

Physics Particles and Physics lists

G. Petringa (LNS-INFN)

XV Seminar on Software for Nuclear, Sub-Nuclear and Applied Physics Alghero, Italy 27.05.2018 - 1.06.2018

2

- o Particles
- o Processes
- o Tracking
- o Cuts
- o Physics lists

User classes

Particles and Processes

Particles: basic concepts

There are three levels of class to describe particles in Geant4:

G4ParticleDefinition

Particle static properties: name, mass, spin, PDG number, etc.

G4DynamicParticle

Particle dynamic state: energy, momentum, polarization, etc.

G4Track

Information for tracking in a detector simulation: position, step, current volume, track ID, parent ID, etc.

Particles: common hadrons & ions table

Particle name	Class name	Name (in GPS)	PDG	
(anti)proton	G4Proton	proton	2212	
	G4AnitProton	anti_proton	-2212	
(anti)neutron	G4Neutron	neutron	2112	
	G4AntiNeutron	anti_neutron	-2112	
(anti)lambda	G4Lambda	lambda	3122	
	G4AntiLambda	anti_lambda	-3122	
pion	G4PionMinus	pi-	-211	
	G4PionPlus	pi+	211	
	G4PionZero	pi0	111	
kaon	G4KaonMinus	kaon-	-321	
	G4KaonPlus	kaon+	321	
	G4KaonZero	kaon0	311	
	G4KaonZeroLong	kaon0L	130	
	G4KaonZeroShort	kaon0S	310	
(anti)alpha	G4Alpha	alpha	1000020040	
	G4AntiAlpha	anti_alpha	-1000020040	
(anti)deuteron	G4Deteuron	deuteron	1000010020	
	G4AntiDeuteron	anti_deuteron	-1000010020	
Heavier ions	G4lons	ion	100ZZZAAAI*	

*ZZZ=proton number, AAA=nucleon number, I=excitation level

Processes: basic concepts

How do particles interact with materials?

Responsibilities:

- 1. decide when and where an interaction occurs
 - GetPhysicalInteractionLength...()

 \rightarrow limit the step

- this requires a cross section
- for the transportation process, the distance to the nearest object
- 2. generate the final state of the interaction
 - changes momentum, generates secondaries, etc.)
 - method: Dolt...()
 - this requires a model of the physics

G4VProcess class

- 8
 - Physics processes describe HOW particles interact with material
 - Are derived from G4VProcess base class
 - Abstract class defining the common interface of all processes in Geant4, used by all physics processes

Tracking and Cuts

Tracking: basic concepts

10

- G4Track keeps current information of the particle and has static information
- G4Track keeps information at the beginning of the step. After finishing all AlongStepDolts, G4Track is updated. It is updated after each invocation of a PostStepDolt.
- All Geant4 processes, including the transportation of particles, are treated generically. In spite of the name "*tracking*", particles are not *transported* in the tracking category.

Tracking Verbosity

UI command: /tracking/verbose 1

* G4Track Information: Particle = gamma, Track ID = 1, Parent ID = 0											

Step#	X(mm)	Y(mm)	Z (mm)	KinE(MeV)	dE (MeV)	StepLeng	TrackLeng	NextVolume	ProcName		
0	47.4	-53	-150	6	0	0	0	Envelope	initStep		
1	47.4	-53	-58	0.844	0	92	92	Envelope	compt		
2	-46	15.9	5.55	0.47	0	132	224	Envelope	compt		
3	-100	6.37	-3.62	0.47	0	55.6	280	World			
Transportation											
4	-120	2.84	-7.02	0.47	0	20.6	301	OutOfWorld			
Transportation											

* G4Track Information: Particle = e-, (Track ID = 3,) Parent ID = 1											

Step#	X(mm)	Y (mm)	Z (mm)	KinE(MeV)	dE (MeV)	StepLeng	TrackLeng	NextVolume	ProcName		
0	-46	15.9	5.55	0.375	0	0	0	Envelope	initStep		
1	-46.1	16.4	5.98	0.0482	0.327	1.16	1.16	Envelope	eIoni		
2	-46.1	16.3	5.98	0	0.0482	0.0408	1.2	Envelope	eIoni		

Production cuts: basic concepts

You can set a "range" production threshold

- this threshold is a distance, not an energy
- default = 1 mm

• Particles unable to travel at least the range cut value are not produced

Production threshold is internally converted to the energy threshold W₀, depending on particle type and material

Effective energy threshold is different in each material

Cut in range: an example

Cuts: UI Commands

14

Universal cut (whole world, all particles)
/run/setCut 10 mm

Override low-energy limit
/cuts/setLowEdge 100 eV

Set cut for a specific particle (whole world)
/run/setCutForAGivenParticle gamma 0.1 mm

Set cut for a region (all particles)
/run/setCutForARegion myRegion 0.01 mm

Print a summary of particles/regions/cuts
/run/dumpCouples

Physics - the challenge

- Huge amount of different processes for various purposes (only a handful relevant)
- Competing descriptions of the same physics phenomena (necessary to choose)
 - fundamentally different approaches
 - balance between speed and precision
 - different parameterizations
- Hypothetical processes & exotic physics

Solution: Atomistic approach with modular physics lists

Physics models: basic concepts

17

There are currently 28 "packaged" physics lists available

• but you will likely interested in only a few, namely the "reference physics lists"

O many physics lists are either developmental or cutomized in some way, and so not very useful to new users

Reference physics lists

- QGSP_BERT, QGSP_BERT_EMV, QGSP_BERT_HP, QGSP_BIC, FTFP_BERT, LBE, LHEP
- plus a few more

Conventional Physics List

- 18
- Two families of builders for the high-energy part
- **QGS**, or list based on a model that use the Quark Gluon String
- model for high energy hadronic interactions of protons, neutrons, pions and kaons
- **FTF**, based on the FTF (FRITIOF like string model) for protons, neutrons, pions and kaons
- Three families for the cascade energy range
- **BIC**, binary cascade
- **BERT**, Bertini cascade
- **INCLXX**, Liege Intranuclear cascade model

New Model: ParticleHP

Data based on TENDL-2014 (charged particles) and ENDFVII.r1 (neutrons).

Physics lists

- 20
- One instance per application
 - registered to run manager in main()
 - inheriting from G4VUserPhysicsList
- Responsibilities
 - all particle types (electron, proton, gamma, ...)
 - all processes (photoeffect, bremsstrahlung, ...)
 - all process parameters (...)
 - production cuts (e.g. 1 mm for electrons, ...)

3 ways to get a physics list

1) Manual: Specify all particles & processes that may occur in the simulation. (difficult)

2) Physics constructors: Combine your physics from pre-defined sets of particles and processes.
Still you define your own class – modular physics list (easier)

3) Reference physics lists: Take one of the predefined physics lists. You don't create any class (easy)

22

G4VUserPhysicsList class

Implement 3 methods:

Advantage: most flexible Disadvantages:

- most verbose
- most difficult to get right

23

G4VUserPhysicsList: implementation

ConstructParticle():

 choose the particles you need in your simulation, define all of them here

ConstructProcess() :

 for each particle, assign all the physics processes relevant to your simulation

SetCuts() :

 set the range cuts for secondary production for processes with infrared divergence

24

G4VModularPhysicsList

 Similar structure as G4VUserPhysicsList (same methods to override – though not necessary):

```
class MyPhysicsList : public G4VModularPhysicsList {
  public:
    MyPhysicsList(); // define physics constructors
    void ConstructParticle(); // optional
    void ConstructProcess(); // optional
    void SetCuts(); // optional
}
```

Differences to "manual" way:

- Particles and processes typically handled by physics constructors (still customizable)
- Transportation automatically included

25

Physics constructor

= "module" of the modular physics list

- Inherits from G4VPhysicsConstructor
- Defines ConstructParticle() and ConstructProcess()
 - to be fully imported in modular list (behaving in the same way)
- GetPhysicsType()
 - enables switching physics of the same type, if possible (see next slide)

. . .

26

Physics constructors

- Huge set of pre-defined ones
 - EM: Standard, Livermore, Penelope
 - Hadronic inelastic: QGSP_BIC, FTFP_Bert,
 - Hadronic elastic: G4HadronElasticPhysics,
 - -... (decay, optical physics, EM extras, ...)
- You can implement your own (of course) by inheriting from the G4VPhysicsConstructor class

27

Replace physics constructors

You can **add** or **remove** the physics constructors after the list instance is created:

- e.g. in response to UI command
- only before initialization
- physics of the same type can be replaced

```
void MyModularList::SelectAlternativePhysics() {
    AddPhysics(new G4OpticalPhysics);
    RemovePhysics(fDecayPhysics);
    ReplacePhysics(new G4EmLivermorePhysics);
}
```


28

SetCuts()

 Define all production cuts for gamma, electrons and positrons

Recently also for protons

Notice: this is a production cut, not a tracking cut

29

Reference physics lists

- Pre-defined physics lists
 - already containing a complete set of particles
 & processes (that work together)
 - targeted at specific area of interest (HEP, medical physics, ...)
 - constructed as modular physics lists, built on top of physics constructors
 - customizable (by calling appropriate methods before initialization)

Lists of reference physics lists

Source code: \$G4INSTALL/source/physics_lists/lists

FTF BIC.hh FTFP BERT.hh FTFP BERT HP.hh FTFP BERT TRV.hh FTFP INCLXX.hh FTFP INCLXX HP.hh G4GenericPhysicsList.hh QGS BIC.hh G4PhysListFactoryAlt.hh G4PhysListFactory.hh

G4PhysListRegistry.hh G4PhysListStamper.hh INCLXXPhysicsListHelper.hh QGSP BIC HP.hh LBE.hh NuBeam.hh OBBC.hh OGSP BERT.hh QGSP BERT HP.hh

QGSP BIC AllHP.hh QGSP BIC.hh OGSP FTFP BERT.hh QGSP INCLXX.hh OGSP INCLXX HP.hh Shielding.hh

link to the task: http://geant4.lngs.infn.it/alghero2018/task3/index.html

Task 3 - Physics and Physics Lists

Processes and particles
Physics constructors
Physics lists
Production and cuts