
Interaction with the Geant4 kernel I

XV Seminar on Software for Nuclear,
Subnuclear and Applied Physiscs

Hotel Porto Conte, Alghero
27 May - 1 June 2018

Giada Petringa
(LNS-INFN)

�1

...User classes (continued)
At initialization At execution
G4VUserDetectorConstruction

G4VUserActionInitialization

G4UserSteppingAction

G4VUserPrimaryGeneratorAction

G4UserRunAction*

G4UserTrackingAction

G4UserStackingAction

G4UserEventAction

G4VUserPhysicsList

Global: only one instance exists in
memory, shared by all threads.

Local: an instance of each action
class exists for each thread.
(*) Two RunAction's allowed: one for master
and one for threads

�2

• Run, Event, Track, ...
– a word about multi-threading

• Optional user action classes
• Command-based scoring
• Analysis tools

�3

Contents

Part I: Run, Track, Event, ...

�4

Geant4 terminology: an overview

• The following keywords are often used
in Geant4

– Run, Event, Track, Step
– Processes: At Rest, Along Step, Post Step
– Cut (or production threshold)
– Worker / Master threads

�5

Run, Event and Tracks

• One Run consists of
– Event #1 (track #1, track #2,)
– Event #2 (track #1, track #2,)
–
– Event #N (track #1, track #2,)

Run
Event 0

Event 1

Event 2

Event 3

track 1 track 3track 2 track 4

track 1 track 3track 2

track 1

track 1 track 3track 2 track 4

�6

The Event (G4Event)
• An Event is the basic unit of simulation

• At the beginning of event, primary tracks are generated and they
are pushed into a stack

• Tracks are popped up from the stack one-by-one and ‘tracked’
– Secondary tracks are also pushed into the stack
– When the stack gets empty, the processing of the event is completed

• G4Event class represents an event. At the end of a successful
event it has:	
– List of primary vertices and particles (as input)
– Hits and Trajectory collections (as outputs)

�7

The Run (G4Run)
• As an analogy with a real experiment, a run of Geant4 starts with ‘Beam On’

• Within a run, the user cannot change
– The detector setup

– The physics setting (processes, models)

• A run is a collection of events with the same detector and physics conditions

• At the beginning of a run, geometry is optimised for navigation and cross section
tables are (re)calculated

• The G4(MT)RunManager	class manages the processing of each run, represented

by:
– G4Run class 	
– G4UserRunAction for an optional user hook

�8

The Track (G4Track)

• The Track is a snapshot of a particle and it is represented by the
G4Track class
– It keeps ‘current’ information of the particle (i.e. energy, momentum,

position, polarization, ..)
– It is updated after every step

• The track object is deleted when:
– It goes outside the world volume
– It disappears in an interaction (decay, inelastic scattering)
– It is slowed down to zero kinetic energy and there are no 'AtRest'

processes
– It is manually killed by the user

• No track object persists at the end of the event
• G4TrackingManager class manages the tracking	
• G4UserTrackingAction is the optional User hook

�9

G4Track status

• After each step the track can change its state
• The status can be (red can only be set by the User)

�10

The Step (G4Step)

• G4Step represents a step in the particle propagation	
• A G4Step object stores transient information of the

step
– In the tracking algorithm, G4Step is updated each time a

process is invoked (e.g. multiple scattering)
• You can extract information from a step after the

step is completed, e.g.
– in ProcessHits()	method of your sensitive detector
(later)

– in UserSteppingAction()	of your step action class
(later)

�11

The Step in Geant4
• The G4Step has the information about the two

points (pre-step and post-step) and the ‘delta’
information of a particle (energy loss on the
step,)

• Each point knows the volume (and the
material)
– In case a step is limited by a volume boundary, the

end point physically stands on the boundary and it
logically belongs to the next volume

�12

G4Step object

• A G4Step object contains

– The two endpoints (pre and post step) so one has access to the
volumes containing these endpoints

– Changes in particle properties between the points
• Difference of particle energy, momentum,
• Energy deposition on step, step length, time-of-flight, …

– A pointer to the associated G4Track object

– Volume hiearchy information
• G4Step provides many Get... methods to access these

information or objects	
– G4StepPoint*	GetPreStepPoint(),

�13

The geometry boundary

• To check, if a step ends on a boundary, one may compare if the
physical volume of pre and post-step points are equal

• One can also use the step status
– Step Status provides information about the process that restricted the

step length

– It is attached to the step points: the pre has the status of the previous
step, the post of the current step

– If the status of POST is fGeometryBoundary, the step ends on a
volume boundary (does not apply to word volume)

– To check if a step starts on a volume boundary you can also use the
step status of the PRE-step point

�14

Step concept and boundaries

�15

Example: boundaries

G4StepPoint*	preStepPoint	=	step	->	GetPreStepPoint();		
G4StepPoint*	postStepPoint	=	step	->	GetPostStepPoint();	

//	Use	the	GetStepStatus()	method	of	G4StepPoint	to	get	the	status	of	the	
//	current	step	(contained	in	post-step	point)	or	the	previous	step	
//	(contained	in	pre-step	point):	
if(preStepPoint	->	GetStepStatus()	==	fGeomBoundary)	{	
				G4cout	<<	"Step	starts	on	geometry	boundary"	<<	G4endl;				
}	
if(postStepPoint	->	GetStepStatus()	==	fGeomBoundary)	{		
				G4cout	<<	"Step	ends	on	geometry	boundary"	<<	G4endl;	
}	

//	You	can	retrieve	the	material	of	the	next	volume	through	the	
//	post-step	point:	
G4Material*	nextMaterial	=	step->GetPostStepPoint()->GetMaterial();

�16

Part II: Optional user action
classes

�17

Optional user action classes
• Five base classes with virtual methods the user may

override to step during the execution of the application

– G4UserRunAction	
– G4UserEventAction	
– G4UserTrackingAction	
– G4UserStackingAction	
– G4UserSteppingAction	

• Default implementation (not purely virtual): Do nothing
☺

• Therefore, override only the methods you need.

�18

Multi-threaded processing of events

Master thread Worker 1 Worker 2 Worker 3

G4Run (100 evts)

G4Run (33 evts) G4Run (33 evts)G4Run (34 evts)

G4Run::Merge()

Event 0 Event 33 Event 67

Event 32 Event 66 Event 99

...

Results Results Results

Results

�19

User actions in multi-threaded run

Master

Workers

Geometry Physics RunAction

READ ONLY

Primary

RunAction

EvtAction

Primary

RunAction

EvtAction

Primary

RunAction

EvtAction
�20

G4UserRunAction

�21

This class has three virtual methods which are invoked by G4RunManager for each run:

GenerateRun()
This method is invoked at the beginning of BeamOn. Because the user can inherit the
class G4Run and create his/her own concrete class to store some information about
the run, the GenerateRun() method is the place to instantiate such an object

BeginOfRunAction()
This method is invoked before entering the event loop. This method is invoked after
the calculation of the physics tables.

EndOfRunAction()
This method is invoked at the very end of the run processing. It is typically used for a
simple analysis of the processed run.

G4UserRunAction
G4Run*	GenerateRun()	

void	BeginOfRunAction(const	G4Run*)	

void	EndOfRunAction(const	G4Run*)

�22

This	method	should	be	used	to	instantiate	a	
user-specific	run	class	object

Likely	uses	of	this	method	include:	setting	a	
run	identification	number	–	histograms	–run	
conditions

G4UserEventAction

�23

This class has two virtual methods which are invoked by G4EventManager for each
event:

beginOfEventAction()
This method is invoked before converting the primary particles to G4Track
objects. A typical use of this method would be to initialize and/or book histograms
for a particular event.

endOfEventAction()
This method is invoked at the very end of event processing. It is typically used for a
simple analysis of the processed event.

G4UserEventAction

void	BeginOfEventAction(const	G4Event*)	

void	EndOfEventAction(const	G4Event*)

�24

This	method	is	invoked	before	converting	the	
primary	particles	to	G4Track	objects.

G4UserStackingAction

�25

This class has three virtual methods, ClassifyNewTrack, NewStage and PrepareNewEvent which the
user may override in order to control the various track stacking mechanisms.

ClassifyNewTrack() is invoked by G4StackManager whenever a new G4Track object is "pushed"
onto a stack by G4EventManager.

This value should be determined by the user.

G4ClassificationOfNewTrack has four possible values:
fUrgent - track is placed in the urgent stack
fWaiting - track is placed in the waiting stack, and will not be simulated until the urgent stack is empty
fPostpone - track is postponed to the next event
fKill - the track is deleted immediately and not stored in any stack.

These assignments may be made based on the origin of the track which is obtained as follows:
G4int parent_ID = aTrack->get_parentID();
where
parent_ID = 0 indicates a primary particle
parent_ID > 0 indicates a secondary particle
parent_ID < 0 indicates postponed particle from previous event.

G4UserEventAction

�26

NewStage() is invoked when the urgent stack is empty and the waiting stack
contains at least one G4Track object.

PrepareNewEvent() is invoked at the beginning of each event. At this point no
primary particles have been converted to tracks, so the urgent and waiting stacks
are empty.

G4UserStackingAction
G4ClassificationOfNewTrack	ClassifyNewTrack(const	
G4Track*)	

void	NewStage()	
void	PrepareNewEvent()	

Uses:
• Pre-selection of tracks (~manual cuts)
• Optimization of the order of track execution

�27

It is invoked by G4StackManager whenever a new G4Track
object is "pushed" onto a stack by G4EventManager.

G4UserSteppingAction

void	UserSteppingAction(const	G4Step*)	

Uses:
• Get information about particles
• Kill tracks under specific circumstances

�28

Part III: Command-based
scoring

�29

• Define a scoring mesh
/score/create/boxMesh <mesh_name>
/score/open, /score/close

• Define mesh parameters
/score/mesh/boxsize <dx> <dy> <dz>
/score/mesh/nbin <nx> <ny> <nz>
/score/mesh/translate,

• Define primitive scorers
/score/quantity/eDep <scorer_name>
/score/quantity/cellFlux <scorer_name>
currently 20 scorers are available

UI commands for scoring à no C++ required, apart from
accessing G4ScoringManager

• Define filters
/score/filter/particle <filter_name> <particle_list>
/score/filter/kinE <filter_name> <Emin> <Emax>
<unit>
 currently 5 filters are available

• Output
/score/draw <mesh_name> <scorer_name>
/score/dump, /score/list

Command-based scoring

https://geant4.web.cern.ch/geant4/UserDocumentation/UsersGuides/ForApplicationDeveloper/html/
AllResources/Control/UIcommands/_score_.html

int	main()	{	
				...	
				G4ScoringManager::GetScoringManager();	
				...	
}

�30

https://geant4.web.cern.ch/geant4/UserDocumentation/UsersGuides/ForApplicationDeveloper/html/AllResources/Control/UIcommands/_score_.html
https://geant4.web.cern.ch/geant4/UserDocumentation/UsersGuides/ForApplicationDeveloper/html/AllResources/Control/UIcommands/_score_.html

�31

Detached session:
g4analysis tools

�32

Geant4 analysis classes

• A basic analysis interface is available in Geant4
for histograms (1D and 2D) and ntuples

• Unified interface to support different output
formats
– ROOT, CSV, AIDA XML, and HBOOK
– Code is the same, just change one line to switch from

one to an other

• Everything is done using G4AnalysisManager	
– UI commands available

�33

g4analysis

• Selection of output format is performed by
including a proper header file:

#ifndef	MyAnalysis_h	
#define	MyAnalysis_h	1	

#include	"g4root.hh"	
//#include	"g4xml.hh"	
//#include	"g4csv.hh"		//	can	be	used	only	with	ntuples	

#endif

Advanced topic: It is possible to use more formats at the same time. See documentation.
�34

Histograms

�35

Open file and book histograms

#include	"MyAnalysis.hh"	

void	MyRunAction::BeginOfRunAction(const	G4Run*	run)		
{		
		//	Get	analysis	manager	
		G4AnalysisManager*	man	=	G4AnalysisManager::Instance();	
		man->SetVerboseLevel(1);	
		man->SetFirstHistoId(1);	

		//	Creating	histograms	
		man->CreateH1("h",	"Title",	100,	0.,	800*MeV);	
		man->CreateH1("hh",	"Title",	100,	0.,	10*MeV);	

	//	Open	an	output	file	
		man->OpenFile("myoutput");	
}	 Open output file

ID=1

ID=2

Start numbering of
histograms from ID=1

�36

#include	"MyAnalysis.hh"	

void	MyEventAction::EndOfEventAction(const	G4Run*	aRun)	
{	
		auto	man	=	G4AnalysisManager::Instance();	
		man->FillH1(1,	fEnergyAbs);	
		man->FillH1(2,	fEnergyGap);	
}	

MyRunAction::~MyRunAction()	
{	
		auto	man	=	G4AnalysisManager::Instance();	
		man->Write();		
}	

int	main()	
{	
		...	
		auto	man	=	G4AnalysisManager::Instance();	
		man->CloseFile();				
}

Fill histograms and write the file

ID=1

ID=2

�37

Ntuples
ParticleID Energy x y

0 99.5161753 -0.739157031 -0.014213165
1 98.0020355 1.852812521 1.128640204
2 100.0734469 0.863203688 -0.277949199
3 99.3508677 -2.063452685 -0.898594988
4 101.2505954 1.030581054 0.736468229
5 98.9849841 -1.464509417 -1.065372115
6 101.1547644 1.121931704 -0.203319254
7 100.8876748 0.012068917 -1.283410959
8 100.3013861 1.852532119 -0.520615895
9 100.6295882 1.084122362 0.556967258
10 100.4887681 -1.021971662 1.317380892
11 101.6716567 0.614222096 -0.483530242
12 99.1083093 -0.776034456 0.203524549
13 97.3595776 0.814378204 -0.690615126
14 100.7264612 -0.408732803 -1.278746667

�38

Ntuples support

• g4tools support ntuples
– any number of ntuples
– any number of columns
– supported types: int/float/double

• For more complex tasks (other functionality
of ROOT TTrees) have to link ROOT directly

�39

#include	"MyAnalysis.hh"	

void	MyRunAction::BeginOfRunAction(const	G4Run*	run)		
{		
		//	Get	analysis	manager	
		G4AnalysisManager*	man	=	G4AnalysisManager::Instance();	
		man->	SetFirstNtupleId(1);	

		//	Creating	ntuples	
		man->CreateNtuple("name",	"Title");	
		man->CreateNtupleDColumn("Eabs");	
		man->CreateNtupleDColumn("Egap");	
		man->FinishNtuple();	

		man->CreateNtuple("name2","title2");	
		man->CreateNtupleIColumn("ID");	
		man->FinishNtuple();	
}	

Book ntuples

ID=1

Start numbering of
ntuples from ID=1

ID=2

�40

Fill ntuples
• File handling and general clean-up as shown

for histograms

#include	"MyAnalysis.hh"	

void	MyEventAction::EndOfEventAction(const	G4Run*	aRun)	
{	
		G4AnalysisManager*	man	=	G4AnalysisManager::Instance();	
		man->FillNtupleDColumn(1,	0,	fEnergyAbs);	
		man->FillNtupleDColumn(1,	1,	fEnergyGap);	
		man->AddNtupleRow(1);		

		man->FillNtupleIColumn(2,	0,	fID);	
		man->AddNtupleRow(2);		

}

ID=1,
columns 0, 1

ID=2,
column 0

�41

• Concepts of run, event, step, track, particle
• User action classes
• Data output – g4tools

Conclusion

�42

�4347

More slides (back-up)...

�44

�45

Example: custom messengers
#include	<G4UImessenger.hh>	
#include	<G4UIcmdWithoutParameter.hh>	
#include	<G4UIdirectory.hh>	

class	HiMessenger	:	public	G4UImessenger	
{	
public:	
				HiMessenger()	{	
								_directory	=	new	G4UIdirectory("/hi/");	
								_command	=	new	G4UIcmdWithoutParameter("/hi/sayIt",	this);	
				}	

				void	SetNewValue(G4UIcommand*	command,	G4String	newValue)	{	
								if	(command	==	_command)	{	
												G4cout	<<	"Hi	there	:-)"	<<	G4endl;	
								}	
				}	
private:	
				G4UIdirectory*	_directory;	
				G4UIcmdWithoutParameter*	_command;	
};

Example: output to a text file

• a

#include	<fstream>	

class	SteppingAction	
{	
				//	...	
				std::ofstream	fout;	
};	

SteppingAction::SteppingAction()	:	fout("outfile.txt")	{	}	//	...	

void	SteppingAction::UserSteppingAction(const	G4Step*	aStep)	
{				
				G4Track*	theTrack	=	aStep->GetTrack();	
				G4double	edep	=	aStep->GetTotalEnergyDeposit();	
				G4double	kineticEnergy	=	theTrack->GetKineticEnergy();	
					
				//	The	output	
				fout	
						<<	"Energy	deposited--->"	<<		"	"	<<		edep	<<	"	"	
						<<	"Kinetic	Energy	--->"	<<	"		"	<<	kineticEnergy	<<	"	"	<<	G4endl;		
}

MT

�46

And even more slides...

�47

Histograms API (1)

• Support linear and log scales and irregular
bins

• CreateH2()	for 2D histograms

G4int	CreateH1(const	G4String&	name,	const	G4String&	title,	
																			G4int	nbins,	G4double	xmin,	G4double	xmax,	
																			const	G4String&	unitName	=	"none",	
																			const	G4String&	fcnName	=	"none",	
																			const	G4String&	binSchemeName	=	"linear");

G4int	CreateH1(const	G4String&	name,	const	G4String&	title,	
																			const	std::vector<G4double>&	edges,	
																			const	G4String&	unitName	=	"none",	
																			const	G4String&	fcnName	=	"none");

�48

Histograms API (2)

• You can change parameters of an existing histogram
• You can fill with a weight
• Methods to scale, retrieve, get rms and mean

G4bool	SetH1Title(G4int	id,	const	G4String&	title);	
G4bool	SetH1XAxisTitle(G4int	id,	const	G4String&	title);	
G4bool	SetH1YAxisTitle(G4int	id,	const	G4String&	title);	
		
G4bool	FillH1(G4int	id,	G4double	value,	G4double	weight	=	1.0);	

G4bool	ScaleH1(G4int	id,	G4double	factor);	

G4int	GetH1Id(const	G4String&	name,	G4bool	warn	=	true)	const;	
				

�49

Introduction: data analysis with
Geant4

• For a long time, Geant4 did not attempt to provide/
support any data analysis tools
– The focus was given (and is given) to the central mission as

a Monte Carlo simulation toolkit
– As a general rule, the user is expected to provide her/his

own code to output results to an appropriate analysis format
• Basic classes for data analysis have recently been

implemented in Geant4 (g4analysis)
– Support for histograms and ntuples
– Output in ROOT, XML, HBOOK and CSV (ASCII)
– Appropriate only for easy/quick analysis: for advanced tasks,

the users must write their own code and to use an external
analysis tool

�50

Introduction: how to write simulation
results

• Formatted (= human-readable) ASCII files
– Simplest possible approach is comma-separated values

(.csv) files
– The resulting files can be opened and analyzed by tools

such as: Matlab, Python, Excel, ROOT, Gnuplot, OpenOffice,
Origin, PAW, …

• Binary files with complex analysis objects (Ntuples)
– Allows to control what plot you want with modular choice of

conditions and variables
• Ex: energy of electrons knowing that (= cuts): (1) position/location,

(2) angular window, (3) primary/secondary …
– Tools: Root , PAW, AIDA-compliant (PI, JAS3 and

OpenScientist) �51

Output stream (G4cout)

• G4cout is a iostream object defined by Geant4. 	
– Used in the same way as standard std::cout		
– Output streams handled by G4UImanager
– G4endl	is the equivalent of std::endl	to end a line	

• Output strings may be displayed in another window
(Qt GUI) or redirected to a file

• You can also use the file streams (std::ofstream)
provided by the C++ libraries

MT

�52

Example: Output on screen

• a

void	SteppingAction::UserSteppingAction(const	G4Step*	aStep)	
{	
				//	Collect	data	
				G4Track*	theTrack	=	aStep->GetTrack();	
				G4DynamicParticle*	particle	=	theTrack->GetDynamicParticle();	
				G4ParticleDefinition*	parDef	=	particle->GetDefinition();	
		
				G4double	edep	=	aStep->GetTotalEnergyDeposit();	
				G4double	particleCharge	=	particle->GetCharge();	
				G4double	kineticEnergy	=	theTrack->GetKineticEnergy();	
					
				//	The	output	
				G4cout	
						<<	"Energy	deposited--->"	<<		"	"	<<		edep	<<	"		
						<<	"Charge--->"	<<		"	"	<<	particleCharge	<<	"	"	
						<<	"Kinetic	Energy	--->"	<<	"		"	<<	kineticEnergy	<<	"	"	<<	G4endl;		
}

�53

Output on screen – an example
Begin	of	Event:	0	

Energy	deposited--->	9.85941e-22	Charge--->	6	Kinetic	energy--->	160	
Energy	deposited--->	8.36876					Charge--->	6	Kinetic	energy--->	151.631	
Energy	deposited--->	8.63368					Charge--->	6	Kinetic	energy--->	142.998	
Energy	deposited--->	5.98509					Charge--->	6	Kinetic	energy--->	137.012	
Energy	deposited--->	4.73055					Charge--->	6	Kinetic	energy--->	132.282	
Energy	deposited--->	0.0225575			Charge--->	6	Kinetic	energy--->	132.254	
Energy	deposited--->	1.47468					Charge--->	6	Kinetic	energy--->	130.785	
Energy	deposited--->	0.0218983			Charge--->	6	Kinetic	energy--->	130.76	
Energy	deposited--->	5.22223					Charge--->	6	Kinetic	energy--->	125.541	
Energy	deposited--->	7.10685					Charge--->	6	Kinetic	energy--->	118.434	
Energy	deposited--->	6.62999					Charge--->	6	Kinetic	energy--->	111.804	
Energy	deposited--->	6.50997					Charge--->	6	Kinetic	energy--->	105.294	
Energy	deposited--->	6.28403					Charge--->	6	Kinetic	energy--->	99.0097	
Energy	deposited--->	5.77231					Charge--->	6	Kinetic	energy--->	93.2374	
Energy	deposited--->	5.2333						Charge--->	6	Kinetic	energy--->	88.0041	
Energy	deposited--->	3.9153						Charge--->	6	Kinetic	energy--->	84.0888	
Energy	deposited--->	14.3767					Charge--->	6	Kinetic	energy--->	69.7121	
Energy	deposited--->	14.3352					Charge--->	6	Kinetic	energy--->	55.3769

�54

