Enrico De Filippo (INFN Catania) for the **NEWCHIM** collaboration

Dependence from the Isospin of the entrance channel in Projectile-like (PLF) break-up at Fermi energies

The Physics case: dynamical vs. statistical production of Intermediate Mass Fragments (IMF).

The Experiment: The InKilsSy experiment (Inverse Kinematics Isobaric Systems), ¹²⁴Xe+⁶⁴Zn,⁶⁴Ni at 35 A.MeV as compared with previous studied reactions ^{124,112}Sn+^{64,58}Ni.

Main Results: the «dynamical» fission of the PLF* is mainly rules by the N/Z content of the projectile and target and not dependent by the sistem «size».

Constrained Molecular Dynamics (CoMD-3) simulations

<u>CHIFAR</u>: CHImera-FARcos : A new experiment to study projectilelike break-up and IMF production at 20 A.MeV with the CHIMERA and **FARCOS** devices

Physical case: sources of IMFs in semi-peripheral reactions

In the "**neck**" emission light IMFs (Z<≈9) are produced at midrapidity due to the rupture of a piece of nuclear matter a low density ("neck"). This is generally a **FAST** process (<100 fm/c)

Excitation of a primary Projectilelike PLF* (TLF*) followed by its **dynamical (non-equilibrated)** splitting (**dynamical fission**). In this case emission of the **lighter IMF** is preferentially backwards in the PLF reference system. This process is in competition with **statistical** (**equilibrated**) break-up

Our goal: Study of Isospin influence on PLF dynamical break-up

10

(qu) Zp/2p 10 10

Main experimental signature: Enhanced contribution of dynamical component in binary projectile break-up (dynamical fission) for neutron rich system

•Dynamical component: enhanced for the neutron rich

•Statistical component: almost equal (A ratio: ~1.1 close to the mass ratio between the systems) -

Isospin influence on dynamical production of IMFs in the InKiIsSy (Inverse Kinematics Isobaric Systems) experiment: ¹²⁴Xe + ⁶⁴Zn,⁶⁴Ni@35 A.MeV

The main goal of the experiment was to disentangle entrance channels Isospin effects from «size> effects by using isobaric systems M_{proj} =124 : M_{targ} = 64

P. Russotto et al.: arXiv:1803.03046v1 (2018)

System	N/Z Projectile	N/Z target	N/Z compound
¹²⁴ Sn+ ⁶⁴ Ni	1.48	1.29	1.41
¹²⁴ Xe+ ⁶⁴ Ni	1.30	1.29	1.29
¹²⁴ Xe+ ⁶⁴ Zn	1.30	1.13	1.24
¹¹² Sn+ ⁵⁸ Ni	1.24	1.07	1.18

Analysis of the two largest fragments $Z_1 - Z_2$

Analysis of the two largest fragments Z₁ - Z₂

We select only data with Vrel/Vviola <= 1.5 in order to reject IMFs emitted from TLF (see P. Russotto et al., PRC 91, 014610 2015.) Galileian Invariant cross-sections for the lighter fragment A_L in the reference frame of the PLF source

Data analysis method: angular distributions

Disentangling statistical

2500

and dynamical emission

Three body analysis of fragments (neck dynamics) in INKIISSY

See also: E.d.F. et al. Phys. Rev. C86 014610 2012

PLF BREAK-UP ANGULAR DISTRIBUTIONS

We use angular distribution of fragments in order to estimate the probabilities of dynamical vs. statistical emission as a function of IMFs charge

PLF BREAK-UP ANGULAR DISTRIBUTIONS

Main experimental Result: dynamical emission is favored by an increase of projectile and target Isospin and is independent by the system size

P. Russotto, E.d.F, E.V Pagano et al. arXiv:1803.03046v1 (2018) To be submitted to EPJ-A

Main experimental Result: dynamical emission is favored by an increase of both Projectile and Target Isospin

Linear Scaling with a weighted N/Z content of projectile and target

Dynamical emission is mainly ruled by The N/Z content of both projectile and target

Constrained Molecular Dynamics simulation (CoMD-3)

✓ ¹²⁴Xe + ⁶⁴Ni and ¹²⁴Sn + ⁶⁴Ni @ 35 A.MeV ✓ **Preliminary** test at 650 fm/c and stiffness parameter on $E_{sym}(\rho)$, $\gamma=1$

✓ Checking for projectile break-up events

Model → see M. Papa, Phys. Rev. **C87**, 014001 (2013) and refs therein

Selection: data analysis as in the experiment

Simulation with Constrained Molecular Dynamics simulation (CoMD-3)

Dynamical processes in projectile break-up and IMF production at 20 A.MeV studied with the CHIMERA and FARCOS devices. <u>CHIFAR</u>: CHImera-FARcos (approved LNS-PAC proposal) spokes: E.V. Pagano, E.d.F., P. Russotto

Dynamical processes in projectile break-up and Intermediate Mass Fragments production at **20 A.MeV** beam incident energy studied with the CHIMERA and **FARCOS** devices

CHIMERA + 10 FARCOS telescopes in a "quasi"-ring configuration ¹²⁴ Xe, ¹²⁴Sn + ⁶⁴Ni, ⁶⁴Zn ¹¹²Sn+⁵⁸Ni @ 20A.MeV

Configuration CAD study for 10 FARCOS telescopes between the sphere and ring 9; *Luis Acosta group, Mexico*

FARCOS: Femtoscope Array for COrrelations and Spectroscopy

Technical Design Report (TDR): <u>https://drive.google.com/file/d/0B5CgGWz8LpOOc3pGTWdOcDBoWFE/view</u>

64 mm, 32 strips, Double-Sided Silicon Strip Detectors produced by Micron Semiconductor. (300 and 1500 μm / C= 25pF and 5pF) Capton cable 2x32pin connectors Minimum PCB frame-area thick, 4 mm, frame-thick 6.5 mm ΔE= 20KeV (α 5.48 MeV) ΔE/E (elastic)=0.2-0.3% Rise time<20ns Highly homogeneous CsI(TI) crystals produced by SCIONIX. Wrapped with 0.12 mm thick white reflector +50 μ m aluminized mylar. Aluminized mylar window 2 μ m thick (0.29 gr/cm²). Read by Photodiode Hamamatsu 300 μ m Δ E/E=2-3% (α 5.48 MeV)

Summary

EUNPC2018

We have shown results of the InKiIsSy experiment, ¹²⁴Xe+⁶⁴Zn,⁶⁴Ni at 35 A.MeV using two systems that are isobaric with the ¹²⁴Sn+⁶⁴Ni. All the system have the same size but differ in N/Z isospin

Results show that in the binary break-up of the quasiprojectile there is an enhancement of the break-up probability for the neutron-rich system with respect to the neutron poor and this is due to the increase of the dynamical emission component, mainly ruled by the N/Z content of the projectile and target.

This effect could be related to the density dependence of symmetry energy but needs calculations that are able to follow the largest possible time-scales of IMF emission. We performed simulations using the CoMD3 model with promising results.

CHIFAR: A new experiment by using CHIMERA and FARCOS devices is programmed in order to study projectile break-up and IMF production and correlations at 20 MeV/A

Collaboration for the INKIISSY experiment

P. Russotto¹, E. De Filippo², E.V. Pagano^{1,3}, L. Acosta^{1,4}, L.Auditore^{2,5}, T. Cap⁶, G.Cardella², S. De Luca^{2,5}, B.Gnoffo^{2,3}, G.Lanzalone^{1,7}, I.Lombardo², C.Maiolino¹, N.Martorana^{1,3}, T. Minniti², S. Norella^{2,5}, A. Pagano², M.Papa², E. Piasecki⁸, S.Pirrone², G.Politi^{2,3}, F. Porto^{1,3}, L.Quattrocchi^{2,3}, F.Rizzo^{1,3}, E. Rosato⁹, K. Siwek-Wilczynska¹⁰, A.Trifirò^{2,5}, M.Trimarchì^{2,5}, G. Verde² and J. Wilczynski⁶

> 1-INFN-LNS Catania 2-INFN Sezione di Catania 3-Dipartimento di Fisica e Astronomia Università di Catania 4-Instituto de Física Universidad Nacional Autónoma de México, México 5-MITF, Università Messina 6-National Center for Nuclear Research Otwock-Swierk, Poland 7-Università Kore Enna

EUNPC2018

8-Heavy Ion Laboratory, University of Warsaw, Poland 9-INFN-Sez. di Napoli and Dipartimento di Fisica Università di Napoli Federico II 10- Faculty of Physics Universy of Warsaw, Poland