
This course 



Structure and logistics - 1 
 This course is organized in a mixture of theoretical 

lectures and practical hands-on sessions 
 The hands-on sessions require real C++ coding to 

build up a simplified Geant4 application 
 Staged approach in tasks 
 http://geant4.lngs.infn.it/alghero2018
/introduction 

 A pre-installed virtual machine is provided for the 
hands-on sessions 
 Includes Geant4 10.4 on a Linux environment 
 You should already have it downloaded and tested 

 Please let us know ASAP if you have problems with the VM 



Structure and logistics - 2 
 You can try to install Geant4 on your (Linux/Mac) 

laptop, if you wish 
 The course is not meant to show that, though 

 All lectures (pdf) will be uploaded on-the-fly on the 
course indico page 
 https://agenda.infn.it/event/AlgheroSeminar2018 

 Please feel free to ask any question, either during 
the lectures , during the exercises or during the breaks 

 Solutions of the exercises will be uploaded after the 
end of each exercise session 
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What Monte Carlo (MC) 
techniques are for? 

 Numerical solution of a (complex) macroscopic 
problem, by simulating the microscopic 
interactions among the components 

 Uses random sampling, until convergence is 
achieved 
 Name after Monte Carlo's casino 

 Applications not only in physics and science, but 
also finances, traffic flow, social studies 
 And not only problems that are intrisically 

probabilistic (e.g. numerical integration) 



MC in science 
 In physics, elementary laws are (typically) known 
 MC is used to predict the outcome of a 
(complex) experiment 
 Exact calculation from the basic laws is unpractical 
 Optimize an experimental setup, support data 

analysis 
 Can be used to validate/disproof a theory, and/or 

to provide small corrections to the theory 
 In this course: Monte Carlo for particle tracking 

(interaction of radiation with matter) 



When are MC useful wrt to the 
math exact solution? 

 Usually the 
Monte Carlo 
wins over the 
exact 
(mathematical) 
solution for 
complex 
problems 



A bit of history 

 Very concept of Monte Carlo  
comes in the XVIII century 
(Buffon, 1777, and then Laplace, 
1786) 
 Monte Carlo estimate of π 

 Concept of MC is much older 
than real computers  
 one can also implement the 

algorithms manually, with dice 
(= Random Number Generator) 



A bit of history 

 Boost in the '50 (Ulam and Von 
Neumann) for the development 
of thermonuclear weapons 

 Von Neumann invented the 
name "Monte Carlo" and settled 
a number of basic theorems 

 First (proto)computers available 
at that time 
 MC mainly CPU load, minimal 

I/O 



A bit of history 
 



The simplest MC application: 
numerical estimate of π 

 Shoot N couples (x,y) 
randomly in [0,1] 

 Count n: how many 
couples satisfy (x2+y2≤1) 

[0,1] 

[0,1] 

 n/N = π/4 (ratio of areas) 
 Convergence as 1/ √N 



Most common application in 
particle physics: particle tracking 

 Problem: track a γ-ray in a 
semi-infinite detector and 
determine the energy 
spectrum deposited 
 Still, a model case 

 All physics is known from 
textbook (Compton 
scattering, photoelectric 
effect, etc.) 

 Yet, the analytical calculation 
is a nightmare (while still 
possible) 

γ-ray 



Most common application in 
particle physics: particle tracking 

 Problem v2: track a γ-ray in a 
finite detector (e.g. a NaI) 
 Real-life (simplified) case 

 Analytical computation nearly 
impossible 
 Monte Carlo clearly wins 

 Now make the detector more 
complicate, as in modern physics 

γ-ray 



How to cook up the laws of 
physics into a tracking 
algorithm 

(Bird's eye view) 



Particle tracking 
 Distance s between two subsequent interactions 

distributed as   

s  μ is a property of the medium 
(homogeneous) and of the physics 

 μ is proportional to the total cross 
section and depends on the density of 
the material 
 
  All competing processes contribute with their own μi 

 Each process takes place with probability μi/μ  i.e. 
proportionally to the partial cross sections 



Particle tracking: basic recipe 
 Divide the trajectory of the particle in "steps" 

 Straight free-flight tracks between consecutive physics 
interactions 

 Steps can also be limited by geometry boundaries 
 Decide the step length s, by sampling according to 

p(s)= μe-μs, with the proper μ (material+physics)  
 Decide which interaction takes place at the end of the 

step, according to μi/μ  
 Produce the final state according to the physics of the 

interaction (d2σ/dΩdE) 
 Update direction of the primary particle 
 Store somewhere the possible secondary particles, to be 

tracked later on 



Particle tracking: basic recipe 

 Follow all secondaries, until absorbed or leave volume 
 Notice: μ depends on energy (cross sections do!) 

s1 

γ, E 

s2 

γ, E1 

e-, E2 

s3 

γ, E3 

e-, E4 e-, E5 



Well, not so easy 
 This basic recipe works fine for γ-rays and other 

neutral particles (e.g. neutrons) 
 Not so well for e±: the cross section (ionization & 

bremsstrahlung) is very high, so the steps between 
two consecutive interactions are very small 
 CPU intensive: viable for low energies and thin material 

 Even worse: in each interaction only a small fraction 
of energy is lost, and the angular displacement is 
small 
 A lot of time is spent to simulate interactions having 

small effect 
 The interactions of γ are "catastrophics": large change 

in energy/direction 
 



Solution: the mixed Monte 
Carlo 

 Simulate explicitly (i.e. force step) interactions only 
if energy loss (or change of direction) is above 
threshold W0 
 Detailed simulation 
 "hard" interaction (like γ interactions) 

 The effect of all sub-threshold interactions is 
described statistically (= cumulatively) 
 Condensed simulation 
 "soft" interactions 

 Hard interactions occur much less frequently than 
soft interactions 
 Fully detailed simulation restored for W0=0 



Particle tracking: mixed recipe 

 Follow all secondaries, until absorbed or leave 
volume 

s1 (E) 

e-, E 

e-, E-w 

<w> = Sss1 

e-, E1 

s2 

e-, E2 

<w> = Sss2 

e-, E1-w e-, E3 

γ, E4 

s3 



Geometry 
 Geometry also enters into the tracking 

 A step can never cross a geometry boundary 
 Always stop the step when there is a boundary, 

then re-start in the new medium 
 Navigation in the geometry can be CPU-intensive 

 One must know to which volume each point (x,y,z) 
belongs to, and how far (and in which direction) is 
the closest boundary 

 Trajectories can be affected also by EM fields, for 
charged particles 
 



…luckily enough, somebody 
else already implemented the 
tracking algorithms for us 
(and much more) 



What is  
 Toolkit for the Monte Carlo simulation of the interaction of 

particles with matter 
 physics processes (EM, hadronic, optical) cover a 

comprehensive set of particles, materials and over a wide 
energy range 

 offers a complete set of support functionalities (tracking, 
geometry) 

 Distributed software production and management: developed 
by an international Collaboration 
 Established in 1998 
 Approximately 100 members, from Europe, America and Asia 

 Written in C++ language 
 Takes advantage from the Object Oriented software technology 

 Open source 
 http://geant4.org 

S. Agostinelli et al., Nucl. Instr. Meth. A 506 (2003) 250 
J. Allison et al., IEEE Trans. Nucl. Scie. 53 (2006) 270 
J. Allison et al., Nucl. Instr. Meth. A 835 (2016) 186 
 



 Code and documentation available in the main 
web page 

 Regular tutorial courses held worldwide 

http://geant4.org 



versions and releases 
 First release (Geant4 1.0) in December 1998 

 ∼Two releases per year since then 
 Major releases (x.y) or minor releases (x.y) or beta 

releases 
 Patches regularly issued 

 Last version: Geant4 10.4 
 Released December 8th, 2017  
 Now patch 10.4.p02 (May 25th, 2018) 
 The VM used for this course has Geant4 10.4 

 Requires C++11 since 10.2 (gcc > 4.8.x) 
 Native C+11 features in-place (= compilation with old 

compilers fails) 



Basic concept of Geant4 



Toolkit and User Application  
 Geant4 is a toolkit (= a collection of tools) 

 i.e. you cannot “run” it out of the box 
 You must write an application, which uses Geant4 tools 

 
 Consequences: 

 There are no such concepts as “Geant4 defaults” 
 You must provide the necessary information to configure your 

simulation 
 You must deliberately choose which Geant4 tools to use 

 
 Guidance: many examples are provided 



Basic concepts 

 What you MUST do: 
 Describe your experimental set-up 
 Provide the primary particles input to your simulation 
 Decide which particles and physics models you want to use 

out of those available in Geant4 and the precision of your 
simulation (cuts to produce and track secondary particles) 
 

 You may also want  
 To interact with Geant4 kernel to control your simulation 
 To visualise your simulation configuration or results 
 To produce histograms, tuples etc. to be further analysed 



Main Geant4 capabilities 
 Transportation of a particle ‘step-by-step’ taking into 

account all possible interactions with materials and fields 
 The transport ends if the particle 

 is slowed down to zero kinetic energy (and it doesn't have 
any interaction at rest) 

 disappears in some interaction 
 reaches the end of the simulation volume 

 Geant4 allows the User to access the transportation 
process and retrieve the results (USER ACTIONS) 
 at the beginning and end of the transport  
 at the end of each step in transportation 
 if a particle reaches a sensitive detector 
 Others… 

 



Multi-thread mode 
 Geant4 10.0 (released Dec, 2013) supports multi-

thread approach for multi-core machines 
 Simulation is automatically split on an event-by-

event basis  
 different events are processed by different cores 

 Can fully profit of all cores available on modern 
machines  substantial speed-up of simulations 

 Unique copy (master) of geometry and physics 
 All cores have them as read-only (saves memory) 

 Backwards compatible with the sequential mode 
 The MT programming requires some care: need to 

avoid conflicts between threads  
 Some modification and porting required 



Concept for multi-thread … 
Master 

Workers 

Geometry Physics RunAction 

READONLY 

Primary 

RunAction 

EvtAction 

Primary 

RunAction 

EvtAction 

Primary 

RunAction 

EvtAction 



… vs. parallelisation 

Geometry 

Physics 

Primary 

RunAction 

EvtAction 

Primary 

RunAction 

EvtAction 

Primary 

RunAction 

EvtAction 

Geometry 

Physics 

Geometry 

Physics 

Nodes 

 Each node 
hosts a 
complete 
simulation 

 Many copies 
of geometry 
and physics 
tables 

 More memory-
thristy 



Interaction with the Geant4 
kernel - 1 

 Geant4 design provides tools for a user 
application 
 To tell the kernel about your simulation configuration  
 To interact with Geant4 kernel itself 

 
 Geant4 tools for user interaction are base 

classes 
 You create your own concrete class derived from 

the base classes  interface to the Geant4 kernel 
 Geant4 kernel handles your own derived classes 

transparently through their base class interface 
(polymorphism) 



Interaction with the Geant4 
kernel - 2 

 Abstract base classes for user interaction 
(classes starting with G4V) 
 User derived concrete classes are mandatory 
 User to implement the purely virtual methods 

 
 Concrete base classes (with virtual dummy 

default methods) for user interaction 
 User derived classes are optional  

Two types of Geant4 base classes: 



User Classes 
Initialisation classes 
Invoked at the initialization 

 

 G4VUserDetectorConstruction 
 G4VUserPhysicsList 

Action classes 
Invoked during the execution loop 
 

 G4VUserActionInitialization 
  G4VUserPrimaryGeneratorAction 
 G4UserRunAction (*) 
 G4UserEventAction 
 G4UserTrackingAction 
 G4UserStackingAction 
 G4UserSteppingAction 

Global: only one instance of 
them exists in memory, shared 
by all  threads (readonly).  
Managed only by the master 
thread. Local: an instance of each action 

class exists for each thread. 
(*) Two RunAction's allowed: one for 
master and one for threads 



The mandatory user classes 

Mandatory classes 
in ANY Geant4 User 

Application 

 G4VUserDetectorConstruction 
    describe the experimental set-up 

 G4VUserPhysicsList 
   select the physics you want to activate 

 G4VUserActionInitialization 
    takes care of the user initializations 
  G4VUserPrimaryGeneratorAction 

Will be described in detail in the next lectures 
(Tue-Wed) 



Optional user classes  
 Five concrete base classes whose virtual member functions 

the user may override to gain control of the simulation at 
various stages 
 G4UserRunAction 
 G4UserEventAction 
 G4UserTrackingAction 
 G4UserStackingAction 
 G4UserSteppingAction 
 

 Each member function of the base classes has a dummy 
implementation (not purely virtual) 
 Empty implementation: does nothing 
 Override only the methods that you need 

 User action classes must be registered to the Run Manager via 
the  G4VUserActionInizialization 

e.g. actions to be done 
at the beginning and 
end of each event 



The mandatory user classes 



The geometry 

 User class which describes the geometry must 
inherit from G4VUserDetectorConstruction 
and registered in the Run Manager 

 Virtual base class: the purely virtual method must 
be implemented 
 G4VPhysicalVolume* Construct() = 0; 

 Must return the pointer to the world volume: all other 
volumes are contained in it 

 Optionally, implement the virtual method  
 void ConstructSDandField(); 

 Defines sensitive volumes and EM fields 



Select physics processes 

 Geant4 doesn’t have any default particles or processes 
 Derive your own concrete class from the 
G4VUserPhysicsList abstract base class 
 define all necessary particles 
 define all necessary processes and assign them to proper 

particles 
 define γ/δ production thresholds (in terms of range) 

 Pure virtual methods of G4VUserPhysicsList 

must be implemented by the user 
in his/her concrete derived class 

ConstructParticles() 
ConstructProcesses() 
SetCuts() 



Action Initialization 
 User class must inherit from 
G4VUserActionInitialization and registered 
in the Run Manager 

 Implement the purely virtual method  
 void Build() = 0; 
 Invoked in sequential mode and in MT mode by all 

workers 
 Must instantiate at least the primary generator 

 Optional virtual method 
 void BuildForMaster(); 
 Invoked by the master in MT mode. Applies only to 

Run Action (all other user actions are thread-local) 
 

 



Primary generator 
 User class must inherit from 
G4VUserPrimaryGeneratorAction  
 Registered to the Run Manager via the 

ActionInizialitation (MT mode) 
 Register directly to the RunManager in seq-mode 

 Implement the purely virtual method  
 void GeneratePrimaries(G4Event*)=0; 
 Called by the RunManager during the event loop, to 

generate the primary vertices/particles 
 Uses internally a concrete instance of 
G4VPrimaryGenerator (e.g. G4ParticleGun) to 
do the job 
 
 
 

 
 



The main() program 



The main() program - 1 
 Geant4 does not provide the main() 

 Geant4 is a toolkit! 
 The main() is part of the user application 

 In his/her main(), the user must 
 construct G4RunManager (or his/her own derived class) 
 notify the G4RunManager mandatory user classes derived 

from 
 G4VUserDetectorConstruction 
 G4VUserPhysicsList 
 G4VUserActionInitialization (takes care of Primary) 

 In MT mode, use G4MTRunManager 



The main() program - 2 

 The user may define in his/her main() 
 optional user action classes 
 VisManager, (G)UI session 
 

 The user also has to take care of retrieving and 
saving the relevant information from the simulation 
(Geant4 will not do that by default) 
 

 Don’t forget to delete the G4RunManager at the end 



An example of (sequential) 
main() 

{ 
  … 
  // Construct the default run manager 
  G4RunManager* runManager = new G4RunManager; 
 
 

 // Set mandatory user initialization classes 
  MyDetectorConstruction* detector = new MyDetectorConstruction; 
  runManager->SetUserInitialization(detector); 
  MyPhysicsList* physicsList = new MyPhysicsList; 
  runManager->SetUserInitialization(myPhysicsList); 
 

  // Set mandatory user action classes 
  runManager->SetUserAction(new MyActionInitialization); 
 

  // Set optional user action classes 
  MyEventAction* eventAction = new MyEventAction(); 
   runManager->SetUserAction(eventAction); 
  MyRunAction* runAction = new MyRunAction(); 
   runManager->SetUserAction(runAction); 
  … 
} 



Documentation 
 A few manuals available in the Geant4 webpage 

 Application developer manual 
 Physics manual 
 

 Other tools available 
 LXR code repository 
 User forum 
 Bugzilla 
 GitHub code repo 
 

http://geant4.org 

https://github.com/Geant4 



Examples 
 Ready-for-the-use Geant4 applications (examples) 

are distributed with Geant4 
 Very good starting point for new users 

 Three suites of examples: 
 "basic": oriented to novice users and covering the most 

typical use-cases of a Geant4 application with keeping 
simplicity and ease of use. 

 "extended": covers many specific use cases for actual 
detector simulation. 

 "advanced": where real-life complete applications for 
different simulation studies are provided  

 See dedicated presentation on Friday 



Who/why is using Geant4? 



Experiments and MC 
 In my knowledge, all experiments have a (more 

or less detailed) full-scale Monte Carlo simulation  
 Design phase  

 Evaluation of background  
 Optimization of setup to maximize scientific yield  

 Minimize background, maximize signal efficiency 
 Running/analysis phase 

 Support of data analysis (e.g. provide efficiency for 
signal, background, coincidences, tagging, …). 
 Often, Monte Carlo is the only way to convert relative 

rates (events/day) in absolute yields 
 

 



Why Geant4 is a common 
choice in the market 

 Open source and object oriented/C++ 
 No black box  
 Freely available on all platforms 
 Can be easily extended and customized by using the 

existing interfaces 
 New processes, new primary generators, interface to ROOT 

analysis, … 
 Can handle complex geometries 
 Regular development, updates, bug fixes and 

validation 
 Good physics, customizable per use-cases 
 End-to-end simulation (all particles, including optical 

photons) 
 

 



LHC @ CERN 
 All four big LHC 

experiments have a 
Geant4 simulation 
 M of volumes 
 Physics at the TeV scale 

ATLAS 

CMS 

 Benchmark with 
test-beam data  

 Key role for the 
Higgs searches 



Space applications 
 Satellites (γ astrophysics, planetary sciences) 
 Funding from ESA 

AGILE 

GLAST Typical telescope: 
 Tracker 
 Calorimeter 
 Anticoincidence 



Nuclear spectroscopy 
 

56 
SCEPTAR 

TIGRESS 



 Treatment planning for 
hadrontherapy and proton-
therapy systems 
 Goal: deliver dose to the tumor 

while sparing the healthy tissues 
 Alternative to less-precise (and 

commercial) TP software 
 Medical imaging  
 Radiation fields from medical 

accelerators and devices 
 medical_linac 
 gamma-knife 
 brachytherapy 

 

Proton-therapy beam line 

GEANT4 simulation 

Medical applications 



Dosimetry with Geant4 

Space science Radiotherapy Effects on electronics 
components 



Geant4-based frameworks in 
the medical physics 

 

TOPAS 

PTSim 

GATE 



Backup 



Low background experiments 
Neutrinoless ββ 

decay: 
GERDA, Majorana 

COBRA, CUORE, EXO  

Dark matter detection: 
Zeplin-II/III, Drift, Edelweiss, ArDM, 

Xenon, CRESST, Lux, Elixir,  

Solar neutrinos: 
Borexino, ... 



How to cook up the laws of 
physics into a tracking 
algorithm 

(Bird's eye view) 



Particle tracking 
 Distance s between two subsequent interactions 

distributed as   

s  μ is a property of the medium 
(homogeneous) and of the physics 

 μ is proportional to the total cross 
section and depends on the density of 
the material 
 
  All competing processes contribute with their own μi 

 Each process takes place with probability μi/μ  i.e. 
proportionally to the partial cross sections 



Particle tracking: basic recipe 
 Divide the trajectory of the particle in "steps" 

 Straight free-flight tracks between consecutive physics 
interactions 

 Steps can also be limited by geometry boundaries 
 Decide the step length s, by sampling according to 

p(s)= μe-μs, with the proper μ (material+physics)  
 Decide which interaction takes place at the end of the 

step, according to μi/μ  
 Produce the final state according to the physics of the 

interaction (d2σ/dΩdE) 
 Update direction of the primary particle 
 Store somewhere the possible secondary particles, to be 

tracked later on 



Particle tracking: basic recipe 

 Follow all secondaries, until absorbed or leave volume 
 Notice: μ depends on energy (cross sections do!) 

s1 

γ, E 

s2 

γ, E1 

e-, E2 

s3 

γ, E3 

e-, E4 e-, E5 



Well, not so easy 
 This basic recipe works fine for γ-rays and other 

neutral particles (e.g. neutrons) 
 Not so well for e±: the cross section (ionization & 

bremsstrahlung) is very high, so the steps between 
two consecutive interactions are very small 
 CPU intensive: viable for low energies and thin material 

 Even worse: in each interaction only a small fraction 
of energy is lost, and the angular displacement is 
small 
 A lot of time is spent to simulate interactions having 

small effect 
 The interactions of γ are "catastrophics": large change 

in energy/direction 
 



Solution: the mixed Monte 
Carlo 

 Simulate explicitly (i.e. force step) interactions only 
if energy loss (or change of direction) is above 
threshold W0 
 Detailed simulation 
 "hard" interaction (like γ interactions) 

 The effect of all sub-threshold interactions is 
described statistically (= cumulatively) 
 Condensed simulation 
 "soft" interactions 

 Hard interactions occur much less frequently than 
soft interactions 
 Fully detailed simulation restored for W0=0 



Particle tracking: mixed recipe 

 Follow all secondaries, until absorbed or leave 
volume 

s1 (E) 

e-, E 

e-, E-w 

<w> = Sss1 

e-, E1 

s2 

e-, E2 

<w> = Sss2 

e-, E1-w e-, E3 

γ, E4 

s3 



Geometry 
 Geometry also enters into the tracking 

 A step can never cross a geometry boundary 
 Always stop the step when there is a boundary, 

then re-start in the new medium 
 Navigation in the geometry can be CPU-intensive 

 One must know to which volume each point (x,y,z) 
belongs to, and how far (and in which direction) is 
the closest boundary 

 Trajectories can be affected also by EM fields, for 
charged particles 
 



…luckily enough, somebody 
else already implemented the 
tracking algorithms for us 
(and much more) 



Particle tracking 
 μ is proportional to the total cross section 

and depends  on the density of the material 

s 
 All competing processes 

contribute with their own μi 
 Each process takes place with 

probability μi/μ  i.e. 
proportionally to the partial cross 
sections 



The mixed Monte Carlo 
 Has some technical tricks:  

 since energy is lost along the step due to soft 
interactions, the sampled step s cannot be too long 
(s < smax) 

 Parameter μh between hard collisions 
 
 
 
 

 Has μh << μ because the differential cross section is 
strogly peaked at low W (= soft secondaries) 

 Much longer step length 



The mixed Monte Carlo 
 Stopping power due to soft collisions (dE/dx) 

 
 
 
 

 Average energy lost along the step: <w>=sSs 
 Must be <w> << E 

 Fluctuations around the average value <w> 
have to be taken into account 
 Appropriate random sampling of w with mean 

value <w> and variance (straggling) 



Extended recipe 
1. Decide the step length s, by sampling according to 

p(s)= μhe-μ
h
s, with the proper μh 

2. Calculate the cumulative effect of the soft 
interactions along the step: sample the energy 
loss w, with <w>=sSs, and the displacement 

3. Update energy and direction of the primary 
particle at the end of the step E  E-w 

4. Decide which interaction takes place at the end of 
the step, according to μi,h/μh  

5. Produce the final state according to the physics 
of the interaction (d2σ/dΩdE) 
 
 
 



Applications in the rare-event 
physics  

Experiment backgrounds 
internal detector radioactivity 
rock radioactivity 
µ-induced neutron production 
shielding and veto systems 

Calibration 
Neutrons 
Gammas 

Optics 
Photon generation 
Light collection  

Detector response 
Scintillation 
Ionisation 

Simulated Data 
Visualisation 
Run-time analysis 
Input to data analysis software 

Geant4 is uniquely suited for 
integrated simulations of 

underground and low-background 
detectors (e.g. dark matter) 

A dedicated advanced example (underground_physics) 
is released with Geant4 (ZEPLIN experiment) 



Geant4-based frameworks in 
astroparticle/neutrino physics 

 Geant4 is a toolkit  can be used in software projects 
of wider scope 
 Flexibility in selecting geometries, physics, outputs, … 

 A few examples in astroparticle physics: 
 MaGe (GERDA/Majorana): double beta decay 
 LUXSim (LUX): dark matter and undeground experiments 
 DCGLG4sim (Double Chooz): liquid scintillator and reactor 

neutrinos 
 artG4 (FermiLab) 
 VENOM (COBRA): double beta decay 
 Just google "Geant4-based" 

 (Many more for HEP, space physics, medical physics) 



The mandatory user classes 



The geometry 

 User class which describes the geometry must 
inherit from G4VUserDetectorConstruction 
and registered in the Run Manager 

 Virtual base class: the purely virtual method must 
be implemented 
 G4VPhysicalVolume* Construct() = 0; 

 Must return the pointer to the world volume: all other 
volumes are contained in it 

 Optionally, implement the virtual method  
 void ConstructSDandField(); 

 Defines sensitive volumes and EM fields 



Select physics processes 

 Geant4 doesn’t have any default particles or processes 
 Derive your own concrete class from the 
G4VUserPhysicsList abstract base class 
 define all necessary particles 
 define all necessary processes and assign them to proper 

particles 
 define γ/δ production thresholds (in terms of range) 

 Pure virtual methods of G4VUserPhysicsList 

must be implemented by the user 
in his/her concrete derived class 

ConstructParticles() 
ConstructProcesses() 
SetCuts() 



Physics Lists 
 Geant4 doesn’t have any default particles or processes 
 Partially true: there is no default, but there are a set of 

"ready-for-use" physics lists released with Geant4, 
tailored to different use cases. Mix and match: 
 Different sets of hadronic models (depending on the 

energy scale and modeling of the interactions) 
 Different options for neutron tracking 

 Do we need (CPU-intensive) description of thermal neutrons, 
neutron capture, etc?  

 Different options for EM physics 
 Do you need (CPU-intensive) precise description at the low-

energy scale (< 1 MeV)? E.g. fluorescence, Doppler effects in the 
Compton scattering, Auger emission, Rayleigh diffusion 

 Only a waste of CPU time for LHC, critical for many low-
background experiments 



Action Initialization 
 New in Geant4 10.0 (supports multi-thread) 
 User class must inherit from 
G4VUserActionInitialization and registered in 
the Run Manager 

 Implement the purely virtual method  
 void Build() = 0; 
 Invoked in sequential mode and in MT mode by all 

workers 
 Must instantiate at least the primary generator 

 Optional virtual method 
 void BuildForMaster(); 
 Invoked by the master in MT mode. Applies only to Run 

Action (all other user actions are thread-local) 
 

 



Primary generator 
 User class must inherit from 
G4VUserPrimaryGeneratorAction  
 Registered to the Run Manager via the 

ActionInizialitation (MT mode) 
 Register directly to the RunManager in seq-mode 

 Implement the purely virtual method  
 void GeneratePrimaries(G4Event*)=0; 
 Called by the RunManager during the event loop, to 

generate the primary vertices/particles 
 Uses internally a concrete instance of 
G4VPrimaryGenerator (e.g. G4ParticleGun) to 
do the job 
 
 
 

 
 



The optional user classes 



Interplay between theory, 
simulation and experiments 

 



Examples 
 A webpage with doxygen documentation is 

available for the basic/extended examples 
 

http://cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/html 



Sequential vs. MT main() 
 The MT vs. sequential mode can be chosen in 

the main() by picking the appropriate 
RunManager: 
 G4RunManager for sequential 
 G4MTRunManager for multi-thread 

  // Construct the default run manager. Pick the proper run  
  // manager depending if the multi-threading option is  
  // active or not. 
#ifdef G4MULTITHREADED 
  G4MTRunManager* runManager = new G4MTRunManager; 
#else 
  G4RunManager* runManager = new G4RunManager; 
#endif 



General recipe for novice 
users 

 Design your application… requires some preliminar 
thinking (what is it supposed to do?) 

 Create your derived mandatory user classes 
 MyDetectorConstruction 
 MyPhysicsList 
 MyActionInitialization (must register MyPrimaryGenerator) 

 Create optionally your derived user action classes 
 MyUserRunAction, MyUserEventAction, … 

 Create your main() 
 Instantiate G4RunManager or your own derived MyRunManager 
 Notify the RunManager of your mandatory and optional user classes  
 Optionally initialize your favourite User Interface and Visualization 

 That’s all! 

Experienced users may do much 
more, but the conceptual 
process is still the same… 
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