Observation of Ground Level Gamma-ray Showers in Coincidence with Downward Lightning Leader

Rasha Abbasi
for the TA/LMA collaboration
University of Utah

AtmoHead 2018
Capri, Italy
TERRSTIAL GAMMA RAY FLASHES

- Rare phenomenon that happens in ordinary thunderstorms.
- Observed by orbiting instruments (BATSE, RHESSI, FERMI, AGILE)
- Duration of tens of us to ms.
- Generated during the initial negative breakdown stage of IC lightning

 $10^{-14} - 10^{-19}, \ E > 100 \text{KeV}$
• Is there a counterpart to this phenomenon?

• Can we obtain quantities at the generating TGF sources?
Dwyer et al, JGR 117 A10303 (2012)

- **Ground-Based TGF#1**
- **20090630**
- During natural 99kA – CG return stroke
- 191 μs after start of ground stroke
- 19 γ's, individual energy measurements
- *X-rays prior to ground stroke, TGF after.*
- **Ultra-High Energy Cosmic Ray Detector**: $10^{18} \rightarrow 10^{20}$ eV and higher
- TA Surface Detector (TASD): 507 scintillation detectors, 1.2 km grid, covering 700 km².
- Mean altitude 1400 meters MSL
- Operation since March 2008

Millard County, Utah U.S.A.
SCINTILLATION COUNTERS

- 2 layers of 3m² plastic scintillators, separated by steel sheet in ground steel box
- Autonomous, 24/7 operation
- GHz WLAN readout
- Typically 1 trigger/2 minutes
TA Observation: “Burst” Events

- 5 year data (2008-2013)
- 10 surface detector bursts seen
 - 3 or more SD triggers, < 1 msec
 - Occasional Dt ~ 10 msec
- “Normal” SD trigger rate < 0.01 Hz. These cannot be cosmic ray air showers.
- Found to have close time/space coincidence with U.S. National Lightning Detection Network (NLDN) activity.
LIGHTNING MAPPING ARRAY

- 9 LMA Stations
- 60 km in diameter
- RF quite locations
- Rural areas away from buildings
- E-measuring slow antenna.

In operation since 2013
How Lightning Mapped

- Detect impulsive radiation within 80 us window in the band bet 60-66 MHZ.
- multiple detectors to determine their x,y,z,t
- Avoid misconstruction >= 6 receivers are used.
- Locate hunders to thousands of sources per flash
Slow antenna

- GPS-timed capacitor, read out with 10 s time constant.
- Record electric field between 10 mV/m and 10 kV/m
NATIONAL LIGHTNING DETECTION NETWORK (NLDN) DATA BASE

- Lightning time
- 2D Coordinates (Latitude and Longitude)
- Peak Current (kA)
- Polarity (+/-)
- Could-Cloud (50-60% efficiency)
- Cloud-Ground lightning (90% efficiency)
Observations
can we obtain quantities at the generating TGF source?
TA/LMA “Flash 1”

- Occurred at the first 1 ms of the flash, ~200 ms before CG hit
- Occurred as a negative breakdown with a leader height between 4–5 km AGL
- TASD waveform has 400 μs duration with 10s of μs in sub-pluses
• Different Flash same day
• Occurred as a negative breakdown with a leader height between 3–4 km AGL
• TASD waveform has 400 μs duration with 10s of μs in sub-pluses
ΔE ("Slow Antenna") Measurements

- (4/7 events shown here)
- Overall, similar "message" as LMA events
 - First ms of IC/CG flash
 - Moderate and energetic leaders
Are we seeing downward TGFs?

- Photon absorption length plateaus at few 10's g/cm² above ~100 keV.
- ~100's of meters @ TA elevations
- Few of the primary photons make it to the ground!
• GEANT4 Simulation: TASD response to RREA-Photon Spectrum at Altitude, including atmosphere.
• Mean energy deposit at low energy falls off much faster than reasonable spectra (i.e. RREA)
• Conclude that primary photons responsible for TASD signal must be > 1 MeV at altitude.
Comparison
Number of photons

Sources on “low end” of TGF estimates
- Would be below satellite triggering threshold!
Comparison with other observations

Celestian and Pasko (2012)

- Overall duration of SD bursts comparable to observed TGF Δt
- Discrete subevents from few to few 10's of μsec.
 - We're viewing sources from $\sim1/100^{th}$ the distance
 - Before Compton "smearing"
Gamma Ray Showers Observed at Ground Level in Coincidence With Downward Lightning Leaders

1High Energy Astrophysics Institute and Department of Physics and Astronomy, University of Utah, Salt Lake City, UT, USA,
2Department of Physics and The Research Institute of Natural Science, Hanyang University, Seoul, Korea,
3Department of Physics, Tokyo University of Science, Noda, Japan, 4Department of Physics, Kinki University, Higashi-osaka, Japan,
First observation of TGF with slow antenna, LMA, TASD, and NLDN

• \(9 \times 10^5\) m/s.
• Multiple IC observations followed by an energetic CG with peak current of -113kA.
TA x 4 Project

- world largest sample of downward observed gamma rays.
- we will have 10 Events per year.
BREAKING NEWS!
Interferometer
Slow antenna

- GPS-timed capacitor, read out with 10 s time constant.

- Record electric field between 10 mV/m and 10 kV/m
Fast Antenna

Initial Breakdown Pulse region
Is this the origin of TGFs?

Return stroke

ΔE
Leader Stage

VHF
Fast ΔE
“spherical"

Initial Breakdown Pulse region
Is this the origin of TGFs?

P.Krehbiel *et al*

Return stroke
Preliminary
SUMMARY

- observed 25 TASD bursts in coincidence with lightning (world largest sample of downward observed gamma rays).
- 15 observed with LMA or slow antenna.
- Originate TGF observations to the IBPs of lightning.
- Forward-beamed showers of 10^{12}-10^{14} primary photons.
- First observed event with INTF and Fast antenna correlating observed TGF with two particularly energetic leader steps.
• 1VEM ~ 30 ADC
• 1 ADC count ~ 70 keV
• Photon 170 keV
SD response: γ and e^\pm

Diagram:
- Gamma rays (γ) and electrons (e^\pm) interacting with scintillators and steel plates.
- GEANT4 simulation.

Graphs:
- Mean energy deposition vs. incident energy (MeV) for electrons and photons.
- Cosmic ray core waveform.
- Leader-coincident core waveform.
Are we seeing downward TGFs?

- Photon absorption length plateaus at few 10's g/cm² above ~100 keV.
- ~100's of meters @ TA elevations
- Few of the primary photons make it to the ground!
GEANT Simulation of Atmosphere and TASD

- US standard atmosphere
• GEANT4 Simulation: T ASD response to RREA-Photon Spectrum at Altitude, including atmosphere.

• Mean energy deposit at low energy falls off much faster than reasonable spectra (i.e. RREA)

• Conclude that primary photons responsible for T ASD signal must be > 1 MeV at altitude.

- **Ground-Based TGF #2**
- **20140613**
- During natural 224 kA – CG return stroke
- **191 μs after** peak of ground stroke
- **6 γ's ≤ 5.7 MeV**
- **No radiation prior to ground stroke, TGF after.**
TA/LMA “Flash 3”

- Isolated event May 2016
- TASD triggers in 2nd ms of flash. Ground stroke occurs rapidly after.
- Suggests a somewhat different “energetic leader” event propagating rapidly to ground.
- Consistent with exponential growth of SD pulse heights with time.
Dwyer et al, JGR 117 A10303 (2012)

Gamma Rays

“x-rays from lightning”
SD response: g and e^\pm

Cosmic ray core waveform

Leader-coincident core waveform

TASD is optimized for high-energy charged particles:
- inefficient for photons
- but this is what photons would look like!
TASD Waveforms, Flash 1, 2, 3

FL1: 2015/09/15 12:13:04 SD0604 303 VEM

FL2: 2015/09/15 19:37:01 SD1423 225 VEM

FL3: 2016/05/10 02:41:50 SD0922 26,418 VEM

ADC counts

Time after first trigger (μs)
TELESCOPE ARRAY (TA/LMA)

<table>
<thead>
<tr>
<th>TASD</th>
<th>γ-ray SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plastic scintillator</td>
<td>Mainly NaI accompanied gas-counters</td>
</tr>
<tr>
<td>Lower SD number density</td>
<td>Higher SD number density</td>
</tr>
<tr>
<td>300 Times larger</td>
<td>Smaller in size</td>
</tr>
<tr>
<td>10 times faster response</td>
<td>Slower response</td>
</tr>
</tbody>
</table>
“Flash3” Event 20160510-024150
“Flash 2” Event 20150915-193701

NLDN - 12 kA IC
<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>LMA dBW</th>
<th>μsec</th>
<th>NLDN I₀</th>
<th>TASD VEM/MeV</th>
<th>Number of TASDs</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015/09/15</td>
<td>12:18:04</td>
<td>16.2</td>
<td>755199</td>
<td>-4.3 kA C</td>
<td>30/61</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>263</td>
<td>18.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>343</td>
<td>15.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>413</td>
<td>13.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>422</td>
<td>19.4</td>
<td></td>
<td>-15.5 kA C</td>
<td>15</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>558</td>
<td>22.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>662</td>
<td>21.4</td>
<td></td>
<td>-17.5 kA C</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>670</td>
<td>756</td>
<td></td>
<td>-22.1 kA C</td>
<td>142/291</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>757</td>
<td>37/55</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>871</td>
<td>449/920</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>873</td>
<td>839</td>
<td></td>
<td>-15.0 kA C</td>
<td>39/80</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>950</td>
<td>950</td>
<td></td>
<td>-10.0 kA C</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>756035</td>
<td>655</td>
<td></td>
<td>-7.1 kA G</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>260</td>
<td>931144</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>821147</td>
<td>14.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>339</td>
<td>24.4</td>
<td></td>
<td>-12.3 kA C</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>344</td>
<td>17.4</td>
<td></td>
<td>-8.1 kA C</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>451</td>
<td>23.5</td>
<td></td>
<td>+17.1 kA C</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>564</td>
<td>72/148</td>
<td></td>
<td>+18.4 kA C</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>584</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>586</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>633</td>
<td>759</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>643</td>
<td>19.8</td>
<td></td>
<td>-9.3 kA C</td>
<td>25/51.2</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>822043</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>822094</td>
<td></td>
<td></td>
<td>-5.8 kA C</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>531</td>
<td>20.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2016/05/10</td>
<td>02:41:50</td>
<td>-5.9</td>
<td>840823</td>
<td></td>
<td>105/215</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>632</td>
<td>9.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>847017</td>
<td>19.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>141</td>
<td>15.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>267</td>
<td>15.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>407</td>
<td>22.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>527</td>
<td>20.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>606</td>
<td>25.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>706</td>
<td>17.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>713</td>
<td></td>
<td></td>
<td>-7.3 kA C</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>738</td>
<td>15.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>848132</td>
<td>19.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>208</td>
<td>20.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>299</td>
<td>13.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>434</td>
<td>15.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>643</td>
<td>16.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>708</td>
<td>11.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>761</td>
<td>16.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>910</td>
<td></td>
<td></td>
<td></td>
<td>109/223</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>840935</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>248</td>
<td>4,162/8,532</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>342</td>
<td>22,118/45,312</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>368</td>
<td>-94.1 kA G</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>637</td>
<td>14.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Cosmic Ray Shower (top) and “Burst” Event

![Graphs showing ADC counts and distance plots with time intervals and intensity levels.](image-url)