

FIRST RESULTS FROM EMULSION TEST BEAM

<u>A. Di Crescenzo</u>, A. Lauria, M.C. Montesi Napoli University and INFN

6th November 2017

MOTIVATION

- The grain density of a track in emulsion is approximately proportional to the energy loss of charged particle
- The response of nuclear emulsion saturates for ions with Z>=1
- Refreshing procedure: partial cancelation of tracks in order to extend dynamic range of emulsions
- New nuclear emulsions (Nagoya production) will be used in the FOOT experiment, never used for particle identification
- Test beam performed at LNS in July 2017: exposure of newly produced emulsion films to H, D, He, C beams
- Test of different refreshing procedures to define the working point for particle identification

Grain density $\propto \frac{dE}{dx} \frac{Z^2}{E}$

Cosmic rays Beam

EXPOSED SAMPLES

- ► Surface of emulsion samples: 5x4 cm²
- Beam particles orthogonal to emulsion surface
- Four particle beams (H, D, He, C) @80 MeV/u
- Four exposures per beam, each treated with different refreshing procedure

	No refreshing	28°C	34°C	36°C	38°C	
H (80 MeV/u)						
D (80 MeV/u)		\checkmark	\checkmark	\checkmark		
He (80 MeV/u)					*sar Li	ne ionization as (200 MeV/u)
C (80 MeV/u)		\checkmark		\checkmark		Analysed

SIGNAL SELECTION

- Emulsion films integrates cosmic rays passing through them from production to development (~2 months)
- Signal tracks perpendicular to emulsion films (θ <0.1 rad)
- Angular acceptance for the present analysis: θ <1 rad

SIGNAL SELECTION

- Signal tracks from H, He and D show ionization (VR0) larger than cosmic rays
- **Unexpected** behavior for Carbon: same ionization of cosmic rays

VR0

Sum of the number of pixels associated with each recognized tracks

Layer3

SCANNED AREA

• Signal selection: $\theta < 0.1$ rad

IONIZATION

- Particle ionization relative to cosmic rays constant for H, D, He: <<u>VR0>s</u>/<<u>VR0>c</u> ~2.3
- Saturation observed in case of No refreshing
- Unexpected behavior for Carbon: <<u>VR0>s</u>=<<u>VR0>c</u>

Refreshing 28°C

- Cosmic rays cancelled
- H and D tracks cancelled
- Degradation of ionization for He tracks
- High ionization for C tracks (as expected)

Refreshing 34°C

- Cosmic rays cancelled
- H and D tracks cancelled
- Partial cancellation of He tracks
- No degradation of C ionization

Refreshing 36°C

- Cosmic rays cancelled
- H and D tracks cancelled
- Further cancellation of He tracks
- Degradation of ionization for C tracks

RESULTS

11

CONCLUSION

- First results of refreshing procedure performed to new nuclear emulsions produced in Nagoya exposed to H, D, He, C (80 MeV/u) @LNS in July
- Scanning of a small area of several samples performed in Napoli Emulsion Laboratory
- In the samples **without refreshing** signal tracks show higher ionization wrt cosmic rays, but they saturate
- Unexpected behavior observed for C beam: same ionization as cosmic rays
- The **28°C refreshing** completely removes cosmic rays, H(80 MeV/u) and D(80 MeV/u)
- The **34°C refreshing** partially cancels He(80 MeV/u) and does not affect C(80 MeV/u)
- The 36°C refreshing strongly reduces He(80 MeV/u) component and slightly reduces the C(80 MeV/u) volume

PERSPECTIVES

- Perform a new scanning campaign of all samples with larger area
- Test beam in Trento in December to test refreshing procedure with
 - ▶ H(200 MeV/u)
 - ► H(50 MeV/u) simulating He(200 MeV/u)
 - H(80 MeV/u) for comparison with LNS measurements