(A,es)
Raw2Digi(A,B,es)
CopyFromGPU(B)
Callback()

CopyToGPU(B,es)
Clusterizer(B,C,es)
CopyFromGPU(C)
Callback()

CopyToGPU(C,es)
CPE(C,D,es)
CopyFromGPU(D)
Callback()

BProducer

CProducer

DProducer

Workflow D

CopyToGPU(A,es)
Raw2Digi(A,B,es)
Clusterizer(B,C,es)
CPE(C,D,es)
Doublets(D,E,es)
CA(E,F,es)
Fit(F,G,es)
CopyFromGPU(G)

GPU PixelTracksProducer

AcceleratorService

AcceleratorService

AcceleratorService

AcceleratorService



Integration in the Cloud/Farm

• A part of  the farm is dedicated to a high density GPU cluster
• Tracks (or other physics objects like jets) are reconstructed on 

demand

Option 2

Filter Units

Builder Units
or disk servers

GPU Pixel 
Trackers
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• Flexible design
+ Expandible, easier to balance 
- Requires more communication and software development (e.g. a la HPX)

FPGA Calo Reco

DL Inference Accelerators



HPX

49



HPX
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• Wait for the results in another HPX 
thread, launched using hpx::async
before even starting to send the next 
batch. 

• Parallelize the main loop (one thread per 
CA worker) using 
hpx::parallel::for_loop. This 
automatically takes care of  load-
balancing. 

• Send batches of  events from several 
threads to each worker, to keep them 
constantly busy.



HPX
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• Wait for the results in another HPX 
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• Parallelize the main loop (one thread per 
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hpx::parallel::for_loop. This 
automatically takes care of  load-
balancing. 

• Send batches of  events from several 
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constantly busy.



Integration in the HLT Farm

• Builder units are equipped with GPUs: 
– events with already reconstructed tracks are fed to FUs with GPUDirect
– Use the GPU DRAM in place of  ramdisks for building events.

Option 3

Filter Units

GPU Builder Units
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CMS FE, Read-out Units
• Very specific design

+ fast, independent of  FU  developments, integrated in readout
- Requires specific DAQ software development: GPU may be “seen” as a detector element



Rate test

• The rate test consists in:
– preloading in host memory few hundreds events
– Assigning a host thread to a host core
– Assigning a host thread to a GPU
– Preallocating memory for each GPU for each of  8 cuda streams
– Filling a concurrent queue with event indices 
– During the test, when a thread is idle it tries to pop from the queue a new event index:

• Data for that event are copied to the GPU (if  the thread is associated to a GPU)
• processes the event (exactly same code executing on GPUs and CPUs)
• Copy back the result

– The test ran for approximately one hour
– At the end of  the test the number of  processed events per thread is measured, and the total rate can 

be estimated
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What happens in 10ms
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Rate test
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Rate test

• CERN acquired a small machine for 
development and testing
– Special configuration

• CPU-only input rate:
– Rate with 24xCPUs: 777 Hz
– Number of  nodes to reach 100kHz: ~128
– 4 Events per Joule

• Hybrid input rate: 
– 8xGPU: 6527 Hz + 24xCPUs: 613 Hz
– Number of  nodes to reach 100kHz: ~14
– 6.x + 3.2 Events per Joule
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Timing vs PU
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• CA track seeding at same level of  the 2016 seeding 
• More robust, smaller complexity vs PU than 2016 track 

seeding despite the increased number of  layer combinations 
involved in the seeding phase with respect to the 2016 seeding

• ~25% faster track reconstruction wrt to 2016 tracking at avg
PU70

• Replacing the CMS Phase2 offline track seeding with 
sequential CA

• Overall tracking 2x faster at PU200
• T(Phase2Tracker@PU200) = 4xT(Phase1Tracker@PU50)

• Detector and algorithms defeated combinatorial 
complexity



Conclusion
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Conclusion
• The future runs of  the Large Hadron Collider at CERN will impose significant challenge 

on the software performance, due to the increasing complexity of  events
• This pioneering work presents ways to solve the compute intensive problem of  track 

seeding in the CMS Pixel Detector: 
– Hit-Chain Maker improves physics performance while being significantly faster than the existing 

sequential implementation
– Started porting of  other parts of  the reconstruction: the heterogeneous revolution has begun!

• It has replaced the existing track seeding algorithm starting from the 2017 data-taking both 
in the Online and Offline event reconstruction

• Complete demonstrator of  the GPU-based Pixel Tracking to be installed in Autumn 2018 at 
the CMS High-Level Trigger farm at the LHC Point 5

• Final target: LHC Run 3
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Fun Fact

• What is the difference between a cat and a modem?
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Fun fact: Adversarial Threats

• What is the difference between a cat and a modem?
• I apologize to any AI listening to this talk, this kind of  humor is simply not acceptable..
• Research on unsupervised learning required
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J. H. Metzen, K. C. Mummadi, T. Brox, V. Fischer, “Universal Adversarial Perturbations Against Semantic Image Segmentation”, 
The IEEE International Conference on Computer Vision (ICCV), 2017



PATATRACK
Started in 2016 by a very small group of  passionate people, right after I gave a GPU programming 
course… 
• Soon grown:

– CERN: F. Pantaleo, V. Innocente, M. Rovere, A. Bocci, M. Kortelainen, 
M. Pierini, V. Volkl (SFT), V. Khristenko (IT, openlab)

– Austrian Academy of  Sciences: E. Brondolin, R. Fruhwirth
– INFN Bari: A. Di Florio, C. Calabria
– INFN MiB: D. Menasce, S. Di Guida
– INFN CNAF: E. Corni
– SAHA: S. Sarkar, S. Dutta, S. Roy Chowdhury, P. Mal
– TIFR: S. Dugad, S. Dubey
– Aachen: A. Schmidt
– University of  Pisa (Computer Science dep.): D. Bacciu, A. Carta
– Thanks also to the contributions of  many short term students (Bachelor, Master, GSoC): Alessandro, Ann-Christine, 

Antonio, Dominik, Jean-Loup, Konstantinos, Kunal, Luca, Panos, Roberto, Romina, Simone, Somesh
• Interests: algorithms, HPC, heterogeneous computing, machine learning, software eng., FPGAs…
• Lay the foundations of  the online/offline reconstruction starting from 2020s (tracking, HGCal)
• Website under construction: PATATRACK , contact: patatrack-rd@cern.ch
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http://patatrack.web.cern.ch/patatrack/
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Rate test

• Total rate measured: 
– 8xGPU: 6527 Hz
– 24xCPUs: 613 Hz

• Number of  nodes to reach 100kHz: ~14
• Total Price: 70x 

• When running with only 24xCPUs
– Rate with 24xCPUs: 777 Hz

• Number of  nodes to reach 100kHz: ~128
• Total Price: 320x

– Assuming an initial cost of  2.5      per node 
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Energy efficiency

• During the rate test power dissipated by CPUs and GPUs was measured every second
– Nvidia-smi for GPUs
– Turbostat for CPUs

• 8 GPUs: 1037W
– 6.29 Events per Joule
– 0.78 Events per Joule per GPU

• 24 CPUs in hybrid mode: 191W
– 3.2 Events per Joule
– 0.13 Events per Joule per core

• 24 CPUs in CPU-only test: 191W
– 4.05 Events per Joule
– 0.17 Events per Joule per core

• That is 1/3 more      s in the energy bill when processing 100kHz input
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Conclusion
• Hardware is changing

– Yes, again

• Today heterogeneous computing is not the exception
– Data centers are assumed to host several different kinds of  accelerators

• Duck test:
– Pixel Track seeding algorithms have been redesigned with high-throughput parallel architectures in 

mind
– This is only the beginning…
– … many other parts of  the HLT menu will be targeted to become heterogeneous

• Improvements in performance may come even when running sequentially
– Factors at the HLT, tens of  % in the offline, depending on the fraction of  the code that use 

new algos

• The GPU and CPU algorithms run in CMSSW and produce the same result
– Transition to GPUs@HLT during Run3 smoother

• Complete demonstrator will be installed at Point5 in Autumn 2018 to run with 
real data
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Back up
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CA-based Hit Chain Maker@ 
Run-2 Offline Track Seeding 



CA in offline tracking

• The performance of  the sequential Cellular Automaton at the HLT 
justified its integration also in the 2017 offline iterative tracking 

69



CA in offline tracking

• The performance of  the sequential Cellular Automaton at the HLT 
justified its integration also in the 2017 offline iterative tracking 
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CA Physics performance vs 2016
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• Reconstruction efficiency increased
• especially in forward region.

• Fake rate significantly reduced in the entire pseudo-rapidity range



CA: R-z plane compatibility

• The compatibility between two cells is checked only if  they share one hit
– AB and BC share hit B

• In the R-z plane a requirement is 
alignment of  the two cells:
– There is a maximum value of  𝜗𝜗 that 

depends on the minimum value of  the 
momentum range that we would like
to explore
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CA: x-y plane compatibility

• In the transverse plane, the intersection between the circle passing through the hits 
forming the two cells and
the beamspot is checked:
– They intersect if  the distance

between the centers d(C,C’)
satisfies:
r’-r < d(C,C’) < r’+r

– Since it is a Out – In propagation, 
a tolerance is added to 
the beamspot radius (in red)

• One could also ask for a minimum
value of  transverse momentum 
and reject low values of  r’ 
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