The European Commission's science and knowledge service

.

3

Joint Research Centre

de.

Characterisation of Nuclear Materials by using Neutron Resonance Analysis

C. Paradela

EuNPC 2018, Bologna, September 2nd-7th 2018

Content

- Context
 - Special Nuclear Materials (SNM) characterisation
- Method
 - Measurement principle
 - Testing
- Characterisation of reference samples (CBRN standards)
 - Pu samples
 - U samples

Fukushima NPP decommissioning

- Following a severe earthquake in 2011, a tsunami destroyed the power supply to the Fukushima Daiichi nuclear power plant
- As a consequence, the nuclear fuel melted and mixed with coolant and structural materials
- During decommission, molten fuel must be removed from the reactor taking into account nuclear safeguards

Quantification of fissile material in fuel debris

Nuclear physics for archeological studies

- Neutron resonance techniques were used for studying archeological artifacts at GELINA
- Neutron Resonance Capture Analysis (NRCA): based on the detection of γ-rays
- Neutron Resonance Transmission Analysis (NRTA): based on transmission measurements

Neutron Cross Sections

- Probability of a neutron to undergo a reaction with a target nucleus
- Resonances appear at energies, which are specific for each nuclide
- Resonances can be used as fingerprints to determine the elemental composition

GELINA - overview

- Pulsed white neutron source (10 meV < E_n < 20 MeV)
- Pulse frequency 50Hz 800 Hz
- Neutron energy : time of flight (TOF)
- Multi-user facility: 12 flight paths (10 m - 400 m)
- Measurement stations with special equipment to perform:
 - Total cross section measurements
 - Partial cross section measurements

European Commission

GELINA - NRTA station (FP13)

ToF - principle

European Commission

ToF - principle

European Commission

ToF - principle

NRTA

$$T_{exp} = \frac{C_{in}}{C_{out}} \qquad T = e^{-n \sigma_{tot}}$$
Resonance Shape Analysis: REFIT
$$\chi^{2}(n) = (T_{exp} - T_{M}(t,n))^{T} V_{T_{exp}}^{-1} (T_{exp} - T_{M}(t,n))$$

$$T_{M}(t) = \int R(t, E) T(E) dE$$

$$T(E) = e^{-n \sigma_{tot}(E)}$$

n : areal density

total number of nuclei per unit area

European

Commission

CBNM standard: Pu

PuO₂ Reference samples

- Certified Reference Material for γ-ray spectrometry
- Different ²³⁹Pu enrichment
- Presence of ²⁴¹Am from ²⁴¹Pu decay

Plutonium Isotopic Abundance on June 20, 1986

Atom Percent

Material	²³⁸ Pu	²³⁹ Pu	²⁴⁰ Pu	²⁴¹ Pu	²⁴² Pu	²⁴¹ Am/Pu
CBNM Pu 93	0.0117	93.4392	6.2886	0.2215	0.0390	0.1039
CBNM Pu 84	0.0706	84.3985	14.1578	1.0197	0.3534	0.2157
CBNM Pu 70	0.8506	73.4248	18.2445	5.4257	2.0544	1.1624
CBNM Pu 61	1.2045	62.6562	25.3526	6.6376	4.1491	1.4362

CBNM standard: Pu

- Pu-238
- Pu-239
- Pu-240
- Pu-241
- Pu-242
- Am-241

- Pu-238
- Pu-239
- Pu-240
- Pu-241
- Pu-242
- Am-241

- Pu-238
- Pu-239
- **Pu-240**
- Pu-241
- Pu-242
- Am-241

- **Pu-238**
- Pu-239
- Pu-240
- Pu-241
- Pu-242
- Am-241

- Pu-238
- Pu-239
- Pu-240
- Pu-241
- **Pu-242**
- Am-241

- Pu-238
- Pu-239
- Pu-240
- Pu-241
- Pu-242
- Am-241

- Pu-238
- Pu-239
- Pu-240
- Pu-241
- **Pu-242**
- Am-241

Experiments at GELINA

PuO₂ Reference samples

NRM 271 Pu 61

Pu-isotope	Declared %*	NRTA	Ratio
Pu-238	0.95174	0.979 ± 0.018	1.029
Pu-239	62.6025	62.54±0.1	0.999
Pu-240	25.3526	26.25±0.02	1.039
Pu-241	1.5641	1.574 ± 0.008	1.007
Pu-242	4.1489	3.983±0.008	0.960
Am-241	6.2870	6.316±0.008	1.005

*Estimation considering half lives and ²⁴¹Am production

Experiments at GELINA

PuO₂ Reference samples

NRM 271 Pu 61

Pu-isotope	Declared %*	NRTA	Ratio
Pu-238	0.95174	0.979 ± 0.018	1.029
Pu-239	62.6025	62.54±0.1	0.999
Pu-240	25.3526	26.25±0.02	1.039
Pu-241	1.5641	1.574 ± 0.008	1.007
Pu-242	4.1489	3.983±0.008	0.960
Am-241 (ENDF/B-VIII.0)	6.2870	7.525±0.008	1.197

*Estimation considering half lives and ²⁴¹Am production

CBNM standard: U

• Beam attenuation due to matrix ~ 99%

CBNM standard: U

U₃O₈ reference sample EC NRM 171

Fit for ^{235,238}U areal density

+

 $n_X \sigma_{tot,X}(E) = a_X + \frac{b_X}{\sqrt{E}}$

CBNM standard: U

Recent ENDF/B-VIII.0 evaluation for U-235.

NRTA uncertainties only due to counting statistics.

NRM 171	U5/U8 (declared)	U5/U8 (NRTA)	Ratio
031	0.003206	0.00313 (33)	0.976 (99)*
070	0.007209	0.00812 (80)	1.127 (125)*
194	0.019664	0.02012 (23)	1.023 (12)
295	0.029857	0.03012 (28)	1.009 (9)
445	0.045168	0.04627 (68)	1.024 (15)

*Measurements with reduced irradiation time

Summary

- NRTA is a powerful non-destructive analysis technique
 - Based on well-established methods for cross section measurements
 - Applicable for high radioactive material
 - Absolute method, does not require calibration measurements with representative samples
 - Method validated at GELINA for short flight paths (poor energy resolution)
 - Accurate analytical method (<u>uncertainty < 3% whenever accurate cross sections</u> <u>are available</u>) even at poorer resolution station (short flight path station)
- \Rightarrow Various applications: nuclear safeguards, security, forensics ...

General Remarks

Project on characterisation of spent fuel: together with SCK-CEN, SKB, ...

EUFRAT:

open access to facilities at JRC GEEL

ENEN+:

funding scheme for training (bachelor, master, PhD students and postdocs)

Any questions?

You can find me at carlos.PARADELA-DOBARRO@ec.europa.eu

