CP Violation in the B sector

Marcello A. Giorgi INFN & Universita' di Pisa

Italo's Fest

Pisa-Scuola Normale Superiore September 5, 2018

OUTLINE

• Validation of the CKM paradigm with CP Asymmetries in B meson decays.

٠

- Still insufficient to explain the matter-antimatter unbalance in the universe.
- CP Violation adventure continues in quark and neutrino sector.
- A passion for Discrete Symmetries violation.

CPV from flavour mixing with 6 quarks (Kobayashi&Maskawa 1973)

mixing

(1,0)

 $\beta[\phi_1]$

 $\tau_{\scriptscriptstyle B}$ and $\Gamma(b \to c \ell \nu)$

 $\Gamma(b \to u\ell)$

(0, 0)

 $\gamma[\phi_3]$

From 2 quark families : (rotation matrix in two dimensions with Cabibbo angle θ_C) to 3 quark families : mixing matrix with 3D rotation angles and one irreducible complex phase.

It explains indirect CP Violation in mixing for K->2 pions and allows prediction for direct CPV ($\varepsilon'/\varepsilon \neq 0$) and for many oservables related to CPV asymmetries in B decays.

M. Kobayashi and T. Maskawa, *CP Violation In The Renormalizable Theory Of Weak Interaction,* Prog. Theor. Phys. **49** (1973) 652

Towards validation of CKM

CP violation in B sector and the measurement of the Unitarity Triangle sides and angles has given a strong support to CKM.

This exploration inside the B sector required a strong effort to extract asymmetries in experiments at hadron machines where in the presence of large production cross section and huge background. A new kind of machines : the high luminosity e+ e- asymmetric colliders allowed a clean environment to study with high performance detectors (namely high precision silicon vertex trackers and optimal PID) the CP violation asymmetries in

the interference between flavour mixing and decay amplitude.

Time dependent CP violation in BB system

1

Carter, Sanda Phys.Rev.Lett. <u>45</u>, 952 (1980); Phys.Rev. D23, 1567(1981)

Motivation for Asymmetric B Factories

$$A_{CP}(t) \equiv \frac{\Gamma(\overline{B^{0}} \to f_{CP}; t) - \Gamma(B^{0} \to f_{CP}; t)}{\Gamma(\overline{B^{0}} \to f_{CP}; t) + \Gamma(B^{0} \to f_{CP}; t)}$$
$$= A_{f} \cos(\Delta mt) + S_{f} \sin(\Delta mt)$$

Interference Mixing amplitude-Decay amplitude

Time dependent CP violation in BB system

Fig. 1-1: Schematic view of the time dependent approach to the measurement of CP violation in the interference between mixing and decay amplitudes.

Fig. 5-2: View of the Silicon Verlex Tracker

Fig. 4-1: PEPH Layout.

PEPII and KEKB

PEP-II turned off April 7, 2008

 $OffIne+Online Luminosity (pb^{-1}!) (Iday)$ integrated.Luminosity (pb^−1!!)

CP Violation Asymmetry

$$A_{CP}(t) \equiv \frac{\Gamma(\overline{B^0} \to f_{CP}; t) - \Gamma(B^0 \to f_{CP}; t)}{\Gamma(\overline{B^0} \to f_{CP}; t) + \Gamma(B^0 \to f_{CP}; t)}$$

$$= A_f \cos(\Delta mt) - \xi_{CP} S_f \sin(\Delta mt)$$

2001:CKM validation from Babar (PRL 89(2002)201802) and Belle (*PR D* 66 (2002)071102)

Results are all compatible with a single phase inside the flavour mixing matrix

 $\frac{V_{td} V_{tb}^*}{V_{cd} V_{cb}^*}$

 $\beta = \phi$

(1.0)

14th anniversary of Direct CPV in B decay 2004

From Tevatron new constraints with Bs

Confirmation came also from Tevatron experiments CDF and DO, as in the In addition:

First double-sided 90% CL interval for Δm_s value was obtained by D0

collaboration

 $17 < \Delta m_s < 21 \, \mathrm{ps}^{-1}$

Measurement of Δm_s at 5 σ level was performed by the CDF collaboration

 $\Delta m_s = 17.77 \pm 0.10 \,(\text{stat}) \pm 0.07 \,(\text{syst}) \,\text{ps}^{-1}$

Then potting new constraints on CKM parameters:

talk of G. Borissov. @ Queen Mary Workshop , July 2014

mechanism of CPV.

LHCb experiment at CERN

LHCb: dedicated heavy flavour physics experiment at LHC

Collected >8 fb⁻¹

$|V_{ub}/V_{cb}|$ results

[1] W. Detmold, C. Lehner, and S. Meinel, arXiv:1503.01421

- Background contributions estimated using ad hoc control samples
- Largest exp. uncertainty from $\mathcal{B}(\Lambda_c^+ \to pK^+\pi^-)$
- Important and independent determination of V_{ub} from B factories

Vub

$CKM angle \gamma$ (source N.Neri)

LHCb (8 fb⁻¹) $\gamma = (74 + 5.0 - 5.8)^{\circ}$ from a combination of B \rightarrow DK results. Consistent with BaBar and Belle results.

5

Theory clean measurement

Oservation of direct T violation Babar 2012a lot of rumors on media

November 19, 2012

Read Article | More viewpoints

An experiment studying *B* meson decays makes a direct observation of time-reversal violation without relying on assumed relationships with other fundamental symmetries.

[Viewpoint on Phys. Rev. Lett. 109, 211801

physics today

Time-reversal asymmetry in particle physics has finally been clearly seen Bertram M. Schwarzschild

The		Log in Register	Subscribe	Digital & mobile	
Econo	mist				
World politics	Business & fin		Science & technolo	av I Culture I	Blogs

The arrow of time

Backward ran sentences...

To the relief of physicists, time really does have a preferred direction
Sep 1st 2012 | from the print adition

RESEARCH HIGHLIGHTS

Plant fertilization protein found

Fortilization influenceing plants in dependent on a protein that is exceeded by the egg cell and activates incouring sports.

artivite inconfing opera. Stafani Speanck at the University of Repository in Germany and the colleagues show that, is the eacided plant Availaby get makes the collars at a protein they call EGG CELL (BCL). This triggers the enderstructure of a score protein — one liabed to fusion of the sec cities or gamets fuse inside the sperm to the sperm cell source.

Sperm cells interacting with mutant A tribuly on aggs that have further or games fulled to frame, and the plant's pollen tubes continued to deliver a germ into the embryo suc. Thus a rough augger that ECH controls games batton. Science 2011, 1000-2007 (2012)

CLINANTE CRAME

Carbon drop in snail shell shock

Free-swimming stails

Time's arrow in B mesons

A committee of the central particle physics the idea that real physics are used in the hearing way forwards in time as they do bachwards has been observed directly for the first time. Members of the Table Caliboration transled data from their experiment (physics) which mat the SLAC Mission Accounting Laboratory in Meride Piek, Caliborate from 1999 to 2018. The new sectem situation B-meson de cay chains that seem time surversals of each others and a comparison of the de cay miss nervealed a strong asymmetry. Eachier organization have study to hims of time events of solution to the disclore during source that of our form violations and other functions estal symmetries. Phys. Rev. Lett. 108 211001 (2012) For a longer stary on the newarch, we greature access 258 red

Time-reversal violation

IOP A website from the institute of Physice

physicsworld.com

Physics World reveals its top 10 breakthroughs for 2012

Observation of direct T violation Babar 2012

Observation of direct T violation Babar 2012

Everything compatible with what expected from CPT conservation

All data were in full agreement with CKM

The matter-antimatter puzzle

НАРУШЕНИЕ СР-ИНВАРИАНТНОСТИ, С-АСИММЕТРИЯ И БАРИОННАЯ АСИММЕТРИЯ ВСЕЛЕННОЙ

A D Sakhanov

Твория расшираюцейся Вооленкой, предполагающая сверхплоткое изчальное состояние вешества, по-видимому, исключает возможность макроскопического разделения вешества в антивищества; поэтому следует принять, что в пряроде отсутствуют тела из антивицества; с.е. Вселевяка асименетрична в отношения числа часты и интичаства, (с.е. Вселеврия). В частности, отсутствке антибарионов к предполагальное отсутствне неизвестных барконных нейтрино означает отличие ст кула барионкого заряда (барионная асимиетряя). Мы хотим указать на возможное объяснение С-асимиетрах в горячей модели распиряющейся Вселевной (см. (1)) с привлечением эффектов карушения СР-инвариенткости (см. (21). Для объяснения барковной асимиетрия дополнительно предполагаем приближенный характор закона сохранения барионов.

Гринимаем, что законы сохраняния барионов и мюонов не являются вбсолютными и должны быть объединены в закон сохранения "конбинированного" баркон-мюонного заряда с_и - За_В - с_и. Положено: The A. Sakharov conditions for the Matter-antimatter unbalance in the universe

- Baryon instability
- C violation and CP violation
- Thermo dynamical non-equilibrium

In Standard Model with CKM the Sakharov condition is met as C and CP ,but calculations show that it is STILL NOT sufficient to explain the matter-antimatter unbalance .

NEW CPV sources and new particles?

New experiments with hadrons and e+ e-

- BELLE II @ SuperKEKB, the upgraded machine at KEK is now starting with a very ambitious goal (50 ab⁻¹).
- Upgraded LHCb will in future run at an unprecedented luminosity (300 fb⁻¹).

Both the experiments will probe new physics BSM looking at precise measurements of CP asymmetries and very rare decays of b and c quarks and τ leptons.

BEL LEII goals (source F.Forti)

- Phase I (2016)
 - NO final focus; NO damping ring
 - Circulated both beams but no collisions;
 - Tune accelerator optics, etc.; vacuum scrubbing
 - Beam Background studies with dedicated BEAST II/1 detector
- Phase II (2018)
 - First collisions
 - Beam Commissioning
 - Background measurements with BEAST II/2
 - Physics run with Belle II without Vertex Detector
- Phase III (2019→)
 - Physics run

BELLE upgrades to BELLEII es: Vertex Detector (source F.Forti)

BaBar Vertex Detector

Significant improvements in vertex resolution w.r.t. Belle

SuperKEKB/Belle II schedule (source F.Forti)

Phase 2 running concluded – 5 10³³ luminosity reached

Deficit in JFY2018 operation funding may cause Phase III to start in Feb 2019 rather Jan 2019

LHCb upgrade (source N.Neri)

LHCb: dedicated heavy flavour physics experiment at LHC

Collected >8 fb⁻¹

LHCD

LHCb ultimate γ sensitivity (source N.Neri)

LHCb (8 fb⁻¹) γ = (74 ^{+5.0}_{-5.8})^o from a combination of B \rightarrow DK results.

Uncertainty down to 0.35° with 300 fb⁻¹ after Upgrade II

Towards future in CPV LHCb and Belle II @

Observable	Expected th.	Expected exp.	Facility	
	accuracy	UP asream V	-	
CKM matrix				
$ V_{us} [K \rightarrow \pi \ell \nu]$	**	0.1%	K-factory	
$ V_{cb} [B \rightarrow X_c \ell \nu]$	**	1%	Belle II	
$ V_{i,b} [B_d \rightarrow \pi \ell \nu]$	*	4%	Belle II	
$\sin(2\phi_1) [c\bar{c}K_S^0]$	***	$8 \cdot 10^{-3}$	Belle II/LHCb	
ϕ_2		1.5°	Belle II	
ϕ_3	***	3°	LHCb	
CPV				
$S(B_s \rightarrow \psi \phi)$	**	0.01	LHCb	
$S(B_s o \phi \phi)$	**	0.05	LHCb	
$S(B_d \rightarrow \phi K)$	***	0.05	Belle II/LHCb	
$S(B_d \rightarrow \eta' K)$	***	0.02	Belle II	
$S(B_d \to K^*(\to K^0_S \pi^0)\gamma))$	***	0.03	Belle II	
$S(B_s o \phi \gamma))$	***	0.05	LHCb	
$S(B_d \rightarrow \rho \gamma))$		0.15	Belle II	
A_{SL}^d	***	0.001	LHCb	
A_{SL}^s	***	0.001	LHCb	
$A_{CP}(B_d \rightarrow s\gamma)$	*	0.005	Belle II	
rare decays		$\mathbf{\succ}$		
$\mathcal{B}(B \rightarrow \tau \nu)$	**	3%	Belle II	
$B(B \rightarrow D\tau\nu)$		3%	Belle II	
$\mathcal{B}(B_d \rightarrow \mu\nu)$	**	6%	Belle II	
${\cal B}(B_s o \mu \mu)$	***	10%	LHCb	
zero of $A_{FB}(B \rightarrow K^* \mu \mu)$	**	0.05	LHCb	
$\mathcal{B}(B \to K^{(*)}\nu\nu)$	***	30%	Belle II	
$\mathcal{B}(B \rightarrow s\gamma)$		4%	Belle II	
$\mathcal{B}(B_s \rightarrow \gamma \gamma)$		$0.25 \cdot 10^{-6}$	Belle II (with 5 ab ⁻¹)	
$B(K \rightarrow \pi \nu \nu)$	**	10%	K-factory	
$\mathcal{B}(K \to e \pi \nu) / \mathcal{B}(K \to \mu \pi \nu)$	***	0.1%	K-factory	
charm and τ				
$\mathcal{B}(\tau \rightarrow \mu \gamma)$	***	$3\cdot 10^{-9}$	Belle II	
$ q/p _D$	***	0.03	Belle II	
$arg(q/p)_D$	***	1.5°	Belle II	

Towards future with a continuous passion for discrete symmetries

Towards future with a continuous passion for discrete symmetries

Let's see if the dream come true...

Marco Ciuchini

50 years of CP violation - London, 11th July 2014

Continuous passion for Discrete Symmetries

as it is for Italo!

Continuous passion for Discrete Symmetries

as it is for Italo!Since the beginning. His work for the laurea thesis.

Demonstration of Parity Nonconservation in Hyperon Decay*†

F. EISLER, R. PLANO, A. PRODELL, N. SAMIOS, M. SCHWARTZ, AN J. STEINBERGER, Columbia University, New York, New York and Brookhaven National Laboratory, Upton, New York
P. BASSI, V. BORELLI, G. PUPPI, G. TANAKA, P. WOLOSCHE AND V. ZOBOLI, Istituto di Fisica, Bologna, Italy
M. CONVERSI, P. FRANZINI, I. MANNELLI, R. SANTANGELO, AN V. SILVESTRINI, Istituto di Fisica, Pisa, Italy

AND

D. A. GLASER, C. GRAVES, M. L. PERL, University of Michigan, Ann Arbor, Michigan

(Received October 21, 1957)

FIG. 1. Distribution in $\cos\theta$ for process (1). The shaded area represents events for production angles in the center-of-mass range 30° -150°.