

cherenkov telescope array

Atmospheric monitoring using the Cherenkov Transparency Coefficient for the Cherenkov Telescope Array

Stanislav Stefanik & Dalibor Nosek for the CTA Consortium Charles University, Prague

> AtmoHEAD 2018 September 25, Anacapri

cherenkov telescope

Outline

1. Introduction

- Cherenkov Transparency Coefficient (CTC) in H.E.S.S. -
- Challenges in the application to larger arrays

Extension of the CTC for CTA 2.

- Geometrical & instrumental considerations -
- Atmospheric monitoring with the CTC 3.
 - Aerosols & molecular profiles

Summary 4.

Introduction

Cherenkov Transparency Coefficient (H.E.S.S.)

Motivation:

- Estimate the atmospheric transparency (T) to Cherenkov light from air showers seen by imaging atmospheric Cherenkov telescopes (IACTs)
- Telescope data only

Telescope-wise:

- R_i ... stereo trigger rate
- μ_i ... muon efficiency
 - ... average pixel gain

Array-wise:

- *N* ... no. of active telescopes
- k_N ... multiplicity correction
- ... zenith angle of observation

Hahn et al., Astropart. Phys. 54, 25, 2014

CTC: Challenges

H.E.S.S. - I:

- 4 IACTs, 1 design
- Square layout
- 2 multiplicity corrections $k_N (k_3 / k_4)$
- No geometrical layout correction
- Small influence of Earth's B-field
- CTC precision 9%

Next generation arrays:

- Tens of IACTs, multiple designs
- Possibly non-symmetric layouts
- Many possible sub-arrays
- Many layout-dependent factors
- Non-negligible effects of the *B*-field in some locations
- Need for better precision

Extension of the CTC for CTA

Cherenkov Telescope Array

A ground-based γ -ray observatory in preparation

- Detection of very high energetic (~ 20 GeV to > 300 TeV) cosmic photons
- Multiple designs of IACTs:
 - large (ø 23 m), medium (ø 12 m)
 & small-size (ø 4 m)
 - variety of structures and hardware
- One array in each hemisphere
- Need for robust atmospheric monitoring
 - see also talks by J.Ebr, M.Gaug, P. Janecek,
 S. Micanovic, P. Munar-Adrover, V. Rizi

Trigger rates of telescopes

• Trigger rates of IACTs given mainly by the flux of cosmic rays:

$$R \propto \int_{E_{\rm th}}^{\infty} J(E) \cdot A_{\rm eff}(E) dE \qquad \qquad J(E) \propto E^{-2.7}$$

- Other dependencies:
 - atmospheric transparency to Cherenkov light (aerosol optical depth)
 - random fluctuations
 - telescope array layout
 - geometrical configuration
 - geomagnetic field
 - telescope optical throughput
- Eliminate instrumental & geometrical dependencies of trigger rates to estimate the atmospheric transparency

Extended CTC for CTA

$\begin{array}{ll} \textbf{Cherenkov} \\ \textbf{Transparency} \\ \textbf{Coefficient:} \end{array} \quad \hat{T}(\text{AOD}) = \frac{1}{P} \sum_{\substack{i=1\\i < j}}^{N} \hat{T}_{ij} = \frac{1}{P \cdot \mathcal{K}} \sum_{\substack{i=1\\i < j}}^{N} \left(\frac{R_{ij}(\text{AOD}, \mathcal{O}, \varepsilon_i, \varepsilon_j)}{\varepsilon_i \cdot \varepsilon_j \cdot \hat{R}_{ij}^0(\mathcal{O})} \right)^{\frac{1}{1.7}} \end{array}$

Pair-wise

(telescopes *i* & *j* of a same type):

- R_{ij} ... trigger rate (experiment)
- \hat{R}_{ij}^{0} ... rate approximation (Monte Carlo simulations)

Telescope-wise:

• ε_i ... optical efficiency ($0 \le \varepsilon \le 1$)

Array-wise:

- *N* ... no. of active telescopes
- P ... no. of chosen pairs
 - \mathcal{K} ... normalization
 - \mathcal{O} ... observation conditions (θ, β, d, B)

Monte Carlo study

- Study of the **pairwise** trigger rates
- MC simulations of air showers observed by CTA-N
 - primary particles = protons
 - 5 x 10⁸ air showers per configuration
 - 0.004 100 TeV

Random fluctuations

Individual telescopes:

- Significant number of non-air-shower triggers
 - night sky background (NSB)
 - accidental triggers
 - muons

Use only stereo trigger rate (at least 2 telescopes in coincidence)

 $\hat{T} = \frac{1}{P \cdot \mathcal{K}} \sum_{i=1}^{N} \left(\frac{R_{ij}}{\varepsilon_i \cdot \varepsilon_j \cdot \hat{R}_{ij}^0} \right)^{\overline{1.7}}$

Telescope array layout

Stereo trigger rate:

- Counting all events triggering a single telescope together with any other telescope:
 - trigger rates of individual telescopes depend on the array layout
 - higher rates for telescopes with more neighbours in the vicinity
- Observations by different sub-arrays:
 - many layout-dependent factors
 - not feasible for large arrays

Use only pairwise trigger rate: air showers detected by a selected pair of telescopes

Geometrical configuration

cta

Pairwise trigger rate:

- Increasing **zenith angle (θ)**:
 - larger area illuminated by Cher. light
 - trigger rate increase for distant tels.
 - smaller ground density of Cher. photons
 - trigger rate decrease
 - depends also on the inter-tel. distance
- Increasing inter-telescope distance (d):
 - trigger rate decrease (for given θ)

Geometrical configuration

cta

 $\beta = 90^{\circ}$

 $\beta = 0^{\circ}$

Pairwise trigger rate:

Telescope alignment (β):

- Cher. pool roughly elliptical for $\theta > 0^{\circ}$
- higher rate when line between tels. aligned with the shower direction ($\beta = 0^{\circ}$)

Geometrical configuration

Geomagnetic field

- Pairwise trigger rates in the *B*-field:
 - deflection of charged particles in the air shower
 - − governed by B_{\perp} (Φ,θ) and the angle α

Telescope hardware

Optical elements & PMTs / SiPMs:

- Hardware degradation similar effect as long-term atmo. phenomena (less Cherenkov photons detected)
- Pairwise trigger rate affected by the optical efficiencies of **both** telescopes

cherenkov telescope array

Atmospheric monitoring with the CTC

Aerosol optical depth

- Test of the extended CTC method (MC):
- CTA-N layout (4 LSTs, 15 MSTs)
- Random degraded optical efficiencies
- 4 AOD profiles (MODTRAN):
 - no aerosols
 - navy maritime
 - desert
 - tropospheric
- Same molecular density profile
- Atmospheric transparency reconstructed with a **resolution of 3%**

Molecular density profile

Test of the extended CTC method (MC):

- CTA-N layout (4 LSTs, 15 MSTs)
- Random degraded optical efficiencies
- $\theta = 53^{\circ}, \ \Phi = 355^{\circ}, \ B_{\perp} / B_{\rm N} = 0.01$
- **7 molecular density profiles** (see talk by P. Munar-Adrover)
- No aerosols
- CTC consistent for all profiles

Profile	Î
CTA-N template	1.03
Average summer	0.99
Average winter	1.01
Density minimum at 14 km	0.99
Density maximum at 16 km	1.00
Density minimum at 7 km	1.00
Density maximum at 5 km	1.02

Caveats and technique uncertainties

- Statistical uncertainty ~ 14%
 - low trigger efficiency for proton-initiated air showers
 - uncertainty will be negligible for the CTA observations
- Systematic uncertainty ~ 5%
 - for small influence of the geomagnetic field
- Optical throughput has to be estimated by another procedure
 - contribution to the uncertainty on the CTC (e.g. ~ 4% for muons)
- CTC is an integral measure of the AOD:
 - below the production height of air showers
 - in the wavelength range covered by Cherenkov radiation (no information about wavelength dependency of the AOD)
- CTC applicable in systems with stable trigger energy thresholds
 - further treatment necessary to adapt for individual camera pixel control

Summary

Summary

- Cherenkov Transparency Coefficient:
 - stable measure of the atmospheric transparency to Cherenkov light
 - non-invasive method (calculated from telescope data)
 - same field of view & time range as observations
 - no interference with the observatories on site
- CTC adapted for CTA
- Atmospheric monitoring with the CTC:
 - resolution ~ 3% for different aerosol concentrations (MC simulations)
 - not sensitive to variations of molecular density profile
- Future steps:
 - cross-check with real data & other instruments
 - CTC under dynamic trigger energy thresholds
 - CTC under different NSB levels

cherenkov telescope array

Thank you!

Questions? 😊

A. Sheaturs