Italian National Agency for New Technologies, Energy and Sustainable Economic Development



Impact of new results of the neutron capture cross section measurements for odd gadolinium isotopes on thermal-spectrum systems

- <u>F. Rocchi</u>, P. Console Camprini, A. Guglielmelli, D. Castelluccio, A. Mengoni, G. Clai – ENEA
- C. Massimi, G. Vannini, A. Manna UniBO & INFN-BO
- L. Leal, E. Dumonteil IRSN

## **Structure of presentation**

- Motivation for the use of Gd in thermal fission reactors
- Status of available data
- Performance of available data and necessity of new experiments
- New n\_TOF xs
- Zed-2 benchmark and preliminary assessment of new xs
- Conclusions and future developments
- References



## Importance of Gd odd isotopes in fission reactors

## Use as "burnable neutron poisons" in nuclear reactors

- To increase the efficiency and economic performances of reactor fuel, it is necessary to increase the initial enrichment of <sup>235</sup>U in the fuel itself.
- However high enrichments pose severe safety problems due to the high initial excess reactivity.
- This can be **inherently compensated** by loading the fuel with **"burnable neutron poisons"**, i.e. isotopes with very high capture cross section, that are depleted together with the fissile isotopes.

It is very important to assess the capture behavior of burnable poisons in order to evaluate:

- the economic gain due to the extension of fuel life;
- the **residual reactivity penalty** at EOL, in terms of reactor days lost (16 pins Gd-doped FAs for PWRs = 5 full power days lost/year = 8 M€ for the electricity market in France);
- the **reactivity peak** for partially spent fuel for the criticality safety evaluations of Spent Fuel Pools.

## Use in Gen. II & Gen. III Reactors

Current Gen. II and Gen. III nuclear reactors make extensive use of Gadolinium as:

- burnable neutron poison (Gadolinia: Gd<sub>2</sub>O<sub>3</sub>) for PWR, BWR, VVER fuels
- emergency shutdown poison (Gadolinium nitrate, GdNO<sub>3</sub>), for CANDU.

The reason of this choice is the **extremely high neutron capture cross sections** of the odd Gd isotopes ( $^{155}$ Gd and  $^{157}$ Gd) for low energy neutrons (thermal to  $\approx 10 \text{ eV}$ ).



## Incident neutron data / ENDF/B-VII.1 / / MT=102 : (z, $\gamma$ ) / Covariances data (BOXER) Relative standard deviation





# 157Gd(n,g) thermal

Despite their importance, the capture cross sections of the odd Gd isotopes have not been so extensively studied and are **not known with the accuracy required** by present-day nuclear industry.

| Reference                                          | Year | Thermal xs (kb) | Deviation from ENDF/B-VII |
|----------------------------------------------------|------|-----------------|---------------------------|
| Pattenden 2 <sup>nd</sup> At. En. Conf. Geneva, 16 | 1958 | 264             | +3.9%                     |
| Tattersall Jour. Nucl. Ener. A 12, 32              | 1960 | 213             | -20%                      |
| Moller Nucl. Sci. Eng. 8, 183                      | 1960 | 254             | =                         |
| Sun J. Radioanal. Nucl. Chem. 256, 541             | 2003 | 232             | -9%                       |
| Leinweber Nucl. Sci. Eng. 154, 261                 | 2006 | 226             | -12%                      |
| Mughabghab Evaluation (adopted in ENDF/B-VII)      | 2006 | $254 \pm 0.3\%$ | =                         |
| Choi Nucl. Sci. Eng. 177, 219                      | 2014 | 239             | -6%                       |



## **Evaluated data vs some experimental benchmarks**

| ICSBEP  | Config. | К      | К          | К        | К         | Improvement? |  |
|---------|---------|--------|------------|----------|-----------|--------------|--|
|         |         | Ехр    | ENDF/B-VII | JEFF-3.1 | Leinweber |              |  |
| HST-014 | C2      | 1.0000 | 1.00996    | 1.01304  | 1.01903   | Ν            |  |
|         | С3      | 1.0000 | 1.01827    | 1.01852  | 1.02636   | Ν            |  |
| LCT-035 | С3      | 1.0000 | 0.99591    | 0.99556  | 0.99935   | Y            |  |
| LCT-005 | C2      | 1.0000 | 1.00029    | 1.00006  | 1.00466   | N            |  |
|         | С3      | 1.0000 | 0.99907    | 1.00002  | 1.01651   | N            |  |
|         | C4      | 1.0000 | 0.99721    | 0.99846  | 1.01602   | N            |  |
|         | C6      | 1.0000 | 1.00684    | 1.00697  | 1.00962   | N            |  |
|         | С7      | 1.0000 | 1.00191    | 1.00258  | 1.00846   | N            |  |
|         | C8      | 1.0000 | 1.00163    | 1.00295  | 1.01213   | N            |  |
|         | С9      | 1.0000 | 1.00257    | 1.00379  | 1.01459   | Ν            |  |
|         | C10     | 1.0000 | 1.00135    | 1.00290  | 1.01474   | Ν            |  |
|         | C11     | 1.0000 | 1.00165    | 1.00342  | 1.01544   | Ν            |  |
|         | C13     | 1.0000 | 1.01309    | 1.01129  | 1.01303   | Ν            |  |
|         | C15     | 1.0000 | 1.01751    | 1.01750  | 1.02436   | Ν            |  |



## van der Marck 2012 Analysis

In 2012 S. C. van der Marck published an extensive and comprehensive analysis of **ENDF/B-VII.1**, **JENDL-4.0**, **JEFF-3.1.1** performances using MCNP6 over available benchmarks (mainly ICSBEP). The conclusion about Gd isotopes is that the evaluations above aren't good enough to represent the experimental data, experimental uncertainties included.

TABLE XXXVII: Average values for C/E - 1 (in pcm) for benchmarks containing Gd. N is the number of benchmarks <sup>1.03</sup> in the category.

| Category       | N  | ENDF/B-VII.1 | JENDL-4.0 | JEFF-3.1.1 |
|----------------|----|--------------|-----------|------------|
| leu-comp-therm | 74 | -556         | -499      | -578       |
| ieu-comp-therm | 2  | 285          | 224       | -24        |
| heu-met-therm  | 2  | 585          | 482       | 614        |
| heu-sol-therm  | 52 | 196          | 421       | 278        |
| mix-sol-therm  | 13 | -233         | 75        | -185       |
| mix-misc-therm | 6  | -1009        | -690      | -982       |
| pu-sol-therm   | 15 | -111         | 345       | 82         |





# **ENEA S/U Analysis**

- To understand and assess the importance and role of 157Gd and 155Gd in nuclear fuels, a Sensitivity and Uncertainty (SU) analysis on k for several different FAs has been performed at BOL, hot-full power (HFP) conditions using the US-NRC reference SCALE
   6.1 code system developed at ORNL.
- **Tsunami-2D** sequence with ENDF/B-VII.0 evaluations.



Covariance Data: 44-group library (based on ENDF/B-VII.0)



## **ENEA S/U Analysis**

- BWR GE 10x10-8 results.
- Two different moderator densities tested.
- The region of highest sensitivity for k is between 0.1 and 1 eV.





## **ENEA S/U Analysis**

| Nuclide-Reaction                              | Contrib. to Uncertainty in k<br>(% Δk/k) | Rank |
|-----------------------------------------------|------------------------------------------|------|
| <sup>235</sup> U $\overline{\nu}$             | 2.70E-01                                 | 1.00 |
| <sup>238</sup> U(n,γ)                         | 1.97E-01                                 | 0.81 |
| <sup>235</sup> U(n,γ)                         | 1.43E-01                                 | 0.64 |
| <sup>235</sup> U(n,f)                         | 1.43E-01                                 | 0.56 |
| <sup>235</sup> U(n,f) / <sup>235</sup> U(n,γ) | 1.21E-01                                 | 0.54 |
| <sup>238</sup> U(n,n')                        | 1.20E-01                                 | 0.51 |
| <sup>235</sup> U χ                            | 1.13E-01                                 | 0.45 |
| <sup>238</sup> U $\overline{\nu}$             | 7.11E-02                                 | 0.32 |
| <sup>157</sup> Gd(n,γ)                        | 6.03E-02                                 | 0.26 |
| <sup>155</sup> Gd(n,γ)                        | 4.48E-02                                 | 0.20 |
| <sup>92</sup> Zr(n,γ)                         | 4.29E-02                                 | 0.16 |
| <sup>1</sup> H(n,γ)                           | 3.67E-02                                 | 0.14 |
| <sup>91</sup> Zr(n,γ)                         | 3.48E-02                                 | 0.13 |
| <sup>1</sup> H(n,n)                           | 3.13E-02                                 | 0.12 |
| <sup>90</sup> Zr(n,γ)                         | 2.82E-02                                 | 0.10 |

The **uncertainty** on **Gd** cross sections gives the **largest contribution** to the uncertainty on k **after** <sup>235,238</sup>U.

Several cross sections in this list have already been measured at nTOF.



## New n\_TOF measurements

- The n\_TOF Collaboration decided in 2015 to carry out new Gd odd isotopes (n,g) xs measurements;
- Isotopically «pure» samples were aquired from ORNL;
- Measurements were conducted in July 2016;
- Results are being published (see also M. Mastromarco presentation at this conference, Thursday 17:30).
- The newly obtained xs @ 0.025 eV results 239.8 ± 9.3 kb;
- Xs uncertainty @ 0.025 eV about 3.9%;
- Uncertainty to be reduced to about 3.0% after detailed post-irradiation analysis of the samples (to be accomplished after use at GELINA).



## New n\_TOF 157Gd xsec



Preliminary cross sections retrieved from ArXiv 1805.04149 (2018)



## New n\_TOF 157Gd(n,g) xsec vs ENDF/B-VIII



## **AECL - Chalk River results**

## NUCLEAR DATA AND THE EFFECT OF GADOLINIUM IN THE MODERATOR

### J.C. Chow<sup>A\*</sup>, F.P. Adams<sup>A</sup>, D. Roubstov<sup>A</sup>, R.D. Singh<sup>B</sup> and M.B. Zeller<sup>A</sup>

<sup>A</sup> Atomic Energy of Canada Limited, Chalk River Laboratories, Chalk River, Ontario, Canada, K0J 1J0
 <sup>B</sup> Candu Energy Inc., 2280 Speakman Drive, Mississauga, Ontario, Canada, L5K 1B1

#### Article Info

Keywords: gadolinium cross-section, moderator poison, nuclear data, ZED-2 Article history: Received 24 April 2012, Accepted 9 June 2012, Available online 30 June 2012. \*Corresponding Author: (613) 584-3311 ext. 44437, chowj@aecl.ca



## **ZED-II** Research Reactor



## **AECL - Chalk River results**



## **MCNP6** Calculations

|        | Lower<br>Energy<br>bound<br>[MeV] | Upper<br>Energy<br>bound<br>[MeV] | Lower<br>Energy<br>bound [eV] | Upper<br>Energy<br>bound [eV] | Spectrum<br>Group Score | Rel Err (1 sd) | Percentage |
|--------|-----------------------------------|-----------------------------------|-------------------------------|-------------------------------|-------------------------|----------------|------------|
| Case 1 | 1.00E-11                          | 1.00E-10                          | 1.00E-05                      | 1.00E-04                      | 1.36372E-03             | 0.0005         | 0.0005%    |
|        | 1.00E-10                          | 1.00E-07                          | 1.00E-04                      | 1.00E-01                      | 1.64690E+02             | 0.0000         | 63.1422%   |
|        | 1.00E-07                          | 2.00E+01                          | 1.00E-01                      | 2.00E+07                      | 9.61324E+01             | 0.0000         | 36.8572%   |
|        |                                   |                                   |                               | total                         | 2.60824E+02             | 0.0000         | 99.9999%   |
| Case 2 | 1.00E-11                          | 1.00E-10                          | 1.00E-05                      | 1.00E-04                      | 1.33117E-03             | 0.0005         | 0.0005%    |
|        | 1.00E-10                          | 1.00E-07                          | 1.00E-04                      | 1.00E-01                      | 1.61164E+02             | 0.0000         | 62.6011%   |
|        | 1.00E-07                          | 2.00E+01                          | 1.00E-01                      | 2.00E+07                      | 9.62810E+01             | 0.0000         | 37.3985%   |
|        |                                   |                                   |                               | total                         | 2.57446E+02             | 0.0000         | 100.0001%  |
| Case 3 | 1.00E-11                          | 1.00E-10                          | 1.00E-05                      | 1.00E-04                      | 1.30079E-03             | 0.0005         | 0.0005%    |
|        | 1.00E-10                          | 1.00E-07                          | 1.00E-04                      | 1.00E-01                      | 1.57696E+02             | 0.0000         | 62.0626%   |
|        | 1.00E-07                          | 2.00E+01                          | 1.00E-01                      | 2.00E+07                      | 9.63953E+01             | 0.0000         | 37.9372%   |
|        |                                   |                                   |                               | total                         | 2.54092E+02             | 0.0000         | 100.0002%  |
| Case 4 | 1.00E-11                          | 1.00E-10                          | 1.00E-05                      | 1.00E-04                      | 1.26969E-03             | 0.0005         | 0.0005%    |
|        | 1.00E-10                          | 1.00E-07                          | 1.00E-04                      | 1.00E-01                      | 1.54368E+02             | 0.0000         | 61.5284%   |
|        | 1.00E-07                          | 2.00E+01                          | 1.00E-01                      | 2.00E+07                      | 9.65201E+01             | 0.0000         | 38.4712%   |
|        |                                   |                                   |                               | total                         | 2.50889E+02             | 0.0000         | 100.0001%  |



## Zed-2 Flux per unit lethargy in moderator

MCNP6 calculations

Very well thermalized specturm!



# Zed-2 k sensitivity per unit lethargy to 157Gd(n,g)





# Zed-2 k sensitivity per unit lethargy to 157Gd(n,g) only due to impurities in graphite reflector





# 1&2 groups Zed-2 sensitivities to 157Gd(n,g)

|        | Energy Bo   | ounds [eV]  | Lethargy<br>Interval [] | <sup>157</sup> Gd(n,γ)<br>Sensitivity | Relative<br>Uncertainty | <sup>157</sup> Gd(n,γ)<br>Sensitivity/<br>Δu | Sensitivity/<br><u> <u> </u> </u> | <sup>155</sup> Gd(n,γ)<br>Sensitivity | Relative<br>Uncertainty | <sup>155</sup> Gd(n,γ)<br>Sensitivity/<br>Δu | Sensitivity/<br><u> <u> </u> </u> |
|--------|-------------|-------------|-------------------------|---------------------------------------|-------------------------|----------------------------------------------|-----------------------------------------------------------------------------------------------------------|---------------------------------------|-------------------------|----------------------------------------------|-----------------------------------------------------------------------------------------------------------|
|        | 1.00E-04    | 1.00E-01    | 6.91E+00                | -8.1813E-03                           | 0.0004                  | -1.1844E-03                                  | -4.7375E-07                                                                                               | -1.8362E-03                           | 0.0004                  | -2.6582E-04                                  | -1.0633E-07                                                                                               |
| Case 2 | 1.00E-01    | 2.00E+07    | 1.91E+01                | -1.7510E-04                           | 0.0003                  | -9.1609E-06                                  | -2.7483E-09                                                                                               | -3.9074E-05                           | 0.0003                  | -2.0443E-06                                  | -6.1328E-10                                                                                               |
|        |             | sum of 2    |                         |                                       |                         |                                              |                                                                                                           |                                       |                         |                                              |                                                                                                           |
|        |             | groups      | 2.60E+01                | -8.3564E-03                           | 0.0004                  | -3.2113E-04                                  | -1.2778E-07                                                                                               | -1.8753E-03                           | 0.0004                  | -7.2066E-05                                  | -2.8676E-08                                                                                               |
|        |             | 1 group     |                         |                                       |                         |                                              |                                                                                                           |                                       |                         |                                              |                                                                                                           |
|        | integration | calculation | 2.60E+01                | -8.3577E-03                           | 0.0004                  | -3.2118E-04                                  | -1.2847E-07                                                                                               | -1.8756E-03                           | 0.0004                  | -7.2079E-05                                  | -2.8831E-08                                                                                               |
|        | 1.00E-04    | 1.00E-01    | 6.91E+00                | -1.5901E-02                           | 0.0004                  | -2.3019E-03                                  | -9.2076E-07                                                                                               | -3.5684E-03                           | 0.0004                  | -5.1658E-04                                  | -2.0663E-07                                                                                               |
| Case 3 | 1.00E-01    | 2.00E+07    | 1.91E+01                | -3.4339E-04                           | 0.0004                  | -1.7966E-05                                  | -7.1862E-09                                                                                               | -7.6710E-05                           | 0.0003                  | -4.0133E-06                                  | -1.2040E-09                                                                                               |
|        |             | sum of 2    |                         |                                       |                         |                                              |                                                                                                           |                                       |                         |                                              |                                                                                                           |
|        |             | groups      | 2.60E+01                | -1.6244E-02                           | 0.0004                  | -6.2427E-04                                  | -2.4971E-07                                                                                               | -3.6451E-03                           | 0.0004                  | -1.4008E-04                                  | -5.5737E-08                                                                                               |
|        |             | 1 group     |                         |                                       |                         |                                              |                                                                                                           |                                       |                         |                                              |                                                                                                           |
|        | integration | calculation | 2.60E+01                | -1.6247E-02                           | 0.0004                  | -6.2437E-04                                  | -2.4975E-07                                                                                               | -3.6457E-03                           | 0.0004                  | -1.4010E-04                                  | -5.6041E-08                                                                                               |
|        | 1.00E-04    | 1.00E-01    | 6.91E+00                | -2.3277E-02                           | 0.0004                  | -3.3697E-03                                  | -1.3479E-06                                                                                               | -5.2231E-03                           | 0.0004                  | -7.5612E-04                                  | -3.0245E-07                                                                                               |
| Case 4 | 1.00E-01    | 2.00E+07    | 1.91E+01                | -5.0723E-04                           | 0.0003                  | -2.6537E-05                                  | -7.9612E-09                                                                                               | -1.1341E-04                           | 0.0003                  | -5.9334E-06                                  | -1.7800E-09                                                                                               |
|        |             | sum of 2    |                         |                                       |                         |                                              |                                                                                                           |                                       |                         |                                              |                                                                                                           |
|        |             | groups      | 2.60E+01                | -2.3784E-02                           | 0.0004                  | -9.1402E-04                                  | -3.6366E-07                                                                                               | -5.3365E-03                           | 0.0004                  | -2.0508E-04                                  | -8.1596E-08                                                                                               |
|        |             | 1 group     |                         |                                       |                         |                                              |                                                                                                           |                                       |                         |                                              |                                                                                                           |
|        | integration | calculation | 2.60E+01                | -2.3788E-02                           | 0.0004                  | -9.1416E-04                                  | -3.6567E-07                                                                                               | -5.3374E-03                           | 0.0004                  | -2.0511E-04                                  | -8.2046E-08                                                                                               |





$$\Delta k \cong k \cdot S \cdot \frac{\Delta \sigma}{\sigma}$$

k = 0.99766  $S \cong -8.36E-3$   $\Delta \sigma \cong -0.035 \sigma$ 

$$\Delta k \cong +29.2 \text{ pcm}$$

The ideal, compensating gain should have been around +22 pcm.

Approximation introduced: total sensitivity attributed solely to thermal group (<0.1 eV)!



## 2-grps ∆k

- 2 groups: 1) 0.0 0.1 eV,
  2) 0.1 2.0E7 eV
- Second group by far less important than first;
- Correction to k results now roughly + 28.1 pcm;
- Full MCNP6 calculations with the new xs are needed for a more precise assessment;
- These will be accomplished in the next weeks.



## **Conclusions and next steps**

From the preliminary and «back of the envelope» analyses conducted so far

- The new xs seems to satisfy the Zed-2 experiments <u>much better</u> than currently available evaluations;
- The new xs, again based on Zed-2 results, seems to underestimate slightly capture by about 0.8%;
- Infinite groups calculations with MCNP6 are needed for better confidence on the performance of the new xs in Zed-2;
- Many other ICSBEP benchmarks are to be used for further validation of the new product;
- Uncertainty in the thermal region needs to be further reduced;
- GELINA experiments with the same samples are underway;
- Possibility to produce new evaluations for JEFF4.



## References

- 1. F. Rocchi, A. Guglielmelli, D. M. Castelluccio, C. Massimi, "Reassessment of gadolinium odd isotopes neutron cross sections: scientific motivations and sensitivity-uncertainty analysis on LWR fuel assembly criticality calculations," *EPJ Nuclear Science and Technology*, **3**, 21 (2017).
- 2. D. M. Castelluccio, F. Rocchi, "Implementation of a cross section evaluation methodology for safety margins analysis: techniques and experimental campaign for new evaluations of neutron capture cross sections of Gadolinium odd isotopes," *ENEA Technical Report* ADPFISS-LP1-100 (2017).
- 3. S. C. van der Marck, "Benchmarking ENDF/B-VII.1, JENDL-4.0 and JEFF-3.1.1 with MCNP6", *Nuclear Data Sheets*, **113**, 2935 (2012).
- 4. J. C. Chow, F. P. Adams, D. Roubtsov, R. D. Singh, M. B. Zeller, "Nuclear data and the effect of Gadolinium in the moderator," *AECL Nuclear Review*, **1**, **Number 1**, pp. 21-25 (2012).
- 5. G. Leinweber et al., "Neutron Capture and Total Cross-Section Measurements and Resonance Parameters of Gadolinium," Nuclear Science and Engineering, **154**, **3**, pp. 261–279 (2006).
- 6. HPRL Request Ids 102 and 103, <u>https://www.oecd-nea.org/dbdata/hprl/hprlview.pl?ID=523</u>, <u>https://www.oecd-nea.org/dbdata/hprl/hprlview.pl?ID=524</u>
- M. Mastromarco et al., "Cross section measurements of 155,157 Gd(n,γ) induced by thermal and epith ermal neutrons," <u>http://arxiv.org/abs/1805.04149</u> (2018).
- 8. H.D. Choi, et al., "Radiative Capture Cross Sections of 155,157Gd for Thermal Neutrons," *Nuclear Scie nce and Engineering*, **177**, 2 (2014).



## **Forthcoming papers**

#### Cross section measurements of $^{155,157}$ Gd(n, $\gamma$ ) induced by thermal and epithermal neutrons

M. Mastromarco,<sup>1</sup> A. Manna,<sup>2,3</sup> O. Aberle,<sup>4</sup> S. Amaducci,<sup>2,3</sup> J. Andrzejewski,<sup>8</sup> L. Audouin,<sup>6</sup> M. Bacak,<sup>7,4,8</sup> J. Balibrea,<sup>9</sup> M. Barbagallo,<sup>1</sup> F. Becvár,<sup>10</sup> E. Berthoumieux,<sup>8</sup> J. Billowes,<sup>11</sup> D. Bosnar,<sup>12</sup> A. Brown,<sup>13</sup> M. Caamaño,<sup>14</sup> F. Calviño,<sup>18</sup> M. Calviani,<sup>4</sup> D. Cano-Ott,<sup>9</sup> R. Cardella,<sup>4</sup> A. Casanovas,<sup>18</sup> D. M. Castelluccio,<sup>16,2</sup> F. Cerutti,<sup>4</sup> Y. H. Chen,<sup>6</sup> E. Chiaveri,<sup>4,11,17</sup> G. Clai,<sup>16,2</sup> N. Colonna,<sup>1</sup> G. Cortés,<sup>16</sup> M. A. Cortés-Giraldo,<sup>17</sup> L. Cosentino.<sup>18</sup> L. A. Damone<sup>1,19</sup> M. Diakaki.<sup>8</sup> M. Dietz.<sup>20</sup> C. Domingo-Pardo.<sup>21</sup> R. Dressler.<sup>22</sup> E. Dupont.<sup>8</sup> I. Durán,<sup>14</sup> B. Fernández-Domínguez,<sup>14</sup> A. Ferrari,<sup>4</sup> P. Ferreira,<sup>23</sup> P. Finocchiaro,<sup>18</sup> V. Furman,<sup>24</sup> K. Göbel,<sup>26</sup> A. R. García,<sup>9</sup> A. Gawlik,<sup>5</sup> S. Gilardoni,<sup>4</sup> T. Glodariu,<sup>26</sup> I. F. Goncalves,<sup>21</sup> E. González-Romero,<sup>9</sup> E. Griesmayer,<sup>7</sup> C. Guerrero,<sup>17</sup> A. Guglielmelli,<sup>16</sup> F. Gunsing,<sup>8,4</sup> H. Harada,<sup>27</sup> S. Heinitz,<sup>22</sup> J. Heyse,<sup>28</sup> D. G. Jenkins,<sup>13</sup> E. Jericha,<sup>7</sup> F. Käppeler,<sup>29</sup> Y. Kadi,<sup>4</sup> A. Kalamara,<sup>30</sup> P. Kavrigin,<sup>7</sup> A. Kimura,<sup>27</sup> N. Kivel,22 M. Kokkoris,30 M. Krtička,10 D. Kurtulgil,26 E. Leal-Cidoncha,14 C. Lederer-Woods,20 H. Leeb.<sup>7</sup> J. Lerenderui-Marco.<sup>17</sup> S. J. Lonsdale.<sup>20</sup> D. Macina.<sup>4</sup> J. Marganiec.<sup>5,31</sup> T. Martínez.<sup>9</sup> A. Masi.<sup>4</sup> C. Massimi,<sup>2,3,\*</sup> P. Mastinu,<sup>32</sup> E. A. Maugeri,<sup>22</sup> A. Mazzone,<sup>1,33</sup> E. Mendoza,<sup>9</sup> A. Mengoni,<sup>16,2</sup> P. M. Milazzo,<sup>34</sup> F. Mingrone,<sup>4</sup> A. Musumarra,<sup>18,36</sup> A. Negret,<sup>26</sup> R. Nolte,<sup>31</sup> A. Oprea,<sup>26</sup> N. Patronis,<sup>36</sup> A. Pavl<sup>p</sup> itted to PRC and J. Perkowski,<sup>6</sup> I. Porras,<sup>38</sup> J. Praena,<sup>38</sup> J. M. Quesada,<sup>17</sup> D. Radeck,<sup>31</sup> T. Rauscher,<sup>29,40</sup> R. 7 F. Rocchi, <sup>16</sup> C. Rubbia,<sup>4</sup> J. A. Ryan,<sup>11</sup> M. Sabaté-Gilarte,<sup>4,17</sup> A. Saxena,<sup>41</sup> P. Schillebeeck<sup>\*</sup> P. Sedyshev,<sup>24</sup> A. G. Smith,<sup>11</sup> N. V. Sosnin,<sup>11</sup> A. Stamatopoulos,<sup>30</sup> G. Taglier<sup>\*</sup> A. Tarifeño-Saldivia,<sup>18</sup> L. Tassan-Got,<sup>6</sup> S. Valenta,<sup>10</sup> G. Vannini,<sup>2,3</sup> V. Variak V. Vlachoudis,<sup>4</sup> R. Vlastou,<sup>30</sup> A. Wallner,<sup>42</sup> S. Warren,<sup>11</sup> C. Weiss,<sup>7</sup> P. J. Wo-<sup>1</sup>Istituto Nazionale di Fisica Nucleare, S-<sup>2</sup>Istituto Nazionale di Fisica Nuclear# <sup>a</sup>Dipartimento di Fisica e Astronor <sup>4</sup>European Organization for Nr <sup>6</sup>Institut de Physiqu-<sup>8</sup>CEA № <sup>9</sup>Centro de Inv cnica de Catalunya, Spain nuove tecnologie (ENEA), Bologna, Italy niversidad de Sevilla, Spain aboratori Nazionali del Sud, Catania, Italy sento di Fisica, Università degli Studi di Bari, Italy aysics and Astronomy, University of Edinburgh, United Kingdom <sup>21</sup>IFIC, CSIC - Universidad de Valencia, Spain 22 Paul Scherrer Institut (PSI), Villingen, Switzerland 23 Instituto Superior Técnico, Lisbon, Portugal 24 Joint Institute for Nuclear Research (JINR), Dubna, Russia <sup>25</sup>Goethe University Frankfurt, Germany <sup>36</sup>Horia Hulubei National Institute of Physics and Nuclear Engineering, Romania 27 Japan Atomic Energy Agency (JAEA), Tokai-mura, Japan <sup>28</sup>European Commission, Joint Research Centre, Geel, Retieseweg 111, B-2440 Geel, Belgium <sup>10</sup>Karlsruhe Institute of Technology, Campus North, IKP, 76021 Karlsruhe, Germany <sup>20</sup>National Technical University of Athens, Greece <sup>31</sup> Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116 Braunschweig, Germany 22 Istituto Nazionale di Fisica Nucleare, Sezione di Legnaro, Italy <sup>30</sup>Consiglio Nazionale delle Ricerche, Bari, Italy <sup>34</sup>Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, Italy <sup>35</sup> Dipartimento di Fisica e Astronomia, Università di Catania, Italy <sup>36</sup>University of Ioannina, Greece



PHYTR14 – The Fourth International Conference on Physics and Technology of Reactors and Applications. Marrikeech, Morocce, September 17-19, 2013, on CD-ROM, GMTR, Rabat, Morocce (2013)

#### NUCLEAR DATASENSITIVITY AND UNCERTAINTY ANALYSIS FOR GADOLINIUM-BEARING FUEL ASSEMBLIES AND RECENT NEW MEASUREMENTS OF GADOLINIUM ODD-ISOTOPES NEUTRON CAPTURE CROSS SECTIONS

Federico Rocchi<sup>\*</sup>, Antonio Guglielmelli, Patrizio Console Camprini ENEA CR ENEA Bologna, via Martiri di Monte Sole 4, 40129 Bologna, Italy, federico.rocchi@enea.it; antonio.guglielmelli@enea.it; patrizio.consolecamprini@enea.it



#### 1. INTRODUCTION

Current light water reactor (LWR) technology makes extensive use of Gadolinium as neutron poison to compensate, at least partially, the necessary Beginning-oF.Life (BoL) excess reactivity of fuel assemblies (FAs). Boiling water reactors (BVRs) rely heavily on this technological approach because of the impossibility of using boric acid diluted into the moderator. In the last decades, also pressurized water reactors (PWRs) have been recurring more and more to Gadolinium poisoning, with the sim at extending as much as possible the length of core cycles and therefore improving the economic performances as a result of less frequent outages for refueling. Technical solutions currently under development, especially for small-size PWRs or PW Small Modular Reactors (PWSMRs), foresee boron-free cores, this implying a hasevier

Corresponding author

- Dan Roubtsov (CNL) for the MCNP Zed-2 input
- n\_TOF Collaboration for support in the experiments



## Thank you for your attention

Federico Rocchi federico.rocchi@enea.it



