

cherenkov telescope array

The IFAE/UAB Raman LIDAR for the CTA-North

AtmoHEAD 2018

Markus Gaug IEEC-CERES Universitat Autònoma de Barcelona

O. Blanch (IFAE-BIST), M. Çolak (IFAE-BIST), M. Doro (Univ. Padova&INFN), Ll. Font (UAB&IEEC-CERES), C. Maggio (UAB&IEEC-CERES), M. Martinez (IFAE-BIST), Ò. Martinez (IFAE-BIST), P. Munar-Adrover (UAB&IEEC-CERES), V. Da Deppo (CNR Padova)

for the CTA Consortium (see www.cta-observatory.org)

Outline

- CTA atmospheric characterization of observed fields-of-view
- The design of the IFAE/UAB Raman LIDAR
- First commissioning results
- Future plans

Atmospheric characterization of the observed line-of-sightved by CTA

Requirements for systematic uncertainties on energy scale, due to atmospheric effects, are very ambitious

Part	currently achieved	goal for CTA	comments	
Simulation codes	5%	1-2%	MC working group	
Simplifications in MC	2%	2%		
Cherenkov light creation	5%	2%	mainly molecular profile	
Ozone absorption	3%	1%	Potential vorticity, spectrometer	
Molecular extinction	2%	1%	Radio sondes and GDAS	
Cirrus layers extinction	5-10%	1-2%	Raman LIDARs and FRAM	
Boundary layer extinction	5-10%	1-2%	Raman LIDARs and FRAM	
Scattered Cherenkov light	<1%	<2%		
Markus Gaug, IEEC-CERES, Universitat				

Requirements for systematic uncertainties on energy scale, due to atmospheric effects, are very ambitious

Part	currently achieved	goal for CTA	comments
Simulation codes	5%	1-2%	MC working group
Simplifications in MC	2%	2%	
Cherenkov light creation	5%	2%	mainly molecular profile
Ozone absorption	3%	1%	Potential vorticity, spectrometer
Molecular extinction	2%	1%	Radio sondes and GDAS
Cirrus layers extinction	5-10%	1-2%	Raman LIDARs and FRAM
Boundary layer extinction	5-10%	1-2%	Raman LIDARs and FRAM
Scattered Cherenkov light 20/9/18		<2% -CERES, Universitat ona, AtmoHEAD 2018	5

Introduction to CTA

Introduction to CTA

7

Characterization of observed field-of-view

Need to continuously characterize:

- 1. The profile from ground to 25 km distance
 - GDAS/ECMWF (see P. Munar, Monday)
 - Raman LIDARs

IFAE/UAB LIDAR

FRAM

LUPM LIDAR

CEILAP LIDAR

- 2. The extension of clouds across the FOV of 10°, determination of time slots with equal atm. conditions
 - FRAM (see P. Janecek, Tuesday)
- 3. For cross-checks:
 - The Cherenkov
 Transparency Coefficient
 (see S. Stefanik, Tuesday)

Characterization of observed field-of-view

Need to continuously characterize:

- 1. The profile from ground to 25 km distance
 - GDAS/ECMWF
 - Domon LIDADo

Instruments and analysis algorithms determine:

2. The e acros acros dete slots
Intervals of stable atmospheric conditions
Corrections for the Instrument Response Funtions
Associated statistical and syst. uncertainties

conditions

- FRAM
- 3. For cross-checks:
 - The Cherenkov Transparency Coefficient

CEILAP LIDAR

LUPM LIDAR

Correction of the instrument IRF

20/9/18

Requirements for a CTA Raman LIDAR

Need to continuously characterize:

- 1. The profile from ground to 25 km distance
 - Raman LIDARs
- 2. The extension of clouds across the FOV of 10°, determination of time slots under equal conditions
 - FRAM
- 3. For cross-checks:
 - The Cherenkov
 Transparency
 Coefficient

- Full characterization of the atmosphere up to 25 km distance, within 1 minute with Raman capabilities.
- Full sky coverage up to 60° zenith angle.
- At least 2 lines within sensitive window of the CTA photo-detectors
- Characterization of ground-layer aerosols
- Low distance to full overlap range
- Inclusion to CTA internal communication
- OPC-UA compatible communication, standard CTA states
 - Low maintenance and failure rates
 - Safe operation

Chosen solution for the IFAE/UAB design (Cta

Need to continuously characterize:

1. The profile from ground to 25 km distance

• Raman LIDARs

- Recycle former CLUE telescope and container 1.8 m (!) parabolic mirror
- 2 + 2 configuration:
 - **355** nm + **532** nm elastic lines
 - 387 nm + 607 nm N₂ Raman lines
- Laser: Brilliant Compact Q-Switched Nd:YAG 1064nm + frequency tripler head Rate: 20 Hz Pulse: 5 ns Beam divergence: 0.5 mrad
- Dichroic guiding mirrors ightarrow coaxial
- Polychromator in-house
 - Acquisition: standard LICEL units
 - Dedicated near-range optics and readout

Chosen solution for the IFAE/UAB design

Chosen solution for the IFAE/UAB design

Chosen solution for the IFAE/UAB design Polychromator

(Cta

Chosen solution for the IFAE/UAB design Polychromator

(cta

Chosen solution for the IFAE/UAB design Polychromator

Link budget study for sensitivity

- Sensitivity is limited by the two Raman lines
- Should reach 15 km within less than one minute

Markus Gaug, IEEC-CERES, Universitat Autònoma de Barcelona, AtmoHEAD 2018

"First light" results

Currently reach within 50 seconds and 10 Hz trigger rate:

- 40 km with elastic lines
- 10 km with 387 nm Raman lines

Sensitivity can be further improved by:

- Raising laser
 frequency to 20 Hz
- Cleaning the primary mirror

Markus Gaug, IEEC-CERES, Universitat Autònoma de Barcelona, AtmoHEAD 2018

Full overlap is reached at ≈150 m:

- for elastic lines with reduced gain
- for all Raman lines

Sensitivity to the near field can be further improved by:

 Dedicated near-range optics and readout (in preparation)

Markus Gaug, IEEC-CERES, Universitat Autònoma de Barcelona, AtmoHEAD 2018

"First light" results

Full overlap is reached at ≈150 m:

- for elastic lines with reduced gain
- for all Raman lines

Sensitivity to the near field can be further improved by:

 Dedicated near-range optics and readout (in preparation)

Very low quantum efficieny of 607 nm PMT still!

Location of the ORM

22

Conclusions

- During operation of CTA need to characterize the line-of-sight, across a 10° field-of-view.
- Requirements on systematic uncertainties are very ambitious, in order to make CTA a precision tool.
- Large aperture Raman LIDAR with powerful laser
- Basic design works now !
- Commissioning work still ongoing (part of it will be carried out at La Palma in 2019)

cherenkov telescope array

Backup

Architecture of control software

PMT characterization

- 4 PMTs needed in the polychromator: -2 for the elastic channels (355nm and 532nm)
 -2 for the Raman channels (387nm and 607nm)
- 4 Hamamatsu R11920-100 high quantum efficiency PMTs available: ZQ6623, ZQ5819, ZQ6627, ZQ6622

C = QE x HV-dependent-gain

Orito, R. 2011, International Cosmic Ray Conference, 9, 170

Experimental setup

 \rightarrow use of a calibrated Newport 818-UV PIN photodiode

→ V=1200V (chosen arbitrarily)

Setup of the Experiment

Characterization of the polychromator response

Status prototype

Mirror characterized

Hardware

- Liquid light guide characterized
- Guiding mirrors (dichroic)

Design of the guiding mirrors

Transmission vs. wavelength

(see Bc thesis Eudald Font Pladevall)

Status prototype

Mirror characterized

Hardware

Liquid light guide characterized

Ouput angle vs. input angle

(see PhD thesis Alicia López Oramas)

Transmission vs. wavelength

Hardware Status prototype

Mirror characterized (using different methods)

Fraction of focused light falling into a circle with radius x from an artificial "star" located at 65 m from the telescope.

(Reflectivity was 64% at 350 nm at that time).

(see PhD thesis Alicia López Oramas)