

Baryon time-like form factors at \mathbf{H}

Monica Bertani (on behalf of the BESIII Collaboration) INFN, Laboratori Nazionali di Frascati

2018 European Nuclear Physics Conference September 2nd-7th 2018, Bologna, Italy

BARYON FORM FACTORS

- Fundamental properties of Baryons
 - Characterize the internal structure
 - Connected to charge and magnetization distributions
 - Playground for **theory** and **experiment**:
 - at low q² probe the size of the hadron
 - at high q² test QCD scaling

By a global analysis of scattering and annihilation experiments Form Factors can be extracted

OUTLINE

- BEPCII and BESIII
- Electromagnetic form factors (FFs) formalism
- Measurement of the proton electromagnetic FFs with:
 - ➢ energy scan technique: e⁺e⁻→ BB_{bar}
 - > Initial state radiation (ISR) technique: $e^+e^- \rightarrow BB_{bar}\gamma$
- $\succ Measurement of hyperon FFs: e^+e^- \rightarrow \Lambda_c \Lambda_{c,bar} , \Lambda \Lambda_{bar}$
- Ongoing analysis on the measurement of baryon FFs at BESIII
- Summary

BEPCII and BESIII

M.BERTANI BOLOGNA, EUNPC 2018

c.m. energy range: 2 GeV- 4.6 GeV.

ELECTROMAGNETIC FORM FACTORS (FF)

EXPERIMENTAL ACCESS IN TIME-LIKE REGION

Energy scan (direct annihilation): fixed q²

$$\frac{d\sigma^{Born,1\gamma}}{d\Omega} = \frac{\alpha^2 \beta C}{4q^2} [(1 + \cos^2 \theta) |G_M|^2 + \frac{4M^2}{q^2} \sin^2 \theta |G_E|^2]$$
$$\sigma^{Born}(q^2) = \frac{4\pi \alpha^2 \beta C}{3q^2} [|G_M(q^2)|^2 + \frac{2M^2}{q^2} |G_E(q^2)|^2]$$
$$\begin{bmatrix} C = \frac{\pi \alpha}{\beta} \frac{1}{1 - \exp(\pi \alpha / \beta)} & \text{charged B} \\ C = 1 & \text{neutral B} \end{bmatrix} \quad k = \frac{g-2}{2}, g = \frac{\mu}{J}$$

Initial State Radiation:

$$\frac{d^2 \sigma^{ISR}}{dx d\theta_{\gamma}} = W(s, x, \theta_{\gamma}) \sigma^{Born}(q^2)$$
$$W^{LO}(s, x, \theta_{\gamma}) = \frac{\alpha}{\pi x} \left(\frac{2 - 2x + x^2}{\sin^2 \theta_{\gamma}} - \frac{x^2}{2} \right)$$
$$x = 1 - q^2/s = 2E_{\gamma}/\sqrt{s}$$

both techniques can be used at BESIII

EXPERIMENTAL ACCESS IN TIME-LIKE REGION

Energy scan (direct annihilation): fixed q²

$$\frac{d\sigma^{Born,1\gamma}}{d\Omega} = \frac{\alpha^2 \beta C}{4q^2} [(1 + \cos^2 \theta) |G_M|^2 + \frac{4M^2}{q^2} \sin^2 \theta |G_E|^2]$$

$$\sigma^{Born}(q^2) = \frac{4\pi \alpha^2 \beta C}{3q^2} [|G_M(q^2)|^2 + \frac{2M^2}{q^2} |G_E(q^2)|^2]$$

Effective FF: $|G| = \sqrt{\frac{\sigma^{Born}(q^2)}{(1 + \frac{2M^2}{q^2})(\frac{4\pi \alpha^2 \beta C}{3q^2})}}$

Initial State Radiation:

$$\frac{d^2 \sigma^{ISR}}{dx d\theta_{\gamma}} = -W(s, x, \theta_{\gamma}) \sigma^{Born}(q^2)$$
$$W^{LO}(s, x, \theta_{\gamma}) = \frac{\alpha}{\pi x} \left(\frac{2 - 2x + x^2}{\sin^2 \theta_{\gamma}} - \frac{x^2}{2} \right)$$
$$x = 1 - q^2/s = 2E_{\gamma}/\sqrt{s}$$

both techniques can be used at BESIII

BESIII DATA SAMPLE

the world's largest dataset directly produced at e+e-J/ ψ , ψ (2S), ψ (3770), ψ (4180), Y(4260) R-QCD studies, XYZ states

M.BERTANI BOLOGNA, EUNPC 2018

8

PROTON FORM FACTORS

PROTON SPACE-LIKE & TIME-LIKE FFs

S. Pacetti et al. / Physics Reports 550-551 (2015) 1-103

• Flat cross section near threshold followed by a step $\sigma_{p\bar{p}}(4M_{p}^{2}) = \frac{\pi^{2}\alpha^{3}}{2M_{p}^{2}}\frac{\beta_{p}}{\beta_{p}}|G^{p}(4M_{p}^{2})|^{2} = 850|G^{p}(4M_{p}^{2})|^{2} pb \implies G^{p}(4M_{p}^{2})|=1 \quad \text{as point-like fermion pairs!}$ [EPJA39,315]

BESIII PRELIMINARY RESULTS

Scan technique (black and red points):

- 2012 data, 156.9 pb⁻¹ [PRD 91, 112004 (2015)]
- 2015 data, 688.5 pb⁻¹ : preliminary results, improved precitions
- ISR technique (light brown points):
 - tagged (7.4 pb⁻¹ above 3.773GeV), under reviewing
 - untagged (7.4 pb⁻¹ above 3.773GeV): preliminary results

Results compatible with BABAR

G_E AND G_M RATIO

Extraction of the ratio R=|GE|/|GM| ratio from proton angular distribution

G_E AND G_M RATIO

Extraction of the ratio R=|GE|/|GM| ratio from proton angular distribution

$$\frac{d\sigma}{d\cos\theta} = \frac{\pi\alpha^2\beta C}{2q^2} |G_M|^2 \left[(1+\cos^2\theta) + \frac{|G_E|^2}{|G_M|^2} \cdot \frac{4M^2}{q^2} \sin^2\theta \right]$$

PRELIMINARY MEASUREMENT OF G_M

Extraction of the magnetic FF G_M :

$$\frac{d\sigma}{d\cos\theta} = \frac{\pi\alpha^2\beta C}{2q^2} |G_M|^2 [(1+\cos^2\theta) + \frac{|G_E|^2}{|G_M|^2} \cdot \frac{4M^2}{q^2}\sin^2\theta]$$

few separate previous determinations of |G_M|

great improvement with BESIII !

OSCILLATIONS IN PROTON FFs

[A. Bianconi, E. Tomasi-Gustafsson PRL114 (2015)232301, PRC93(2016)035201]

Periodic interference in F_p (e⁺e⁻ -> pp_{bar}) first seen in BaBar data, confirmed in BESIII ! Oscillations due to re-scattering of p and pbar at ~Ifm distance → large Imaginary part close to threshold p=proton momentum in p rest frame D= F_{osc} =|Geff|-F0

> M.BERTANI BOLOGNA, EUNPC 2018

see Egle's talk !

 $e^+e^- \rightarrow \Lambda_c \overline{\Lambda}_c$

MEASUREMENT OF $e^+e^- \rightarrow \Lambda_c \overline{\Lambda}_c$

Thanks to Λ_c weak decay $e^+e^- \rightarrow \Lambda_c \overline{\Lambda_c}$ can be detected with good efficiency even exactly at threshold

BELLE measurement has significant uncertainties:

Y(4660) -> Λ_c Λ_{cbar} may be consistent with a hidden charm tetraquark (charmed baryonium) ? [R. Faccini et al. arXiv:0911.2178(2017), L. Maiani et al. Phys. Rev. D 72, 031502]

BESIII data set close to production threshold (+1.6MeV):

Energy~(GeV)	Integrated lum. (pb^{-1})
4.5745	47.67
4.5800	8.54
4.5900	8.16
4.5995	566.93

[(PRL120 (2018) 132001]

BESIII MEASUREMENT OF $e^+e^- \rightarrow \Lambda_c \overline{\Lambda}_c$

Analysis method

Single Tag method:

- Only one of the baryon is reconstructed
- Energy difference:

 $\Delta E = E_{cand.} - E_{beam}$

beam-constraint mass

$$M_{BC} = (E_{beam}^2 - p_{cand.}^2)^{1/2}$$

are used to extract the signals

10 Cabibbo-favored decay modes as

well as corresponding charge-conjugate

decay modes of Λ_c^+ are employed

[(PRL120 (2018) 132001]

BESIII MEASUREMENT OF $e^+e^- \rightarrow \Lambda_c \overline{\Lambda}_c$

Polar angle distribution

$$|G_E/G_M|^2(1-\beta^2) = (1-\alpha_{\Lambda_c})/(1+\alpha_{\Lambda_c})$$

[(PRL120 (2018) 132001]

 $1.23 \pm 0.05 \pm 0.03$

M.BERTANI BOLOGNA, EUNPC 2018 $|G_E/G_M|$ measured for the first time by BESIII

4.5995

CROSS SECTION OF $e^+e^- \rightarrow \Lambda_c \overline{\Lambda}_c$

- $\sigma(e^+ e^- -> \Lambda_c \bar{\Lambda}_c)$ behaviour similar to $\sigma(e^+ e^- -> p \bar{p}$) :
 - Strong enhancement at threshold followed by a plateau
 - $\sigma(e^+ e^- \rightarrow \Lambda_c \bar{\Lambda}_c)$ close to the point-like value, once Coulomb factor is taken into account: $\sigma(e^+ e^- \rightarrow \Lambda_c \bar{\Lambda}_c)_{point} \approx \pi^2 \alpha^3 / (2M_B) \approx 145 \text{pb}$
- Some tension between BELLE and BESIII at threshold, more data is needed at threshold and above 4.6 GeV

[(PRL120 (2018) 132001]

M.BERTANI BOLOGNA, EUNPC 2018

20

NEUTRAL BARYONS FORM FACTORS

NEUTRAL BARYONS ENERGY BEHAVIOUR AT THRESHOLD

$$\sigma_{B^{0}\overline{B^{0}}} (q^{2}) = \frac{4\pi\alpha^{2}C\beta}{3q^{2}} \left[|G_{M}(q^{2})|^{2} + \frac{2M^{2}}{q^{2}} |G_{E}(q^{2})|^{2} \right] \xrightarrow{q^{2} \to 4M^{2}} \frac{\pi\alpha^{2}\beta}{3q^{2}} |G|^{2} \to 0$$

- NO Coulomb correction at hadronic level: C=I
 - σ -> 0 if β ->0
 - yet experimentally non zero σ are found

LAMBDA FORM FACTOR

- Only few measurements of σ (e⁺e⁻ $\rightarrow \Lambda \overline{\Lambda}$) and Lambda Effective f.f.:
 - BaBar, DM2, very recently BESIII:

[(PRD92 (2015) 034018]

- Threshold enhancement: BESIII point only I MeV over threshold $M_{\Lambda\Lambda}$ =2.2324 GeV: $\sigma(e+e-\rightarrow\Lambda\Lambda bar)=(305+-45+66-36)pb$, not zero !
- Away from threshold agreement between BESIII and BaBar points

LAMBDA FORM FACTOR

Based on 40.5 pb⁻¹ collected in 4 scan points between 2.2324 – 3.08 GeV in 2012

$\sqrt{s} \; (\text{GeV})$	Channel		
2.2324	$\Lambda \to p\pi^-, \overline{\Lambda} \to \overline{p}\pi^+$		
	$\overline{\Lambda} ightarrow \overline{n} \pi^0$		
	combined		
2.4000	$\Lambda \to p\pi^-, \overline{\Lambda} \to \overline{p}\pi^+$		
2.8000			
3.0800			

The Born cross section of $e^+e^- \to A\bar{A}$ is determined from: $\sigma^B = \frac{N_{obs}}{\mathcal{L}_{int} \cdot \varepsilon \cdot (1+\delta) \cdot B}$

The effective FF is defined by

$$|G| = \sqrt{\frac{|G_M|^2 + 1/2\tau |G_E|^2}{1 + 1/2\tau}} = \sqrt{\frac{3s\sigma^B}{4\pi\alpha^2\beta}} \cdot \frac{1}{1 + 1/2\tau}$$

\sqrt{s}	$\mathcal{L}_{\mathrm{int}}$	Nobs	$\epsilon(1+\delta)$	$\sigma^{\rm B}$	G
(GeV)	(pb^{-1})		(%)	(pb)	$(\times 10^{-2})$
2.2324_{1}	2.63	43 ± 7	12.9	$312 \pm 51^{+72}_{-45}$	
2.2324_{2}	2.63	22 ± 6	8.25	$288 \pm 96^{+64}_{-36}$	
2.2324_c				$305 \pm 45^{+66}_{-36}$	$61.9 \pm 4.6^{+18.1}_{-9.0}$
2.400	3.42	45 ± 7	25.3	$128\pm19\pm18$	$12.7 \pm 0.9 \pm 0.9$
2.800	3.75	8 ± 3	36.1	$14.8 \pm 5.2 \pm 1.9$	$4.10 \pm 0.72 \pm 0.26$
3.080	30.73	13 ± 4	24.5	$4.2\pm1.2\pm0.5$	$2.29 \pm 0.33 \pm 0.14$

LAMBDA FORM FACTOR

• Interactions in the final state of $\Lambda\overline{\Lambda}$ well reproduce BaBar data but not the first BESIII point near threshold.

J. Haidenbauer, U.-G. Meißner / Physics Letters B 761 (2016) 456-461

LAMBDA POLARIZATION OBSERVABLES

- With hyperons, polarization is experimentally observable by their weak Parity violating decay, polarization effects can be observed even if the initial e⁺e⁻ state is unpolarized.
- Complex FFs and relative phase:
 - $G_M(q^2) = |G_M(q^2)|e^{i\Phi M}$, $G_E(q^2) = |G_E(q^2)|e^{i\Phi E}$
 - $\Delta \Phi = \Phi_{\mathsf{E}} \Phi_{\mathsf{M}}$
 - $\Delta \Phi$ can be obtained from angular distribution of daughter baryon from Λ weak decay
 - 2015 scan data sample: E_{cm}=2.369, 66.9 pb⁻¹
 - Multidimensional formalism developed * to extract

 G_{E} and G_{M} from the decay distribution

 $rac{d\sigma}{d\Omega} \propto 1 + lpha_{\Lambda} \mathbf{P}_{\mathbf{y}} \cdot \mathbf{\hat{q}}$,

 $\alpha_{\Lambda:}$ asymmetry parameter,

\hat{\mathbf{q}} unit vector along daughter baryon

• Until now, no conclusive phase measurement exists !

RELATIVE PHASE MEASUREMENT

First time measurement of $\Delta \Phi$ for any baryon !

LAMBDA POLARIZATION MEASUREMENT [arXiv:1808.08917v1]

- Using a large data of J/ ψ collected by BESIII:
 - $J/\psi \rightarrow \Lambda \overline{\Lambda}$
 - α_{Λ} =0.75 instead of 0.64 (PDG): 5 σ deviations, affecting $\Delta \phi$ results !
- $\Delta \phi$ result at J/ ψ is consistent and improves 2.369MeV finding:

M.BERTANI BOLOGNA, EUNPC 2018 First time measurement of $\Delta \Phi$ for any baryon !

NEUTRON F.F.

- Only two direct measurements of σ (e+e- \rightarrow nn) and neutron Effective f.f.
- Large errors (30%)

- No measurement of $R = |G_E/G_M|$ or $|G_E|$ and $|G_M|$
- q<2GeV σ (e+e- → nnbar) $\approx \sigma$ (e+e- → ppbar)
- Non vanishing cross section at threshold ?
- Gn| > |Gp| as q increases (pQCD: |Gp|≈: |Gn|)

BESIII has new, precise results, under internal review, stay tuned !

CONCLUSIONS AND PERSPECTIVES

- BESIII is an excellent laboratory for Baryon FFs measurement in the time-like region
- Present theory is missing something
- Proton FFs extracted with energy scan data and ISR analysis at resonances
- \checkmark Λ , Λ_{C} FFs close to threshold, intriguing enhancement observed
- ✓ First measurement ever of the relative phase between Electric and Magnetic FFs
- \checkmark More data on tape is being analyzed
- ✓ Neutron FFs results will soon be public
- \checkmark Possibly higher energy data in the future

M.BERTANI BOLOGNA, EUNPC 2018

Thank you !