MOLECULAR PROFILES ABOVE THE CTA SITES

Pere Munar-Adrover & Markus Gaug for the CTA Consortium

(<u>www.cta-observatory.org</u>) Universitat Autònoma de Barcelona <u>pere.munar@uab.cat</u>

P. Munar-Adrover

AtmoHEAD 2018 Meeting

Anacapri 23-09-2018

CLA

P. Munar-Adrover

P. Munar-Adrover

AtmoHEAD 2018 Meeting

2

P. Munar-Adrover

- Observe Cherenkov light from particle cascades
- Use atmosphere as calorimeter
 - Molecular content and aerosols affect transmission of Cherenkov light
 - Need for good characterization

Anacapri 23-09-2018

COMPARED GLOBAL DATA ASSIMILATION MODELS

- GDAS Final analysis
- ECMWF ERA-Interim

Study density profiles at different heights, select the best model and to check wether a single epoch was enough to describe the atmosphere

MERRA-2
CFRS
Their reanalysis do not cover recent years

THE GDAS MODEL

- Model goes from 0 to 25 km with 26 pressure levels. 4 values per day for each variable
- The NCEP final analysis (GDAS) models can be downloaded from the web: <u>ftp://arlftp.arlhq.noaa.gov/pub/archives/gdas1/</u>
 - Not a reanalysis
- Downloading all data means about 2.4 GB per month
- A fortran code then allows to pick the corresponding grid point (on a 1° grid)
 - Python script to select and download GDAS final analysis location specific data (2.5 Mb per month)
 - Many parameters available
- Grib files need to be read just once (slow to read. Python pygrib). We then transform to dataframe files

THE ECMWF MODEL

- Model goes from 0 to 50 km with 37 pressure levels and many parameters available (wind dir., rel. humidity, vorticity, T...). 4 values per day for each variable
- The ECMWF ERA Interim (reanalysis) data can be downloaded from:
 - https://www.ecmwf.int/en/research/climate-reanalysis/era-interim
- Registration on ECMWF needed
- The web server allows to pick the corresponding grid point (on a 0.75° grid)
- Downloading, once selected for La Palma or Paranal site, means about 7 Mb per month (done with a python script; only works with python 3.5)
- Grib files need to be read just once (slow to read. Python pygrib). We then transform to dataframe files

GDAS vs ECMWF

Table 1: Data assimilation systems overview

	ERA-Interim	GDAS
Availability	1979 - present	2006 - present
Grid spacing	0.75°	1.0°
Temporal resolution	6 h	6 h
Selected dataset time span	2012/01 - 2016/12	2012/01 - 2016/12
Closest grid point North	28.5°N 18.0°W	29.0°N 18.0°W
Closest grid point South	24.75°S 70.5°W	25.0°S 70.0°W
Pressure levels	37	26

CHECKS ON THE MODEL

- Analyzed 5 years of data: from 2012-01-01 to 2016-12-31
- Compared to atmospheric models used in latest CTA instrument simulations (PROD3)
- Compared North and South sites density at 15 km a.s.l. where seasonal variations are largest
- Always selected data with good weather conditions: RH < 90% and low wind conditions on ground level
- Produced input files for simulations package (CORSIKA)

ECMWF NORTH SITE

- 2012 to 2016 density at 15 km. We define 3 seasonal periods (W, S, I)
- Winter: Jan, Feb, Mar, Apr, 15-30 Nov, Dec
- Summer: 20 Jun, Jul, Aug,
 I-15 Sep
- Intermediate: May, I-19 Jun, 15-30 Sep, I-15 Nov
 - October is a complicated month

ECMWF NORTH SITE

- Averaged density over time for every height level
- Thick error bars represent standard deviation of the distribution
- Thin error bars represent peak to peak extremes
- Seasonal variations clearly visible above 12 km

ECMWF NORTH SITE

Relative difference w.r.t. PROD3

P. Munar-Adrover

NORTH SITE

Relative difference between ECMWF and GDAS

Small up to 20 km

GDAS not optimal for stratosphere

ECMWF SOUTH SITE

- 2012 to 2016 density at 15 km. We define 2 seasonal periods (W, S)
- Winter: 15-31 May, Jun, Jul, Aug, Sept, 1-15 Oct
- Summer: Jan, Feb, March, I-15May, 15-31 Oct, Nov, Dec
- Less amplitude than in North

ECMWF SOUTH SITE

- Averaged density over time for every height level
- Thick error bars represent standard deviation of the distribution
- Thin error bars represent peak to peak extremes
- Seasonal variations clearly visible above 10 km

ECMWF SOUTH SITE

Relative difference w.r.t. PROD3

P. Munar-Adrover

NORTH SITE

Relative difference between ECMWF and GDAS

Bigger than in the North

Less coverage by radio-sondes

ECMWF CORSIKA INPUT FILE

Produced Corsika input file

- For each site
- For each epoch
- For extreme values in the density profiles

Produce MC and check differences between epochs in reconstructed E, among other quantities Table 1: Example of Corsika input file. South summer

Altitude	ρ	thick	n-1	Т	Р	pw / p
[km]	$[g/cm^3]$	$[g/cm^2]$		[K]	[mbar]	
0.0	1.18×10^{-3}	1.03×10^3	2.75×10^{-4}	2.98×10^2	1.01×10^3	2.31×10^{-2}
1.0	1.07×10^{-3}	$9.18 imes 10^2$	2.49×10^{-4}	2.93×10^2	9.00×10^2	1.80×10^{-2}
2.0	9.58×10^{-4}	$8.17 imes 10^2$	2.23×10^{-4}	2.91×10^2	$8.01 imes 10^2$	1.32×10^{-2}
3.0	8.63×10^{-4}	7.27×10^2	2.01×10^{-4}	2.88×10^2	$7.13 imes 10^2$	6.55×10^{-3}
4.0	$7.79 imes 10^{-4}$	$6.45 imes 10^2$	1.82×10^{-4}	$2.83 imes 10^2$	$6.33 imes 10^2$	3.16×10^{-3}
5.0	$7.06 imes 10^{-4}$	$5.71 imes 10^2$	1.65×10^{-4}	$2.76 imes 10^2$	$5.60 imes 10^2$	4.06×10^{-3}
6.0	$6.38 imes 10^{-4}$	$5.04 imes 10^2$	1.49×10^{-4}	$2.70 imes 10^2$	$4.95 imes 10^2$	1.49×10^{-3}
7.0	$5.76 imes 10^{-4}$	4.44×10^2	1.35×10^{-4}	$2.63 imes 10^2$	$4.35 imes 10^2$	6.38×10^{-4}
8.0	$5.19 imes 10^{-4}$	$3.90 imes 10^2$	1.21×10^{-4}	$2.56 imes 10^2$	$3.82 imes 10^2$	9.75×10^{-4}
9.0	4.66×10^{-4}	3.41×10^2	1.09×10^{-4}	$2.49 imes 10^2$	$3.34 imes 10^2$	1.06×10^{-3}
10.0	$4.19 imes 10^{-4}$	$2.97 imes 10^2$	$9.78 imes 10^{-5}$	2.42×10^2	$2.91 imes 10^2$	1.01×10^{-3}
11.0	$3.76 imes 10^{-4}$	$2.57 imes 10^2$	8.78×10^{-5}	2.34×10^2	2.52×10^2	$5.63 imes 10^{-4}$
12.0	$3.35 imes 10^{-4}$	2.22×10^2	$7.83 imes 10^{-5}$	$2.26 imes 10^2$	$2.17 imes 10^2$	1.92×10^{-4}
13.0	2.98×10^{-4}	$1.90 imes 10^2$	$6.96 imes 10^{-5}$	$2.18 imes 10^2$	$1.87 imes 10^2$	6.99×10^{-5}
14.0	2.63×10^{-4}	$1.62 imes 10^2$	6.14×10^{-5}	2.11×10^2	$1.59 imes 10^2$	3.33×10^{-5}
15.0	$2.30 imes 10^{-4}$	$1.38 imes 10^2$	$5.36 imes 10^{-5}$	2.05×10^2	$1.35 imes 10^2$	1.74×10^{-5}
16.0	$1.99 imes 10^{-4}$	$1.17 imes 10^2$	4.65×10^{-5}	2.00×10^2	1.14×10^2	1.21×10^{-5}
17.0	1.72×10^{-4}	$9.82 imes 10^1$	4.01×10^{-5}	$1.95 imes 10^2$	$9.63 imes 10^1$	9.83×10^{-6}
18.0	1.46×10^{-4}	$8.25 imes 10^1$	3.41×10^{-5}	1.93×10^2	$8.09 imes 10^1$	8.25×10^{-6}
19.0	1.22×10^{-4}	$6.93 imes 10^1$	2.85×10^{-5}	1.94×10^2	$6.79 imes 10^1$	8.74×10^{-6}
20.0	1.01×10^{-4}	$5.83 imes 10^1$	2.35×10^{-5}	$1.98 imes 10^2$	$5.71 imes 10^1$	1.08×10^{-5}
21.0	8.25×10^{-5}	$4.92 imes 10^1$	$1.93 imes 10^{-5}$	2.04×10^2	4.82×10^1	9.42×10^{-6}
22.0	6.82×10^{-5}	$4.17 imes 10^1$	$1.59 imes 10^{-5}$	2.09×10^2	$4.09 imes 10^1$	2.63×10^{-6}
23.0	$5.69 imes 10^{-5}$	$3.56 imes 10^1$	1.33×10^{-5}	$2.13 imes 10^2$	$3.49 imes 10^1$	5.72×10^{-10}
24.0	4.80×10^{-5}	$3.05 imes 10^1$	1.12×10^{-5}	$2.17 imes 10^2$	$2.99 imes 10^1$	7.73×10^{-6}
25.0	4.07×10^{-5}	$2.61 imes 10^1$	9.50×10^{-6}	$2.19 imes 10^2$	$2.56 imes 10^1$	1.62×10^{-5}

CONCLUSIONS

- Investigated long-term variations in the molecular density profiles above both CTA sites
- By observing density at 15 km:
 - Smoother transitions between seasons and smaller amplitude in South
 - This allows us to propose 3 seasonal periods in the North site and 2 in the South
- Comparing density profiles:
 - Confirmed that one seasoal period does not describe well the atmosphere
 - Differences between the defined seasonal periods and the PROD3 simulations model:
 - PROD3 is more consistent with the summer seasonal period in the North and with the winter in the South
 - Differences between our profiles and PROD3 can be as large as 9%
- Differences between GDAS and ECMWF are of a ~%
- Created CORSIKA input files for each site and epoch and for selected extreme cases

Future prospects:

- Produce MC with new input cards and evaluate the differences in reconstructed energy.
- Implement in CTA Pipeline (CTApipe)
- Drafting a paper