Studying ring topology in the NA62 RICH M. Piccini

INFN- sezione di Perugia

Meeting Analisi - Italia

27/10/2018

Istituto Nazionale di Fisica Nucleare

RICH ACCEPTANCE

Remind:

The Cerenkov light emitted by a charged particle hits the RICH mirrors in a circle surface (impact surface) with radius R_{ring} The RICH geometry remap the reflected photons into a ring with radius R_{ring} in the focal surface (where the PMTs are installed)

Then RICH geometrical acceptance is mainly defined by 2 constrains:

- 1) The surface covered by the RICH mirrors
- 2) The surface covered by RICH PMTs

27/10/2017

RICH ACCEPTANCE

Different effects on the possibility to have hits in a certain arc of the ring

Instead to apply a priori acceptance cuts, let's look to the distributions of the hit in the reconstructed ring

Method

Once a ring is reconstructed:

- For each hit calculate the angle wrt the ring center in the *xy* plane
- Order the angles from the smallest to the largest
- Calculate θ_{i+1} θ_i
- Calculate $\Delta \phi_{MAX}$

Acceptance and bias to the fit

- Applying a cut on $\Delta \phi_{MAX}$ will also reject rings that are fully contained in the "traditional" geometrical acceptance.
- In any case the fit of rings with large $\Delta \phi_{MAX}$ is expected to be strongly biased

Rings with strong biases to the fit will be removed by a cut on $\Delta \phi_{MAX}$

$\Delta \phi_{MAX}$ and $\Delta \phi_{MIN}$ distributions

$\pi^+\pi^0$ and kµ2 samples

- Used the standard selections in PhysicsTools with few tighter cuts
- Request to have a space and time coincidence between the track and a RICH ring (4% losses)
- \sim 1000 bursts of run 6501 have been analyzed

Final samples before the last cuts:

 $\pi^+\pi^0$

27/10/2017

Meeting Analisi - Italia

Results

The ring with $\Delta \phi_{MAX} < 2.95$ rad (170°) are defined good, bad all the others

Radius distribution: good and bad rings

Defined good the ring with $\Delta \phi_{MAX} < 2.95$ rad (170°), bad all the others

The result of the fit for bad rings is strongly biased by the pitch of the PMTs in the active flange

Next step

• Suggestion by Ambrosino/Spadaro to build a Likelihood without applying a sharp cut on $\Delta \phi_{MAX}$ (cutting at 170° \rightarrow 15% of lost pions)

Ring radius 15-16 GeV/c for all rings

Meeting Analisi - Italia

Radius VS $\Delta \phi_{MAX}$

Ring radius 26-27 GeV/c for all rings

Radius VS $\Delta \phi_{MAX}$

Radius VS $\Delta \phi_{MAX}$

Radius distribution from momentum between 26 and 27 GeV

No way to parametrize the distribution with Gaussian fits as a function of $\Delta \phi_{MAX} \rightarrow$ Standard deviation must be used

Profile histogram Ring radius 26-27 GeV/c for all rings

Conclusions

Target: Give a probability for a track to be a pion or a muon as a function of (p, r, $\Delta \phi_{MAX}$).

If we re-weight the pion sample with the $\pi\nu\nu$ distribution extracted from the Monte-Carlo we can even apply a cut on the basis of the accepted inefficiency.

More difficult to apply a cut based on the value of muon contamination:

- 1) MC driven: consider the distributions of all possible backgrounds
- 2) Data driven: apply the almost final analysis (no MUV3)

Need to check the correlation between the χ^2 of the fit and $\Delta \phi_{MAX}$