The quest for new data on the Space Star Anomaly in pd breakup

Andrzej Wilczek for the Few Body Systems Collaboration

Institute of Physics, University of Silesia, Katowice

EuNPC 2018 Bologna 6 IX 2018

Andrzej Wilczek (University of Silesia)

Space Star Anomaly

What is the Space Star Anomaly

- Space Star is a specific configuration where momenta of the final state nucleons form an equilateral triangle and the decay plane is perpendicular to the beam direction
- The effect was discovered in 1989 in n+d breakup by Erlangen group (Strate et al.) (30% above the predictions)
- It was confirmed TUNL in 1996 (Setze et al.)
- The effect is opposite in p+d breakup (15% below theory)
- Mainly s-wave of binary NN interaction
- Energy too low for 3NF to be apparent (max. few %)
- Coulomb force and relativistic effects negligible

K. Ohnaka et al. Few-Body Syst. 55 725 (2014)

Andrzej Wilczek (University of Silesia)

Space Star Anomaly

Inclination angle

- Ohnaka et al. measured the dependence of the cross section on inclination angle
- By varying α one finds the discrepancy peaks at the Space Star (90°).
- Forward and Backward Plane Star configurations follow the theoretical predictions

K. Ohnaka et al. Few-Body Syst. 55 725 (2014)

6 IX 2018 3 / 8

Space Star Anomaly

Energy dependence

- The highest ever measured p+d energies are 19 and 65 MeV
- In both cases the data are consistent with the theoretical predictions
- The effect appears at energies about 9-13 MeV
- What about higher energies?

Y Eguchi Fb19 conference presentation.

Theories

$CD-Bonn+\Delta+C$

- CD-Bonn is a realistic potential
- Addition of Δ excitation enables to describe 3NF

 Coulomb effects are introduced by A. Deltuva

Measurement

BINA@CCB

- A 4π geometry facilitates a simultaneous measurement of a set of the star configurations with different α → the same luminosity
- Axial symmetry makes possible to rotate the configuration about the beam axis → systematic effect
- MWPC and Wall $heta \in$ 10-35°
- Ball $\theta \in 40-165^{\circ}$

Measurement

First preliminary results

Configuration: $\theta_1 = \theta_2 = 25.11^{\circ}$, $\phi_{12} = 147.80^{\circ}$ ($\alpha = 30^{\circ}$) Reaction: p(d(160 *MeV*),pp)n

 $CD-Bonn+\Delta+Coulomb$ $CD-Bonn+\Delta$ CD-Bonn+Coulomb

- The measurements are within the scope of a recently started project (National Science Centre, Poland 2016/23/D/ST2/01703)
- The project aims at obtaining cross sections for deuteron on proton breakup for energies 50, and 80 MeV/nucleon (already measured), as well as for proton beam of energy 108, 135, and 160 MeV (partially measured)
- This will fill the gap in the energy scan of the process and find whether the SSA is characteristic only to the lowest energies
- Some new theoretical predictions are awaited (theories calculated in relativistic framework, χΕFΤ.
- New data will be collected soon