The observarion of

 lightning-related events with the Surface Detector of the Pierre Auger ObservatoryRoberta Colalillo for the Pierre Auger Collaboration INFN, Sezione diNapol

The Pierre Auger Observatory

located in Malargue, Argentina, at 1400 m above the sea level ($880 \mathrm{~g} / \mathrm{cm}^{2}$)

Atmospheric Monitoring

FD Loma Amarilla
Lidar
IR Camera
Weather Station

The Surface Detector

- Each WCD consists of a 3.6 m polyethylene tank containing a liner with a reflective inner surface and filled with 12,000 liters of ultra-pure water.
- Cherenkov light produced by the passage of relativistic charged particles through the water is collected by three PMTs.
- Each PMT has two readout channels, one directly from the anode (HG channel) and the other one from the last dynode (LG channel) with an amplification factor of 32 \rightarrow the LG channel is used when the HG is saturated.
- The two output signal are processed by six FADCs with a sampling rate of 40 MHz , 25 ns per time bin. The DAQ window lasts $19.2 \mu \mathrm{~s}$.

Cosmic Ray Signal in the SD

Shower with $\mathrm{E}=3 \times 10^{19} \mathrm{eV}, \theta=28^{\circ}$

Station at 1780 m from the shower core

SD Exotic Events

- Larger time scale ($\sim 10 \mu \mathrm{~s}$);
- Many triggered detectors arranged in circular shape;
- Some stations have lightning induced signal
\rightarrow high frequency noise

SD Exotic Events

- Larger time scale ($\sim 10 \mu \mathrm{~s}$);
- Many triggered detectors arranged in circular shape;
- Some stations have lightning induced signal \rightarrow high frequency noise

SD Exotic Events

- Larger time scale ($\sim 10 \mu \mathrm{~s}$);
- Many triggered detectors arranged in circular shape;
- Some stations have lightning induced signal \rightarrow high frequency noise

SD Exotic Events

lightning

Electronics Checks PMT Comparison

\rightarrow These signals are produced by particles which crossed the water in the stations;
\rightarrow They are not the result of electronics problems.

Low gain \rightarrow last dynode High gain \rightarrow anode

\}
Amplification factor (D/A costant) ~ 30

Search Algorithm

Events collected by the SD from January 2004 to 15 May 2017 $\rightarrow \sim 10^{7}$ events

- A first cut is applied on data to select events with at least one lightning station (200000 selected events).
- Stations with long-lasting signals are selected. If there are at least 10 stations with at least two PMTs with a long-lasting signal, the event is accepted.
- 28 events with long-lasting stations were selected
$\rightarrow 16$ of them have more than 20 long-lasting stations, arranged in a ring shape with a radius that spans from 4 to 8 km .

Signal Shape

The long-lasting signals are well described by an asymmetric gaussian distribution

GOOD FITS:

- Gaussian peak in the DAQ window;
- Difference between sum of the content of the trace bins and integral of the fitting function in our time window less than 5\%;
- duration of the total fitting function less than $100 \mu \mathrm{~s}$.

GENERAL CHARACTERISTICS:

- rise time of the signal $\left(r_{i} \sigma_{\mathrm{i}}\right)$ smaller than fall time (σ_{i});
- σ_{i} bigger than $2.5 \mu \mathrm{~s}$.

Footprint Characterization

- Identification of the most external stations;
- Construction of the lines passing through the farthest stations;
- Intersection of the two lines to find the starting center (red star) for the fit.

$$
\begin{gathered}
\text { FIT of the CIRCLE } \\
x^{2}+y^{2}-2 a x-2 b y=c \\
c=a^{2}+b^{2}-r^{2} \\
a=p a r[0]=x-c e n t e r \\
b=\operatorname{par}[1]=y=\text { center } \\
r=\text { par }[2] \\
x 2 \text { minimization }
\end{gathered}
$$

Results of the fit

Large Events

Small Events

- Long station
* Lightning station X Muon station

Results of the fit

Large Events

Signal vs distance from the center of the ring

Energy deposited at ground

1 VEM (Vertical Equivalent Muon) ~ 240 MeV

S=591.4 VEM
$\mathrm{E}=1.42 \mathrm{e}+05 \mathrm{MeV}$

d=4911 m

S=8038 VEM
$\mathrm{E}=1.93 \mathrm{e}+06 \mathrm{MeV}$ d=3417 m
\rightarrow The energy deposited in each long signal station spans from $\sim \mathbf{1 0}^{4} \mathrm{MeV}$ to $\sim 10^{6} \mathrm{MeV}$.
\rightarrow The total energy of the event spans between 10^{17} and $10^{18} \mathrm{eV}$.

VERY HIGH ENERGY

The energy deposited at ground by a vertical cosmic-ray shower initiated by a proton with energy $10^{19} \mathrm{eV}$ is about two orders of magnitude lower.

Energy deposited at ground

1 VEM (Vertical Equivalent Muon) ~ 240 MeV
htrace_signal_4067414_1111_pmt1

S=591.4 VEM
$\mathrm{E}=1.42 \mathrm{e}+05 \mathrm{MeV}$
d=4911 m

S=8038 VEM
$\mathrm{E}=1.93 \mathrm{e}+06 \mathrm{MeV}$ d=3417 m
\rightarrow The energy deposited in each long signal station spans from $\sim 10^{4} \mathrm{MeV}$ to $\sim 10^{6} \mathrm{MeV}$.
\rightarrow The total energy of the event spans between 10^{17} and $10^{18} \mathrm{eV}$.
Different experiments have observed radiation burst correlated to lightning activity:

- Dwyer et al. [1] work at about 100 m from the lightning strike with Nal scintillators;
- TA works with plastic scintillator [2].

Our smallest scale of energy density (external part of the circle, $\sim 6-7 \mathrm{~km}$ from the center) is consistent with the one observed in [1] for those detectors at a distance of at least 0.5 km from the center of the event, and is about two orders of magnitude larger than the energy of events quoted in [2].
N.B. No detection efficiency considered

Time Evolution

The start time of each station is the sum of the event time and t_{10}, which is the time corresponding to the 10% of the value of the asymmetric gaussian in its peak.

The event starts from the inner stations and then moves towards the external ones.

Spherical Front

$\chi 2$ minimization: $\chi 2=\operatorname{Sum}\left(\left(\mathrm{t}_{\text {exp }}-\left(\operatorname{treal}^{-t_{0 f f}}\right)^{2} /\left(\right.\right.\right.$ treal_err $\left.\left.^{*} t_{\text {real_err }}\right)\right)$ con $t_{\text {exp }}=\operatorname{sqrt}\left(\left(\mathrm{ct}_{0}\right)^{2}+\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}\right) / c$

4 parameters: $\mathbf{x}_{0}, \mathrm{y}_{0}, \mathrm{ct}_{0}, \mathrm{t}_{\mathbf{0 f f}} \quad$ _treal \equiv time start station
$\mathrm{x}_{0}, \mathrm{y}_{0}$, and $\mathrm{ct}_{\mathbf{0}} \rightarrow$ the coordinates of the origin point of the event $\mathrm{t}_{0 \text { ff }} \rightarrow$ takes into account the offset between the event time and t_{0}

Time Propagation

Altitude of the origin point very low, compatible with a source at ground.

A simple MC assuming a spherical front was performed:

- origin point of the event fixed at different altitudes;
- for each impact point at ground, the distance from the origin point is calculated;
- assuming relativistic particles, the arrival time is obtained.

The simulated arrival times are represented by the colored lines
\rightarrow altitudes from 0 to 10 km .
Subtracting toff from the measured arrival times, they superimpose to the simulated line corresponding to an origin point at 0 km .

Correlations with WWLLN

The high frequency noise observed in several stations could be associated with lightningcaused signal, which suggests that these events happened during thunderstorms.

The 10 best events: the events with the biggest number of stations and the events whose signals have the peak of the distribution and a good portion of the fall tail contained in our time windows \rightarrow the signal in each station and the global characteristic of the event are recostructed with small uncertainties are compared with lightning strikes of the WWLLN (World Wide Lightning Location Network) catalogue.

In black, the WWLLN antennas in South America are shown.

The $\sim 80 \%$ of this sample shows a time (within 50 ms) and spatial 22 correlation $(10 \mathrm{~km})$ with WWLLN lightning.

Conclusions

- Very peculiar events, characterized by the presence of stations with very longlasting signals have been detected. Some of them have many active detectors arranged in a ring shape, with a depletion of the signal at the center \rightarrow physical reason or hole due to Auger trigger optimized to study very different events?
- Each event has at least a lightning station, a station with high frequency noise.
- The amplitude of the signal is bigger in the inner part of the ring and decreases with the increasing of the distance from the center.
- The event moves from the center of the circle to the external part, the observed timing is consistent with a spherical front expanding at the speed of light with an origin point very close to ground or to a cylindrical front.
- What is the phenomenon which can explain these observations?

Theoretical Models

Two constraints:

- A source of "high energy" electrons (RREAs)
- Need a strong E-field to accelerate particles in order they can cross several km

Theoretical Models

Theoretical Models

Thanks to Prof. Mary Zazyan
Yerevan Physics Institute, Armenia

Secondary photons energy distributions $\times 10^{4}$

Secondary electrons/positrons energy
$\times 10^{3} \quad$ distributions

Back Up

Peculiar Event Group

Energy Estimation

The total energy at ground is calculated starting from the energy collected in the all long signal stations (energy_tank *). The energy/m^2 is calculated dividing the "energy_tank" by the number of long signal stations and dividing the average energy per station by the tank surface ($10 \mathrm{~m}^{\wedge} 2$).

Energy_tank $=\Sigma$ (energy of long signal stations)

Energy/m^2 = Energy_tank / (n_tank*tank_surface)

Energy_tot = Energy/m^2 * ring_surface

* Function Fit: asymmetric gaussian Signal per tank: integral [-inf,inf]] for each PMT; Total Signal: average of the good PMTs signals, at least two good PMTs are requested to consider the tank. Conversion in MeV: energy (MeV) = energy (VEM charge) * 240

