
This course

Structure and logistics - 1
 This course is organized in a mixture of theoretical

lectures and practical hands-on sessions
 The hands-on sessions require real C++ coding to

build up a simplified Geant4 application
 Staged approach in tasks
 http://geant4.lngs.infn.it/alghero2018
/introduction

 A pre-installed virtual machine is provided for the
hands-on sessions
 Includes Geant4 10.4 on a Linux environment
 You should already have it downloaded and tested

 Please let us know ASAP if you have problems with the VM

Structure and logistics - 2
 You can try to install Geant4 on your (Linux/Mac)

laptop, if you wish
 The course is not meant to show that, though

 All lectures (pdf) will be uploaded on-the-fly on the
course indico page
 https://agenda.infn.it/event/AlgheroSeminar2018

 Please feel free to ask any question, either during
the lectures , during the exercises or during the breaks

 Solutions of the exercises will be uploaded after the
end of each exercise session

Monte Carlo techniques and
 concept

Luciano Pandola
INFN – Laboratori Nazionali del Sud

Geant4 Course, XV Seminar on Software for Nuclear,
Subnuclear and Applied Physics,
Alghero, May 28th- June 1st, 2018

What Monte Carlo (MC)
techniques are for?

 Numerical solution of a (complex) macroscopic
problem, by simulating the microscopic
interactions among the components

 Uses random sampling, until convergence is
achieved
 Name after Monte Carlo's casino

 Applications not only in physics and science, but
also finances, traffic flow, social studies
 And not only problems that are intrisically

probabilistic (e.g. numerical integration)

MC in science
 In physics, elementary laws are (typically) known
 MC is used to predict the outcome of a
(complex) experiment
 Exact calculation from the basic laws is unpractical
 Optimize an experimental setup, support data

analysis
 Can be used to validate/disproof a theory, and/or

to provide small corrections to the theory
 In this course: Monte Carlo for particle tracking

(interaction of radiation with matter)

When are MC useful wrt to the
math exact solution?

 Usually the
Monte Carlo
wins over the
exact
(mathematical)
solution for
complex
problems

A bit of history

 Very concept of Monte Carlo
comes in the XVIII century
(Buffon, 1777, and then Laplace,
1786)
 Monte Carlo estimate of π

 Concept of MC is much older
than real computers
 one can also implement the

algorithms manually, with dice
(= Random Number Generator)

A bit of history

 Boost in the '50 (Ulam and Von
Neumann) for the development
of thermonuclear weapons

 Von Neumann invented the
name "Monte Carlo" and settled
a number of basic theorems

 First (proto)computers available
at that time
 MC mainly CPU load, minimal

I/O

A bit of history

The simplest MC application:
numerical estimate of π

 Shoot N couples (x,y)
randomly in [0,1]

 Count n: how many
couples satisfy (x2+y2≤1)

[0,1]

[0,1]

 n/N = π/4 (ratio of areas)
 Convergence as 1/ √N

Most common application in
particle physics: particle tracking

 Problem: track a γ-ray in a
semi-infinite detector and
determine the energy
spectrum deposited
 Still, a model case

 All physics is known from
textbook (Compton
scattering, photoelectric
effect, etc.)

 Yet, the analytical calculation
is a nightmare (while still
possible)

γ-ray

Most common application in
particle physics: particle tracking

 Problem v2: track a γ-ray in a
finite detector (e.g. a NaI)
 Real-life (simplified) case

 Analytical computation nearly
impossible
 Monte Carlo clearly wins

 Now make the detector more
complicate, as in modern physics

γ-ray

How to cook up the laws of
physics into a tracking
algorithm

(Bird's eye view)

Particle tracking
 Distance s between two subsequent interactions

distributed as

s μ is a property of the medium
(homogeneous) and of the physics

 μ is proportional to the total cross
section and depends on the density of
the material

 All competing processes contribute with their own μi

 Each process takes place with probability μi/μ i.e.
proportionally to the partial cross sections

Particle tracking: basic recipe
 Divide the trajectory of the particle in "steps"

 Straight free-flight tracks between consecutive physics
interactions

 Steps can also be limited by geometry boundaries
 Decide the step length s, by sampling according to

p(s)= μe-μs, with the proper μ (material+physics)
 Decide which interaction takes place at the end of the

step, according to μi/μ
 Produce the final state according to the physics of the

interaction (d2σ/dΩdE)
 Update direction of the primary particle
 Store somewhere the possible secondary particles, to be

tracked later on

Particle tracking: basic recipe

 Follow all secondaries, until absorbed or leave volume
 Notice: μ depends on energy (cross sections do!)

s1

γ, E

s2

γ, E1

e-, E2

s3

γ, E3

e-, E4 e-, E5

Well, not so easy
 This basic recipe works fine for γ-rays and other

neutral particles (e.g. neutrons)
 Not so well for e±: the cross section (ionization &

bremsstrahlung) is very high, so the steps between
two consecutive interactions are very small
 CPU intensive: viable for low energies and thin material

 Even worse: in each interaction only a small fraction
of energy is lost, and the angular displacement is
small
 A lot of time is spent to simulate interactions having

small effect
 The interactions of γ are "catastrophics": large change

in energy/direction

Solution: the mixed Monte
Carlo

 Simulate explicitly (i.e. force step) interactions only
if energy loss (or change of direction) is above
threshold W0
 Detailed simulation
 "hard" interaction (like γ interactions)

 The effect of all sub-threshold interactions is
described statistically (= cumulatively)
 Condensed simulation
 "soft" interactions

 Hard interactions occur much less frequently than
soft interactions
 Fully detailed simulation restored for W0=0

Particle tracking: mixed recipe

 Follow all secondaries, until absorbed or leave
volume

s1 (E)

e-, E

e-, E-w

<w> = Sss1

e-, E1

s2

e-, E2

<w> = Sss2

e-, E1-w e-, E3

γ, E4

s3

Geometry
 Geometry also enters into the tracking

 A step can never cross a geometry boundary
 Always stop the step when there is a boundary,

then re-start in the new medium
 Navigation in the geometry can be CPU-intensive

 One must know to which volume each point (x,y,z)
belongs to, and how far (and in which direction) is
the closest boundary

 Trajectories can be affected also by EM fields, for
charged particles

…luckily enough, somebody
else already implemented the
tracking algorithms for us
(and much more)

What is
 Toolkit for the Monte Carlo simulation of the interaction of

particles with matter
 physics processes (EM, hadronic, optical) cover a

comprehensive set of particles, materials and over a wide
energy range

 offers a complete set of support functionalities (tracking,
geometry)

 Distributed software production and management: developed
by an international Collaboration
 Established in 1998
 Approximately 100 members, from Europe, America and Asia

 Written in C++ language
 Takes advantage from the Object Oriented software technology

 Open source
 http://geant4.org

S. Agostinelli et al., Nucl. Instr. Meth. A 506 (2003) 250
J. Allison et al., IEEE Trans. Nucl. Scie. 53 (2006) 270
J. Allison et al., Nucl. Instr. Meth. A 835 (2016) 186

 Code and documentation available in the main
web page

 Regular tutorial courses held worldwide

http://geant4.org

versions and releases
 First release (Geant4 1.0) in December 1998

 ∼Two releases per year since then
 Major releases (x.y) or minor releases (x.y) or beta

releases
 Patches regularly issued

 Last version: Geant4 10.4
 Released December 8th, 2017
 Now patch 10.4.p02 (May 25th, 2018)
 The VM used for this course has Geant4 10.4

 Requires C++11 since 10.2 (gcc > 4.8.x)
 Native C+11 features in-place (= compilation with old

compilers fails)

Basic concept of Geant4

Toolkit and User Application
 Geant4 is a toolkit (= a collection of tools)

 i.e. you cannot “run” it out of the box
 You must write an application, which uses Geant4 tools

 Consequences:

 There are no such concepts as “Geant4 defaults”
 You must provide the necessary information to configure your

simulation
 You must deliberately choose which Geant4 tools to use

 Guidance: many examples are provided

Basic concepts

 What you MUST do:
 Describe your experimental set-up
 Provide the primary particles input to your simulation
 Decide which particles and physics models you want to use

out of those available in Geant4 and the precision of your
simulation (cuts to produce and track secondary particles)

 You may also want
 To interact with Geant4 kernel to control your simulation
 To visualise your simulation configuration or results
 To produce histograms, tuples etc. to be further analysed

Main Geant4 capabilities
 Transportation of a particle ‘step-by-step’ taking into

account all possible interactions with materials and fields
 The transport ends if the particle

 is slowed down to zero kinetic energy (and it doesn't have
any interaction at rest)

 disappears in some interaction
 reaches the end of the simulation volume

 Geant4 allows the User to access the transportation
process and retrieve the results (USER ACTIONS)
 at the beginning and end of the transport
 at the end of each step in transportation
 if a particle reaches a sensitive detector
 Others…

Multi-thread mode
 Geant4 10.0 (released Dec, 2013) supports multi-

thread approach for multi-core machines
 Simulation is automatically split on an event-by-

event basis
 different events are processed by different cores

 Can fully profit of all cores available on modern
machines substantial speed-up of simulations

 Unique copy (master) of geometry and physics
 All cores have them as read-only (saves memory)

 Backwards compatible with the sequential mode
 The MT programming requires some care: need to

avoid conflicts between threads
 Some modification and porting required

Concept for multi-thread …
Master

Workers

Geometry Physics RunAction

READONLY

Primary

RunAction

EvtAction

Primary

RunAction

EvtAction

Primary

RunAction

EvtAction

… vs. parallelisation

Geometry

Physics

Primary

RunAction

EvtAction

Primary

RunAction

EvtAction

Primary

RunAction

EvtAction

Geometry

Physics

Geometry

Physics

Nodes

 Each node
hosts a
complete
simulation

 Many copies
of geometry
and physics
tables

 More memory-
thristy

Interaction with the Geant4
kernel - 1

 Geant4 design provides tools for a user
application
 To tell the kernel about your simulation configuration
 To interact with Geant4 kernel itself

 Geant4 tools for user interaction are base

classes
 You create your own concrete class derived from

the base classes interface to the Geant4 kernel
 Geant4 kernel handles your own derived classes

transparently through their base class interface
(polymorphism)

Interaction with the Geant4
kernel - 2

 Abstract base classes for user interaction
(classes starting with G4V)
 User derived concrete classes are mandatory
 User to implement the purely virtual methods

 Concrete base classes (with virtual dummy

default methods) for user interaction
 User derived classes are optional

Two types of Geant4 base classes:

User Classes
Initialisation classes
Invoked at the initialization

 G4VUserDetectorConstruction
 G4VUserPhysicsList

Action classes
Invoked during the execution loop

 G4VUserActionInitialization
 G4VUserPrimaryGeneratorAction
 G4UserRunAction (*)
 G4UserEventAction
 G4UserTrackingAction
 G4UserStackingAction
 G4UserSteppingAction

Global: only one instance of
them exists in memory, shared
by all threads (readonly).
Managed only by the master
thread. Local: an instance of each action

class exists for each thread.
(*) Two RunAction's allowed: one for
master and one for threads

The mandatory user classes

Mandatory classes
in ANY Geant4 User

Application

 G4VUserDetectorConstruction
 describe the experimental set-up

 G4VUserPhysicsList
 select the physics you want to activate

 G4VUserActionInitialization
 takes care of the user initializations
 G4VUserPrimaryGeneratorAction

Will be described in detail in the next lectures
(Tue-Wed)

Optional user classes
 Five concrete base classes whose virtual member functions

the user may override to gain control of the simulation at
various stages
 G4UserRunAction
 G4UserEventAction
 G4UserTrackingAction
 G4UserStackingAction
 G4UserSteppingAction

 Each member function of the base classes has a dummy
implementation (not purely virtual)
 Empty implementation: does nothing
 Override only the methods that you need

 User action classes must be registered to the Run Manager via
the G4VUserActionInizialization

e.g. actions to be done
at the beginning and
end of each event

The mandatory user classes

The geometry

 User class which describes the geometry must
inherit from G4VUserDetectorConstruction
and registered in the Run Manager

 Virtual base class: the purely virtual method must
be implemented
 G4VPhysicalVolume* Construct() = 0;

 Must return the pointer to the world volume: all other
volumes are contained in it

 Optionally, implement the virtual method
 void ConstructSDandField();

 Defines sensitive volumes and EM fields

Select physics processes

 Geant4 doesn’t have any default particles or processes
 Derive your own concrete class from the
G4VUserPhysicsList abstract base class
 define all necessary particles
 define all necessary processes and assign them to proper

particles
 define γ/δ production thresholds (in terms of range)

 Pure virtual methods of G4VUserPhysicsList

must be implemented by the user
in his/her concrete derived class

ConstructParticles()
ConstructProcesses()
SetCuts()

Action Initialization
 User class must inherit from
G4VUserActionInitialization and registered
in the Run Manager

 Implement the purely virtual method
 void Build() = 0;
 Invoked in sequential mode and in MT mode by all

workers
 Must instantiate at least the primary generator

 Optional virtual method
 void BuildForMaster();
 Invoked by the master in MT mode. Applies only to

Run Action (all other user actions are thread-local)

Primary generator
 User class must inherit from
G4VUserPrimaryGeneratorAction
 Registered to the Run Manager via the

ActionInizialitation (MT mode)
 Register directly to the RunManager in seq-mode

 Implement the purely virtual method
 void GeneratePrimaries(G4Event*)=0;
 Called by the RunManager during the event loop, to

generate the primary vertices/particles
 Uses internally a concrete instance of
G4VPrimaryGenerator (e.g. G4ParticleGun) to
do the job

The main() program

The main() program - 1
 Geant4 does not provide the main()

 Geant4 is a toolkit!
 The main() is part of the user application

 In his/her main(), the user must
 construct G4RunManager (or his/her own derived class)
 notify the G4RunManager mandatory user classes derived

from
 G4VUserDetectorConstruction
 G4VUserPhysicsList
 G4VUserActionInitialization (takes care of Primary)

 In MT mode, use G4MTRunManager

The main() program - 2

 The user may define in his/her main()
 optional user action classes
 VisManager, (G)UI session

 The user also has to take care of retrieving and
saving the relevant information from the simulation
(Geant4 will not do that by default)

 Don’t forget to delete the G4RunManager at the end

An example of (sequential)
main()

{
 …
 // Construct the default run manager
 G4RunManager* runManager = new G4RunManager;

 // Set mandatory user initialization classes
 MyDetectorConstruction* detector = new MyDetectorConstruction;
 runManager->SetUserInitialization(detector);
 MyPhysicsList* physicsList = new MyPhysicsList;
 runManager->SetUserInitialization(myPhysicsList);

 // Set mandatory user action classes
 runManager->SetUserAction(new MyActionInitialization);

 // Set optional user action classes
 MyEventAction* eventAction = new MyEventAction();
 runManager->SetUserAction(eventAction);
 MyRunAction* runAction = new MyRunAction();
 runManager->SetUserAction(runAction);
 …
}

Documentation
 A few manuals available in the Geant4 webpage

 Application developer manual
 Physics manual

 Other tools available
 LXR code repository
 User forum
 Bugzilla
 GitHub code repo

http://geant4.org

https://github.com/Geant4

Examples
 Ready-for-the-use Geant4 applications (examples)

are distributed with Geant4
 Very good starting point for new users

 Three suites of examples:
 "basic": oriented to novice users and covering the most

typical use-cases of a Geant4 application with keeping
simplicity and ease of use.

 "extended": covers many specific use cases for actual
detector simulation.

 "advanced": where real-life complete applications for
different simulation studies are provided

 See dedicated presentation on Friday

Who/why is using Geant4?

Experiments and MC
 In my knowledge, all experiments have a (more

or less detailed) full-scale Monte Carlo simulation
 Design phase

 Evaluation of background
 Optimization of setup to maximize scientific yield

 Minimize background, maximize signal efficiency
 Running/analysis phase

 Support of data analysis (e.g. provide efficiency for
signal, background, coincidences, tagging, …).
 Often, Monte Carlo is the only way to convert relative

rates (events/day) in absolute yields

Why Geant4 is a common
choice in the market

 Open source and object oriented/C++
 No black box
 Freely available on all platforms
 Can be easily extended and customized by using the

existing interfaces
 New processes, new primary generators, interface to ROOT

analysis, …
 Can handle complex geometries
 Regular development, updates, bug fixes and

validation
 Good physics, customizable per use-cases
 End-to-end simulation (all particles, including optical

photons)

LHC @ CERN
 All four big LHC

experiments have a
Geant4 simulation
 M of volumes
 Physics at the TeV scale

ATLAS

CMS

 Benchmark with
test-beam data

 Key role for the
Higgs searches

Space applications
 Satellites (γ astrophysics, planetary sciences)
 Funding from ESA

AGILE

GLAST Typical telescope:
 Tracker
 Calorimeter
 Anticoincidence

Nuclear spectroscopy

56
SCEPTAR

TIGRESS

 Treatment planning for
hadrontherapy and proton-
therapy systems
 Goal: deliver dose to the tumor

while sparing the healthy tissues
 Alternative to less-precise (and

commercial) TP software
 Medical imaging
 Radiation fields from medical

accelerators and devices
 medical_linac
 gamma-knife
 brachytherapy

Proton-therapy beam line

GEANT4 simulation

Medical applications

Dosimetry with Geant4

Space science Radiotherapy Effects on electronics
components

Geant4-based frameworks in
the medical physics

TOPAS

PTSim

GATE

Backup

Low background experiments
Neutrinoless ββ

decay:
GERDA, Majorana

COBRA, CUORE, EXO

Dark matter detection:
Zeplin-II/III, Drift, Edelweiss, ArDM,

Xenon, CRESST, Lux, Elixir,

Solar neutrinos:
Borexino, ...

How to cook up the laws of
physics into a tracking
algorithm

(Bird's eye view)

Particle tracking
 Distance s between two subsequent interactions

distributed as

s μ is a property of the medium
(homogeneous) and of the physics

 μ is proportional to the total cross
section and depends on the density of
the material

 All competing processes contribute with their own μi

 Each process takes place with probability μi/μ i.e.
proportionally to the partial cross sections

Particle tracking: basic recipe
 Divide the trajectory of the particle in "steps"

 Straight free-flight tracks between consecutive physics
interactions

 Steps can also be limited by geometry boundaries
 Decide the step length s, by sampling according to

p(s)= μe-μs, with the proper μ (material+physics)
 Decide which interaction takes place at the end of the

step, according to μi/μ
 Produce the final state according to the physics of the

interaction (d2σ/dΩdE)
 Update direction of the primary particle
 Store somewhere the possible secondary particles, to be

tracked later on

Particle tracking: basic recipe

 Follow all secondaries, until absorbed or leave volume
 Notice: μ depends on energy (cross sections do!)

s1

γ, E

s2

γ, E1

e-, E2

s3

γ, E3

e-, E4 e-, E5

Well, not so easy
 This basic recipe works fine for γ-rays and other

neutral particles (e.g. neutrons)
 Not so well for e±: the cross section (ionization &

bremsstrahlung) is very high, so the steps between
two consecutive interactions are very small
 CPU intensive: viable for low energies and thin material

 Even worse: in each interaction only a small fraction
of energy is lost, and the angular displacement is
small
 A lot of time is spent to simulate interactions having

small effect
 The interactions of γ are "catastrophics": large change

in energy/direction

Solution: the mixed Monte
Carlo

 Simulate explicitly (i.e. force step) interactions only
if energy loss (or change of direction) is above
threshold W0
 Detailed simulation
 "hard" interaction (like γ interactions)

 The effect of all sub-threshold interactions is
described statistically (= cumulatively)
 Condensed simulation
 "soft" interactions

 Hard interactions occur much less frequently than
soft interactions
 Fully detailed simulation restored for W0=0

Particle tracking: mixed recipe

 Follow all secondaries, until absorbed or leave
volume

s1 (E)

e-, E

e-, E-w

<w> = Sss1

e-, E1

s2

e-, E2

<w> = Sss2

e-, E1-w e-, E3

γ, E4

s3

Geometry
 Geometry also enters into the tracking

 A step can never cross a geometry boundary
 Always stop the step when there is a boundary,

then re-start in the new medium
 Navigation in the geometry can be CPU-intensive

 One must know to which volume each point (x,y,z)
belongs to, and how far (and in which direction) is
the closest boundary

 Trajectories can be affected also by EM fields, for
charged particles

…luckily enough, somebody
else already implemented the
tracking algorithms for us
(and much more)

Particle tracking
 μ is proportional to the total cross section

and depends on the density of the material

s
 All competing processes

contribute with their own μi
 Each process takes place with

probability μi/μ i.e.
proportionally to the partial cross
sections

The mixed Monte Carlo
 Has some technical tricks:

 since energy is lost along the step due to soft
interactions, the sampled step s cannot be too long
(s < smax)

 Parameter μh between hard collisions

 Has μh << μ because the differential cross section is
strogly peaked at low W (= soft secondaries)

 Much longer step length

The mixed Monte Carlo
 Stopping power due to soft collisions (dE/dx)

 Average energy lost along the step: <w>=sSs
 Must be <w> << E

 Fluctuations around the average value <w>
have to be taken into account
 Appropriate random sampling of w with mean

value <w> and variance (straggling)

Extended recipe
1. Decide the step length s, by sampling according to

p(s)= μhe-μ
h
s, with the proper μh

2. Calculate the cumulative effect of the soft
interactions along the step: sample the energy
loss w, with <w>=sSs, and the displacement

3. Update energy and direction of the primary
particle at the end of the step E E-w

4. Decide which interaction takes place at the end of
the step, according to μi,h/μh

5. Produce the final state according to the physics
of the interaction (d2σ/dΩdE)

Applications in the rare-event
physics

Experiment backgrounds
internal detector radioactivity
rock radioactivity
µ-induced neutron production
shielding and veto systems

Calibration
Neutrons
Gammas

Optics
Photon generation
Light collection

Detector response
Scintillation
Ionisation

Simulated Data
Visualisation
Run-time analysis
Input to data analysis software

Geant4 is uniquely suited for
integrated simulations of

underground and low-background
detectors (e.g. dark matter)

A dedicated advanced example (underground_physics)
is released with Geant4 (ZEPLIN experiment)

Geant4-based frameworks in
astroparticle/neutrino physics

 Geant4 is a toolkit can be used in software projects
of wider scope
 Flexibility in selecting geometries, physics, outputs, …

 A few examples in astroparticle physics:
 MaGe (GERDA/Majorana): double beta decay
 LUXSim (LUX): dark matter and undeground experiments
 DCGLG4sim (Double Chooz): liquid scintillator and reactor

neutrinos
 artG4 (FermiLab)
 VENOM (COBRA): double beta decay
 Just google "Geant4-based"

 (Many more for HEP, space physics, medical physics)

The mandatory user classes

The geometry

 User class which describes the geometry must
inherit from G4VUserDetectorConstruction
and registered in the Run Manager

 Virtual base class: the purely virtual method must
be implemented
 G4VPhysicalVolume* Construct() = 0;

 Must return the pointer to the world volume: all other
volumes are contained in it

 Optionally, implement the virtual method
 void ConstructSDandField();

 Defines sensitive volumes and EM fields

Select physics processes

 Geant4 doesn’t have any default particles or processes
 Derive your own concrete class from the
G4VUserPhysicsList abstract base class
 define all necessary particles
 define all necessary processes and assign them to proper

particles
 define γ/δ production thresholds (in terms of range)

 Pure virtual methods of G4VUserPhysicsList

must be implemented by the user
in his/her concrete derived class

ConstructParticles()
ConstructProcesses()
SetCuts()

Physics Lists
 Geant4 doesn’t have any default particles or processes
 Partially true: there is no default, but there are a set of

"ready-for-use" physics lists released with Geant4,
tailored to different use cases. Mix and match:
 Different sets of hadronic models (depending on the

energy scale and modeling of the interactions)
 Different options for neutron tracking

 Do we need (CPU-intensive) description of thermal neutrons,
neutron capture, etc?

 Different options for EM physics
 Do you need (CPU-intensive) precise description at the low-

energy scale (< 1 MeV)? E.g. fluorescence, Doppler effects in the
Compton scattering, Auger emission, Rayleigh diffusion

 Only a waste of CPU time for LHC, critical for many low-
background experiments

Action Initialization
 New in Geant4 10.0 (supports multi-thread)
 User class must inherit from
G4VUserActionInitialization and registered in
the Run Manager

 Implement the purely virtual method
 void Build() = 0;
 Invoked in sequential mode and in MT mode by all

workers
 Must instantiate at least the primary generator

 Optional virtual method
 void BuildForMaster();
 Invoked by the master in MT mode. Applies only to Run

Action (all other user actions are thread-local)

Primary generator
 User class must inherit from
G4VUserPrimaryGeneratorAction
 Registered to the Run Manager via the

ActionInizialitation (MT mode)
 Register directly to the RunManager in seq-mode

 Implement the purely virtual method
 void GeneratePrimaries(G4Event*)=0;
 Called by the RunManager during the event loop, to

generate the primary vertices/particles
 Uses internally a concrete instance of
G4VPrimaryGenerator (e.g. G4ParticleGun) to
do the job

The optional user classes

Interplay between theory,
simulation and experiments

Examples
 A webpage with doxygen documentation is

available for the basic/extended examples

http://cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/html

Sequential vs. MT main()
 The MT vs. sequential mode can be chosen in

the main() by picking the appropriate
RunManager:
 G4RunManager for sequential
 G4MTRunManager for multi-thread

 // Construct the default run manager. Pick the proper run
 // manager depending if the multi-threading option is
 // active or not.
#ifdef G4MULTITHREADED
 G4MTRunManager* runManager = new G4MTRunManager;
#else
 G4RunManager* runManager = new G4RunManager;
#endif

General recipe for novice
users

 Design your application… requires some preliminar
thinking (what is it supposed to do?)

 Create your derived mandatory user classes
 MyDetectorConstruction
 MyPhysicsList
 MyActionInitialization (must register MyPrimaryGenerator)

 Create optionally your derived user action classes
 MyUserRunAction, MyUserEventAction, …

 Create your main()
 Instantiate G4RunManager or your own derived MyRunManager
 Notify the RunManager of your mandatory and optional user classes
 Optionally initialize your favourite User Interface and Visualization

 That’s all!

Experienced users may do much
more, but the conceptual
process is still the same…

	This course
	Structure and logistics - 1
	Structure and logistics - 2
	Monte Carlo techniques and 			concept
	What Monte Carlo (MC) techniques are for?
	MC in science
	When are MC useful wrt to the math exact solution?
	A bit of history
	A bit of history
	A bit of history
	The simplest MC application: numerical estimate of π
	Most common application in particle physics: particle tracking
	Most common application in particle physics: particle tracking
	How to cook up the laws of physics into a tracking algorithm
	Particle tracking
	Particle tracking: basic recipe
	Particle tracking: basic recipe
	Well, not so easy
	Solution: the mixed Monte Carlo
	Particle tracking: mixed recipe
	Geometry
	Diapositiva numero 22
	What is
	Diapositiva numero 25
	versions and releases
	Basic concept of Geant4
	Toolkit and User Application
	Basic concepts
	Main Geant4 capabilities
	Multi-thread mode
	Concept for multi-thread …
	… vs. parallelisation
	Interaction with the Geant4 kernel - 1
	Interaction with the Geant4 kernel - 2
	User Classes
	The mandatory user classes
	Optional user classes
	The mandatory user classes
	The geometry
	Select physics processes
	Action Initialization
	Primary generator
	The main() program
	The main() program - 1
	The main() program - 2
	An example of (sequential) main()
	Documentation
	Examples
	Who/why is using Geant4?
	Experiments and MC
	Why Geant4 is a common choice in the market
	LHC @ CERN
	Space applications
	Nuclear spectroscopy
	Medical applications
	Dosimetry with Geant4
	Geant4-based frameworks in the medical physics
	Backup
	Low background experiments
	How to cook up the laws of physics into a tracking algorithm
	Particle tracking
	Particle tracking: basic recipe
	Particle tracking: basic recipe
	Well, not so easy
	Solution: the mixed Monte Carlo
	Particle tracking: mixed recipe
	Geometry
	Diapositiva numero 70
	Particle tracking
	The mixed Monte Carlo
	The mixed Monte Carlo
	Extended recipe
	Applications in the rare-event physics
	Geant4-based frameworks in astroparticle/neutrino physics
	The mandatory user classes
	The geometry
	Select physics processes
	Physics Lists
	Action Initialization
	Primary generator
	The optional user classes
	Interplay between theory, simulation and experiments
	Examples
	Sequential vs. MT main()
	General recipe for novice users

