

F. Mingrone, C. Massimi on behalf of the n_TOF Collaboration

The n_TOF facility @ CERN

CERN: European Organization for Nuclear Research (Geneva, Switzerland)

- Since 1954
- Various accelerator complex
- More than LHC: injectors "feeding" minor experiments

The n_TOF facility @ CERN

CERN: European Organization for Nuclear Research (Geneva, Switzerland)

- Since 1954
- Various accelerator complex
- More than LHC: injectors "feeding" minor experiments

n_TOF: neutron Time-Of-Flight facility

- International Collaboration 117 researchers, 42 • institutes from EU, Russia, India and Australia
- Neutron source
- Neutron energy spectrometer with the tof technique

TI2

EUropean Nuclear Physics Conference 2018 – Bologna, 4th Sept 2018

- 2 type of n_TOF beam:
 - dedicated (TOF cycle)
 - parasitic (EAST cycle)

- 2 type of n_TOF beam:
 - dedicated (TOF) cycle)
 - parasitic (EAST cycle)

Kinetic Energy

Momentum (Ge

RF Harmoni

Number of Bun

Intensity per buncl

Bunch Length [4

Momentum spread

εL (matched area)

εΗ [1 σ , normalized] (π

εV [1 σ , normalized] (π

	IN - Booster Ring 2	EXT - Dedicated	EXT - Parasitic						
(GeV)	1.387	19	.403						
eV/c)	2.128	20.32							
С	8		8						
ches	1		1						
h (E10 p)	up to 850	up to 850	up to 300						
σ] (ns)	210	25	25						
Δp/p [1 <i>σ</i>]	1.7E-03	7.85 E-4 @C690	3 E-01 @C690						
.) (eV s)	1.75	3.22 @C690	0.55 @C690						
t mm mrad)	11	21.6 @C690	7.0 @C690						
mm mrad)	9	7.7 @C690	7.0 @C690						

6

EUropean Nuclear Physics Conference 2018 – Bologna, 4th Sept 2018

Federica Mingrone

Mean + 10	Send new Σ + offset	Keep current AQN
	-	

Event	Timing
Injection	170

Event	Timing
Injection	170

Longitudinal blow-up

- immediately after the injection
- increases the momentum spread of the particle within the bunch through (200 MHz) RF modulation
- eases transition crossing
- improves bunch rotation

Federica Mingrone

	-	
	-	•.•.
		٠.٠.
		· . · .
		· · ·
•		٠. ٠.
		· . '
		٠. ٠.
		· . ·
		•.•
		٠.
I		· . ·
		٠.
		· . '
-		• . •
_		· * .
		· . ·
		• • •
		. · .
		• .•
		٠.
		· . /
		• . •
		· .
		· . ·
		•.•
		٠.
		· • •
		• • •
		· .
5.		· . '
		•.•
		· • •
		•.•
		· * .
		· . '
		·.*.
		· . /
		• . •
		· * •
		• • •
		· * •
		• • •
		٠.
		· . '
		•.•
		· .
		• • •
		٠. ٠
		· . ·
		· .
	-	·
	-	
	-	٠.

Event	Timing
Injection	170
Transition	316

Longitudinal blow-up

- immediately after the injection
- increases the momentum spread of the particle within the bunch through (200 MHz) RF modulation
- eases transition crossing
- improves bunch rotation

•	2	<i>.</i>	 4	<i>.</i>	 4	<i>.</i> .	٠.	4	4	4		2	2	•	 	4	 	4	1		•		.'	•	•	2	4		 4	•	۰.	<i>.</i>	۰.	۰.	٠.	٠.	•		.'	 1	۰.	•			 ۰.	۰.	۰.	•	•	•		2	.'	 <u>.</u>	<i>.</i>	Ċ,	1
																_																						_																			
															I	Г																						Г																			
															I																							L																			

Mean + 10	Send new Σ + offset	Keep current AQN

Event	Timing
Injection	170
Transition	316
Bunch Rotation	692.9
Ejection	695

Bunch rotation

- immediately before the extraction
- allows to shorten the bunch length

The n_TOF beam: spallation target

The n_TOF beam: spallation target

Federica Mingrone

Federica Mingrone

Federica Mingrone

Federica Mingrone

Federica Mingrone

Federica Mingrone

Some figures

	EAR1	EA
Wide energy range	thermal to 1 GeV	therr 300
High instantaneous neutron flux	2 x 10 ⁵ n/cm²/pulse	3 x n/cm²
Low repetition rate	< 0.8 (1 pulse/2	3 Hz .4 s ma
High energy resolution	ΔE/E=10 ⁻⁴ (@10 keV)	∆E/E (@10

Federica Mingrone

Some figures

	EAR1	EA
Wide energy range	thermal to 1 GeV	therr 300
High instantaneous neutron flux	2 x 10 ⁵ n/cm²/pulse	3 x n/cm ²
Low repetition rate	< 0.8 (1 pulse/2	3 Hz .4 s ma
High energy resolution	∆E/E=10 ⁻⁴ (@10 keV)	∆E/E (@10

Federica Mingrone

Some figures

	EAR1	EA
Wide energy range	thermal to 1 GeV	therr 300
High instantaneous neutron flux	2 x 10 ⁵ n/cm²/pulse	3 x n/cm²
Low repetition rate	< 0.8 (1 pulse/2	3 Hz .4 s ma
High energy resolution	∆E/E=10 ⁻⁴ (@10 keV)	∆E/E (@10

The n_TOF physics program: neutron-induced reaction measurements

Federica Mingrone

The n_TOF physics program: neutron-induced reaction measurements

The n_TOF physics program: neutron-induced reaction measurements

The n_TOF physics program: neutron-induced reaction measurements

Federica Mingrone

The n_TOF physics program: neutron-induced reaction measurements

Different detection setups:

- Fission, (n,cp): gaseous and solid state detectors
- Radiative capture: liquid scintillators
- (Highly) enriched samples, thin material and backing

To minimise the systematic uncertainties:

- Characterisation of sample homogeneity and areal density
- Monitoring and characterisation of the neutron beam

The n_TOF facility: class A laboratories

Federica Mingrone

EUropean Nuclear Physics Conference 2018 – Bologna, 4th Sept 2018

The n_TOF facility: detection systems

Federica Mingrone

(n,γ): TAC, C6D6

(n,cp):Silicon, sCVD, MicroMegas

(n,f): PPAC, MicroMegas

Behind neutron-induced reactions: neutron Imaging @ EAR2

Measuring station

- Height \approx 220 cm from the floor
- Sample-camera distance ≈ 5 cm
- Able to host different sample, possibility to fine tune the sample position

Behind neutron-induced reactions: neutron Imaging @ EAR2

Inspection of a spent Antiproton Decelerator target

- Highly radioactive ($\approx 5 \text{ mSv/h} @ 10 \text{ cm}$)
- Automated measuring station
- Handling of the target with CERNbot and Teodor robots

SPECIFICATION REMPLISSAGE		
MATIERE	LONGUEUR	DIAMETRE
Graphite	4.5	-
Alumine	1	6
Iridium	55	3
Graphite	23	15
Titane	3.5	15

- The n_TOF facility exploits as a powerful neutron source a pulsed proton beam (20 GeV/c) from the CERN Proton Synchrotron coupled to a lead spallation target
- Unique characteristics: very high resolution neutron spectrometer exploiting a white energy spectrum and a very high instantaneous flux
- The Class-A experimental areas combined with flexible detection systems allows to perform a variety of neutron-induced cross section measurements and to be exploited for technical application as neutron imaging
- > n_TOF after LS2

- The n_TOF facility exploits as a powerful neutron source a pulsed proton beam (20 GeV/c) from the CERN Proton Synchrotron coupled to a lead spallation target
- Unique characteristics: very high resolution neutron spectrometer exploiting a white energy spectrum and a very high instantaneous flux
- The Class-A experimental areas combined with flexible detection systems allows to perform a variety of neutron-induced cross section measurements and to be exploited for technical application as neutron imaging
- > n_TOF after LS2
 - Proton beam target assembly: higher proton intensity (up to 10¹³ ppp), double bunch spill from PS Booster

- > The n_TOF facility exploits as a powerful **neutron source** a pulsed proton beam (20) GeV/c) from the CERN Proton Synchrotron coupled to a lead spallation target
- Unique characteristics: very high resolution neutron spectrometer exploiting a white energy spectrum and a very high instantaneous flux
- > The Class-A experimental areas combined with flexible detection systems allows to perform a variety of neutron-induced cross section measurements and to be exploited for technical application as **neutron imaging**
- > n_TOF after LS2
 - Proton beam target assembly: higher proton intensity (up to 10¹³ ppp), double bunch spill from PS Booster
 - Neutron beam-line: neutron imaging material-selective, irradiation station with Target #3

- > The n_TOF facility exploits as a powerful **neutron source** a pulsed proton beam (20) GeV/c) from the CERN Proton Synchrotron coupled to a lead spallation target
- Unique characteristics: very high resolution neutron spectrometer exploiting a white energy spectrum and a very high instantaneous flux
- \succ The Class-A experimental areas combined with flexible detection systems allows to perform a variety of neutron-induced cross section measurements and to be exploited for technical application as **neutron imaging**
- > n_TOF after LS2
 - Proton beam target assembly: higher proton intensity (up to 10¹³ ppp), double bunch \bullet spill from PS Booster
 - Neutron beam-line: neutron imaging material-selective, irradiation station with Target #3 **Detection techniques:** gaseous targets, γ spectrometry with Ge detectors, position sensitive scintillators for (n,γ) measurements (i-TED)

THANK YOU FOR YOUR ATTENTION!

Federica Mingrone

federica.mingrone@cern.ch

Bunch rotation

- Used to shorten the bunch length just before extraction
- The bunch is rotating in longitudinal phase space with its synchrotron frequency inside its RF-bucket
- It oscillates between a big amplitude with a short bunch length and vice versa
- Two ways to start a bunch rotation:
 - 1. Drastic and sudden increase of the cavity voltage \rightarrow used with 80 MHz cavities
 - Sudden change of phase by 180° between bucket and bunch. The bunch starts to stretch along the separatrix. Not to lose the beam outside of the bucket it is necessary to jump back after short time to the original phase → used with 10 MHz cavities (limitation of the RF-voltage). Used for n_TOF as the H8 does not allow to use the 80 MHz cavities.
- Duration of the bunch rotation: depends on the speed of bunch lengthening. If applied too long, the bunch cannot be recaptured completely (normally below one quarter of a synchrotron period).
- End of the bunch rotation: difficult to come back to the exact initial conditions as before starting the bunch rotation, but one can still achieve it partly. To stop the bunch rotation the same methods as for starting it are used for a quarter of synchrotron period at the proper instant. If the bunch rotation is not stopped a filamentation will start, resulting in a blow up of the beam.

The n_TOF facility @ CERN

CERN: European Organization for Nuclear Research (Geneva, Switzerland)

- Since 1954
- Various accelerator complex
- More than LHC: injectors "feeding" minor

Federica Mingrone

TI2

The n_TOF facility: timeline

Federica Mingrone

Big Bang Nucleosynthesis

- phase of the Universe (0.001 to 200 s)
- Conditions are similar to those that exist in stars today or in thermonuclear bombs. Heavier nuclei such as deuterium, helium and lithium soak up the neutrons that are present
- The remaining neutrons either decay ($\tau \sim 1000$ s) or induce further reactions

• The BBN Theory defines the nuclear-reaction chain which leads to the formation (synthesis) of the lightest elements in the initial

Cross-section measurement on ⁷Be(n, α) and ⁷Be(n,p) @ EAR2: See talk by M. Mastromarco

EUropean Nuclear Physics Conference 2018 – Bologna, 4th Sept 2018

Stellar Nucleosynthesis: s-process

- Hoyle, Reviews of Modern Physics 29 (1957)
- Based on a balance between radiative neutron-capture and subsequent beta-decays
- Production of the majority of the isotopes in the range $23 \le A \le 46$ (weak component) and for a considerable proportion of the isotopes in the range $63 \le A \le 209$ (main component)
- Time scale: from about 100 to 10⁵ years for each neutron capture
- The abundance of elements in the Universe depends on the **thermodynamical conditions** of the stellar medium (temperature and neutron density) and on the **neutron capture** cross-section

Federica Mingrone

• One out of 8 physical processes responsible for the synthesis of elements in stars – M. Burbridge, G.R. Burbidge, W.A. Fowler and F.

S. Cristallo et al.,

Stellar Nucleosynthesis: s-process

 $^{63}Ni(n,\gamma)$ – radiative capture cross section on a branching isotope

• EAR1

Federica Mingrone

• Radioactive isotope ($t_{1/2} = 101.2 \pm 1.5$ yr) \Rightarrow branching point • Sample preparation: separation of ⁶³Cu impurities • Detection setup: C6D6 liquid scintillators

EUropean Nuclear Physics Conference 2018 – Bologna, 4th Sept 2018

C. Lederer et al., Phys. Rev. Lett. 110 (2013) 022501

Nuclear technology

R&D to solve the longstanding problems of nuclear technologies

- Safety
- Non-proliferation
- Efficiency
- Cost effectiveness
- Waste management

New reactor concepts

 Fast reactors and ADS (new fuel cycles, e.g. Th-U) Multi-recycling of the fuel

Improving waste management (reduction of the long-term radio-toxicity of the ultimate waste)

· SCWR

higher efficiency and plant simplification

• VHTRs

passive safety features and the ability to provide very-high-temperature process heat (used ad example in the massive production of hydrogen)

1970

ADS Accelerator Driven System

Source: Generation IV International Forum, www.gen-4.org.

Nuclear technology

$^{233}U(n,\gamma/f)$ – radiative capture cross section on a fissile isotope

- EAR1
- Fissile isotope ($\sigma_{\gamma}/\sigma_f \sim 10^{-1}$), highly radioactive
- about 1.5 MBq/sample + very compact design \Rightarrow assembly of the samples in the fission chamber particularly challenging

Courtesy of M. Bacak

Federica Mingrone

- Sample preparation:
 - 14 sealed spots, high purity material
- Detection setup: combined detection technique
 - Total Absorption Calorimeter (TAC): 4π array of 40 BaF crystals
 - Compact multi-plate fission chamber to be put in the TAC centre and housing 14 different samples

NCT – Neutron Capture Therapy

- The technique is based on the "ability" of isotopes (e.g. ¹⁰B) to capture low energy neutrons.
- with a neutron beam.
- destroy the cancer cell
- **KEY QUANTITY**: neutron-induced reaction cross section σ

Chemical compounds containing the particular isotope are accumulated in the cancer cells, and the patient is afterwards irradiated

Neutron Imaging @ EAR2: detection system

- Detection system from Photonic Science:
 - ZnS/⁶LiF based neutron scintillator, active area of 100x100 mm², thickness \approx 100 µm 45 degree the camera off-beam mirror pixel for a 13.3×13.3 mm² active input area **SCMOS** camera ⁶LiF/ZnS neutron Neutron scintillator beam
- 45 degree mirror to allow the positioning of • Air-cooled SCMOS camera, 2048×2048 • Optical pixel resolution: 6.5 µm • Remote control of the apparatus Possibility to externally trigger the camera with the PS trigger

Beam profile

- n_TOF big collimator
 - 66.7 mm inner diameter
 - About 1×10⁶ neutrons/cm²/pulse (8×10⁵) n/cm²/s if 1 pulse every 1.2 seconds) @ thermal
 - Beam profile: 9 to 11 cm diameter
- n_TOF small collimator
 - 21.8 mm inner diameter
 - About 6×10⁵ neutrons/cm²/pulse (5×10⁵) n/cm²/s if 1 pulse every 1.2 seconds) @ thermal
 - Beam profile: 4 to 6 cm diameter

Neutron beam profile obtained with FLUKA simulation @ 220cm height

