

Observation of Ground Level Gamma-ray Showers in Coincidence with Downward Lightning Leader

> Rasha Abbasi for the TA/LMA collaboration University of Utah

AtmoHead 2018 Capri, Italy

TERRSTIAL GAMMA RAY FLASHES

- Rare phenomenon that happens in ordinary thunderstorms.
- Observed by orbiting instruments (BATSE, RHESSI, FERMI, AGILE)
- Duration of tens of us to ms.
- generated during the initial negative breakdown stage of IC lightning

```
14 19
```

● 10 -10 , E>100KeV

TERRSTIAL GAMMA RAY FLASHES

- Is there a counterpart to this
 phenomenon?
- Can we obtain quantities at the generating TGF sources?

Dwyer et al, JGR 117 A10303 (2012)

- Ground-Based TGF#1
- 20090630
- During natural 99kA –CG return stroke
- 191 µs after start of ground stroke
- 19 γ's, individual energy measurements
- X-rays prior to ground stroke, TGF after.

Telescope Array Observatory

Operation since March 2008

Millard County, Utah U.S.A.

SCINTILLATION COUNTERS

- 2 layers of 3m² plastic scintillators, separated by steel sheet in ground steel box
- Autonomous, 24/7 operation
- GHz WLAN readout
- Typically | trigger/2 minutes

Plot: T. Okuda

TA Observation: "Burst" Events

- 5 year data (2008-2013)
 - 10 surface detector bursts seen
 - 3 or more SD triggers,
 < 1 msec
 - Occasional Dt ~ 10 msec
- "Normal" SD trigger rate < 0.01 Hz. These cannot be cosmic ray air showers.
- Found to have close time/space coincidence with U.S. National Lightning Detection Network (NLDN) activity.
- Abbasi et al. *Phys. Lett.* **A 381** (2017)

LMA, Slow antenna added (NM Tech 2013)

LIGHTNING MAPPING ARRAY

In operation since 2013

- **9 LMA Stations**
- 60 km in diameter
- **RF quite locations**
- Rural areas away from buildings
- E-measuring slow antenna.

How Lightning Mapped

- Detect impulsive radiation within 80 us window in the band bet 60-66 MHZ.
- multiple detectors to determine their x,y,z,t
- Avoid misconstruction >= 6 receivers are used.
- Locate hunders to thousands of sources per flash

Slow antenna

 GPS-timed capacitor, read out with 10 s time constant.

 Record electric field between 10 mV/m and 10 kV/m

NATIONAL LIGHTNING DETECTION NETWORK (NLDN) DATA BASE

- Lightning time
- 2D Coordinates (Latitude and Longitude)
- Peak Current (kA)
 - Polarity (+/-)
- Could-Cloud (50-60% efficiency)
- Cloud-Ground lightning (90% efficiency)

Observations

can we obtain quantities at the generating TGF source?

TA/LMA "Flash 1"

Time (microseconds)

 occurred at the first 1 ms of the flash, ~200 ms before CG hit

Occurred as a negative breakdown with a leader height between 4-5 km AGL
 TASD waveform has 400 µs duration with 10s of µs in sub-pluses

TA/LMA "Flash 2"

Different Flash same day Occurred as a negative breakdown with a leader height between 3–4 km AGL TASD waveform has 400 μ s duration with 10s of μ s in sub-pluses

ΔE ("Slow Antenna") Measurements

- (4/7 events shown here)
- Overall, similar "message" as LMA events
 - First ms of IC/CG flash
 - Moderate and energetic leaders

Are we seeing downward TGFs?

- Photon absorption length plateaus at few 10's g/cm² above ~100 keV.
- ~100's of meters @ TA elevations
- Few of the primary photons make it to the ground!

- GEANT4 Simulation: TASD response to RREA-Photon Spectrum at Altitude, including atmosphere.
- Mean energy deposit at low energy falls off much faster than reasonable spectra (i.e. RREA)
- Conclude that primary photons responsible for TASD signal must be > 1 MeV at altitude.

Number of photons

Sources on "low end" of TGF estimates

 Would be below satellite triggering threshold!

Comparison with other observations

- Overall duration of SD bursts comparable to observed TGF Δt
- Discrete subevents from few to few 10's of µsec.
 - We're viewing sources from ~1/100th the distance
 - Before Compton "smearing"

Celestian and pasko (2012)

Abbasi et al. Journal of Geophysical Research Atmosphere 123 p6864 (2018)

Journal of Geophysical Research: Atmospheres

RESEARCH ARTICLE

10.1029/2017JD027931

Gamma Ray Showers Observed at Ground Level in Coincidence With Downward Lightning Leaders

JGR

Key Points:

Gamma ray showers have been detected in a surface scintillator array coincident with lightning observed by a lightning mapping array or Delta *E* antenna
The showers were produced less than 4–5 km above ground in the first 1–2 ms of downward negative breakdown during cloud-to-ground flashes
The source durations are better resolved than for satellite observations and are consistent with being produced by stepping of the initial leader breakdown

Supporting Information:

Supporting Information S1

Correspondence to:

R. U. Abbasi, rasha@cosmic.utah.edu

Citation:

Abbasi, R. U., Abu-Zayyad, T., Allen, M., Barcikowski, E., Belz, J. W., Bergman, D. R., et al. (2018). Gamma R. U. Abbasi¹, T. Abu-Zayyad¹, M. Allen¹, E. Barcikowski¹, J. W. Belz¹, D. R. Bergman¹, S. A. Blake¹, M. Byrne¹, R. Cady¹, B.G. Cheon², J. Chiba³, M. Chikawa⁴, T. Fujii⁵, M. Fukushima^{5,6}, G. Furlich¹, T. Goto⁷, W. Hanlon¹, Y. Hayashi⁷, N. Hayashida⁸, K. Hibino⁸, K. Honda⁹, D. Ikeda⁵, N. Inoue¹⁰, T. Ishii⁹, H. Ito¹¹, D. Ivanov¹, S. Jeong¹², C. C. H. Jui¹, K. Kadota¹³, F. Kakimoto¹⁴, O. Kalashev¹⁵, K. Kasahara¹⁶, H. Kawai¹⁷, S. Kawakami⁷, K. Kawata⁵, E. Kido⁵, H. B. Kim², J. H. Kim¹, J. H. Kim¹⁸, S. S. Kishigami⁷, P. R. Krehbiel¹⁹, V. Kuzmin¹⁵, Y. J. Kwon²⁰, J. Lan¹, R. LeVon¹, J. P. Lundquist¹, K. Machida⁹, K. Martens⁶, T. Matuyama⁷, J. N. Matthews¹, M. Minamino⁷, K. Mukai⁹, I. Myers¹, S. Nagataki¹¹, R. Nakamura²¹, T. Nakamura²², T. Nonaka⁵, S. Ogio⁷, M. Ohnishi⁵, H. Ohoka⁵, K. Oki⁵, T. Okuda²³, M. Ono²⁴, R. Onogi⁷, A. Oshima²⁵, S. Ozawa¹⁶, I. H. Park¹², M. S. Pshirkov^{13,26}, J. Remington¹, W. Rison¹⁹, D. Rodeheffer¹⁹, D. C. Rodriguez¹, G. Rubtsov¹⁵, D. Ryu¹⁸ H. Sagawa⁵, K. Saito⁵, N. Sakaki⁵, N. Sakurai⁷, T. Seki²¹, K. Sekino⁵, P.D. Shah¹, F. Shibata⁹, T. Shibata⁵, H. Shimodaira⁵, B. K. Shin⁷, H. S. Shin⁵, J. D. Smith¹, P. Sokolsky¹, R. W. Springer¹, B. T. Stokes¹, T. A. Stroman¹, H. Takai²⁷, M. Takeda⁵, R. Takeishi⁵, A. Taketa²⁸, M. Takita⁵, Y. Tameda²⁹, H. Tanaka⁷, K. Tanaka³⁰, M. Tanaka³¹, R. J. Thomas¹⁹, S. B. Thomas¹, G. B. Thomson¹, P. Tinyakov^{15,32}, I. Tkachev¹⁵, H. Tokuno¹⁴, T. Tomida²¹, S. Troitsky¹⁵, Y. Tsunesada⁷, Y. Uchihori³³, S. Udo⁸, F. Urban³², G. Vasiloff¹, T. Wong¹, M. Yamamoto²¹, R. Yamane⁷, H. Yamaoka³¹, K. Yamazaki²⁸, J. Yang³⁴, K. Yashiro³, Y. Yoneda⁷, S. Yoshida¹⁷, H. Yoshii³⁵ and Z. Zundel¹

¹ High Energy Astrophysics Institute and Department of Physics and Astronomy, University of Utah, Salt Lake City, UT, USA, ²Department of Physics and The Research Institute of Natural Science, Hanyang University, Seoul, Korea, ³Department of Physics, Tokyo University of Science, Noda, Japan, ⁴Department of Physics, Kinki University, Higashi-osaka, Japan, ⁵Institute for Cormic Pay Persparent University of Tokyo Korehima, Japan, ⁶Kayli Institute for the Physics and Mathematics

First observation of TGF with slow antenna, LMA, TASD, and NLDN

•9 10⁵ m/s .

•Multiple IC observations followed by an energetic CG w/peak current of -113kA.

TA x 4 Project

- world largest sample of downward
 observed
 gamma rays.
- we will have I0
 Events per year.

BREAKING NEWS!

Interferometer

Interferometer

Slow antenna

 GPS-timed capacitor, read out with 10 s time constant.

 Record electric field between 10 mV/m and 10 kV/m

Fast Antenna

P.Krehbiel et al

SUMMARY

- observed 25 TASD bursts in coincidence with lightning (world largest sample of downward observed gamma rays).
- 15 observed with LMA or slow antenna.
- Originate TGF observations to the **IBPs** of lightning.
- Forward-beamed showers of 10¹²-10¹⁴ primary photons.
- First observed event with INTF and Fast antenna correlating observed TGF with two particularly energetic leader steps.

Are these γ-ray showers?

- 1VEM ~ 30 ADC
- 1 ADC count ~ 70 keV
- Photon 170 keV

Are we seeing downward TGFs?

- Photon absorption length plateaus at few 10's g/cm² above ~100 keV.
- ~100's of meters @ TA elevations
- Few of the primary photons make it to the ground!

- GEANT4 Simulation: TASD response to RREA-Photon Spectrum at Altitude, including atmosphere.
- Mean energy deposit at low energy falls off much faster than reasonable spectra (i.e. RREA)
- Conclude that primary photons responsible for TASD signal must be > 1 MeV at altitude.

Tran et al, J. Atmos. & Solar-Terrestrial Phys 136 86–93 (2015)

- Ground-Based TGF #2
- 20140613
- During natural 224 kA –CG return stroke
- 191 μs after peak of ground stroke
- 6 γ's ≤ 5.7 MeV
- No radiation prior to ground stroke, TGF after.

TA/LMA "Flash 3"

-94 kA

- Isolated event May 2016
- TASD triggers in 2nd ms of flash. Ground stroke occurs rapidly after.
- Suggests a somewhat different "energetic leader" event propagating rapidly to ground.
- Consistent with exponential growth of SD pulse heights with time.

Dwyer et al, JGR 117 A10303 (2012)

SD Event 120706 014911 184219 obs include timing from front plane[us] .. -1 distance from axis[m]

SD Event 120706 014911 184307

SD response: g and e[±]

TASD: exploded view

Tyrek S

italities stells

TASD is optimized for high-energy charged particles:

- inefficient for photons
- but this is what photons would look like!

TASD Waveforms, Flash 1, 2, 3

TELESCOPE ARRAY (TA/LMA)

TASD	ɣ -ray SD		
Plastic scintillaltor	Mainly Nal accompanied gas- counters		
Lower SD number density	Higher SD number density		
300 Times larger	Smaller in size		
10 times faster response	Slower response		

"Flash3" Event 20160510-024150

Distance East, [1200m]

Distance East, [1200m]

"Flash 2" Event 20150915-193701

0.05

NLDN - 12 kA IC

Date Time pres		NLDN Ipt	TASD VEM _{max} /MeV	Number of TASDs
2015/09/15 12:13:04 75519				
29				
34				
41				
42		-4.3 kA C		
	8 19.4			
66				
67			30/61	5
67		-15.5 kA C		
	2 21.4			
75		-17.5 kA C		
75			449/920	9
87			37/55	15
87		-22.1 kA C		0
93		TALL OF	142/291	8
95		-15.0 kA C		
75603		-10.0 kA C	90.000	0
06			39/80	8
26				
85 95114		-7.1 kA G		
2015/09/15 19:37:01 82114		-1.1 KA G		
2010/09/10 19:07:01 02114				
34		-12.3 kA C		
45		120 811 0		
45		-8.1 kA C		
56		0.1 01 0		
58		+17.1 kA G!		
58		+18.4 kA G ¹		
63			72/148	8
64				
75	9 16.6			
81	2		75/154	6
84	2	+9.3 kA C		
84	7		47/96	6
94			25/51.2	4
82204	3 15.7			
82209		-5.8 kA C		
17				
63				
2016/05/10 02:41:50 84682				
93				
84701				
14 26				
46				
90 52				
60				
70				
71		-7.3 kA C		
98				
84813				
20				
29				
43	4 15.4			
64				
70				
76				
91			105/215	6
84903			109/223	6
24			4,162/8,532	4
34		011110	22,118/45,342	4
36		-94.1 kA G		
63	7 14.9			

Cosmic Ray Shower (top) and "Burst" Event

