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⌧ ⇠ 4 µs

Metastable antiprotonic helium (p̄He+) 

Electron in 1s orbital. Attached 
with 25-eV ionization potential. 
Auger emission suppressed.

Antiproton in a ‘circular’ Rydberg orbital  
n=38, l=n-1 with diameter of  100 pm.  

Localized away from the nucleus. 
The electron protects the antiproton 
during collisions with helium atoms.

Retains a 4 μs lifetime

Laser excitation of  antiproton orbital. 
Higher laser powers needed compared 
to normal atoms + antihydrogen where 
electron/positron orbitals are excited.
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p̄He+ most long-lived, precisely-studied hadron-antihadron 
system. Laser spectroscopy has yielded:

Antiproton-to-electron mass ratio to precision 8 × 10-10

Assuming CPT invariance, electron mass to 8 × 10-10

 Combined with cyclotron frequency measurements of  
TRAP and BASE, antiproton and proton masses and 
charges compared to 5 × 10-10

Tests of  bound-state QED calculations to order mα8

Recently: searches for exotic/dark fifth forces at 10-100 pm 
length scales.
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V

Casimir

Cantilever

J. Murata et al., Classical Quantum Gravity (2015) 

Bounds on fifth force
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E.J. Salumbides et al., J. Mol. Spect. (2013)

Bounds on fifth force 
from various atoms 

and molecules

Possibility to improve these 
limits by 2-3 orders of 

magnitude?
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        P. Brax et al.,    arXiv:1710.00850  (2017) 

Bounds on dark scalar particles

“Bilinear” 
coupling 

of dark scalar 
particles to 

SM nucleons
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Non-relativistic energy                           1 522 150 208.13 MHz 
mα4 order corrections                                       -50320.64 
mα5 order corrections                                          7070.28 
mα6 order corrections                                            113.11 
mα7 order corrections                                       -10.46(20) 
mα8 order corrections                                         -0.12(12) 
Transition frequency                            1 522 107 060.3(2) 
Uncertainty from alpha charge radius                +/-0.007 
Uncertainty from antiproton charge radius       <  0.0007

Korobov, Hilico, Karr, PRL 112, 103003 (2014). 
Korobov, Hilico, Karr, PRA 89, 032511 (2014). 
Korobov, Hilico, Karr, PRA 87, 062506 (2013). 

Calculated two-photon transition frequency 
(n,l)=(36,34)→(34,32) 
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One-loop self-energy correction in atomic units 
for two-center system 

V.I. Korobov, J.-P. Karr, L. Hilico
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Two-loop QED contributions
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Antiprotonic He (n,l)=(33,32)→(31,30)

Theoretical precision compared to other atoms

2 145 054 858.100(200)  MHz

Uncertainty due to mα7 QED 
on this digit

Uncertainty due to helium 
charge radius 

(to be improved by muHe 
experiment)

Experimental precision

Hydrogen 1s-2s 2 466 061 413.18    MHz

(Korobov 2014)

Uncertainty due to proton charge radius on these digits

(Parthey et al. 2014)
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Experimental and theoretical precisions 

LEAR experiments

AD construction

RFQD beam

Frequency comb, 
  laser chirp correction

Two-photon 
spectroscopy

Relativistic
corrections

Complex-coordinate rotation
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Two-loop self-energy corrections:

Extremely difficult theoretical problem to solve in all orders of Zα. 
Will in several years limit the theoretical precision on:

12C5+  ion :   Used to determine electron mass in a.u. (CODATA) 
 Theory           1.5 x 10-11 
 Experiment     3 x 10-11

  p̄He+ :            5x10-12  (goal, not yet achieved)

 HD+, H2+ :       Used to determine proton-to-electron mass ratio,  
                        proton charge radius (complementary)
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Energy 
levels of  
p̄He+
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Laser spectroscopy method
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e-

p

He+

antiproton 
annihilation

pHe+

pHe++Auger 
emission of e-

Formation

las
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Charged pions signal the resonance  
condition between laser and atom.

Laser 
excitation
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CERN Antiproton Decelerator

• Deceleration + cooling of 30 million@5.3 MeV / 110 sec. 
• ATRAP, AEGIS, ALPHA, BASE, GBAR, ASACUSA.  
• Atomic physics experiments using ion traps.
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Radiofrequency quadrupole decelerator
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30 RF cells 202.5 MHz
33 MV/m max field
2 MeV/m deceleration field
Deceleration efficiency 20%

5 MeV
Variable
30-130 keV
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Layout
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Target helium gas 
T = 1.3 K  P=0.4 - 1.2 mb 

Better lasers, geometry, 
antiproton beam, higher 

statistics, systematic studies 
compared to 2006 experiment.
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Reduction of  Doppler width by buffer gas cooling
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Cooled 2×109 p̄He+ atoms to ~1.5 K 
Resolved hyperfine structure in single-photon resonance 
Experimental precision improved by factor 1.4 to 10 
depending on the resonance, compared to previous result
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Comparison between experimental and theoretical 
transition frequencies of  13 single-photon resonances
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Higher precision and better exp-theory agreement.
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Antiproton-to-electron mass ratio 2016
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Antiproton-to-electron mass ratio 1836.1526734 (15)

Heiße 2017

Science 354, 610 (2016)
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2015-2018: sub-Doppler two-photon spectroscopy
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virtual state

(n-1, ℓ-1)

(n-2, ℓ-2)

(n, ℓ) 

Δνd
ν2 laser

ν1 laser

Laser

Thermal Doppler motion of 
atoms broadens the UV 
spectral lines to 2 GHz at 
T=1.5 K.

Exciting a nonlinear antiproton 
transition with the absorption of two 
counter-propagating laser photons 
reduces first-order Doppler width by 
factor 20-30: 

€ 

Γ =
ν1 −ν 2
ν1 + ν 2

× 2.35 ν1 + ν 2( ) kT
M
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Beyond 2021: Experiments at ELENA

So far we measured p̄He+ 
transition frequencies between 
metastable (τ=1 µs) and short-

lived (1.4 – 4.5 ns) states.

Hard-to-see metastable-
metastable transitions have 

natural widths of <1/300 
(200 kHz). 

Possibility to improve the 
precision by factor >100. 
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Fully DPSS Nd:YAG laser pumped Ti:Sapphire laser 
with long-pulse alexandrite oscillator
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ELENA Extra Low Energy Antiproton Ring

• 20 million antiprotons per 2 min 
• Injection 5.3 MeV, ejection 100 keV 
• Circumference 30.4 m 
• Electron cooling at 13.7 and 35 MeV/c 
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• Compact size, no need for high voltage, retain high quality beam emittances 

• d>500 mm, l=25 mm, ΔB=2T Hitachi Finemet FT-3L cores  

• 2-4 kV / 500 ns / 200 A pulses by cascaded SiC MOSFET drivers  

Induction decelerator for slowing down to <50 keV
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Beam profile monitors for ELENA

• Semi-non-destructive detector for tuning of  ELENA electrostatic beamlines 
• Resolution 0.25-1 mm. 
• 10 um gold-coated tungsten wires (signal level 104 e-) 
• 43 devices as in-kind contribution to ELENA project
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Summary
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Collisional buffer gas cooling of  antiprotonic helium atoms to T=1.5 K. 
Measured 13 single-photon transitions. Experimental precision improved by 
factor 1.4-10x compared to previous single-photon experiments. 

Agreed with 3-body QED calculations. Determined the antiproton-to-
electron mass ratio as 1836.1526734 (15). 

Two-photon laser spectroscopy experiments of  cold atoms ongoing. 

100 times higher precision aimed for ELENA era. 

Sister experiment of  laser spectroscopy of  pionic helium atoms at PSI ready 
to announce first results soon.
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Pressure shift in (n,l)=(37,35)→(38,34)  
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