Searching for two γ-decay of $X(17)$

European Nuclear Physics Conference
September 2nd-7th, 2018, Bologna, Italy

Ádám Nagy
University of Debrecen;
Institute for Nuclear Research, Hungarian Academy of Sciences
Motivations

- Searching for dark matter is hot topics of physics.
- Many experiment performed to search for dark particles.
- Many theoretical models predict particles in the 10 MeV – 1 GeV range.
- Searching for light particles in nuclear transitions.

Figure: Many experiments search for dark matter candidates.
Motivations

- $^7\text{Li}(p, e^- e^+) ^8\text{Be}$ reaction was used for creating excited state of ^8Be.
- Examined two excited state. The e^-e^+-pair correlation was measured:
 - $E_X = 17.5$ MeV \rightarrow no bump.
 - $E_X = 18.15$ MeV \rightarrow bump.

Figure: Bump at $\Theta \simeq 145^\circ$ in the angular correlation. Smooth curve shows the theoretical angular e^-e^+ pair correlations. Points shows the experimental result.
The detected bump can be a signature of $X_{17} \rightarrow e^- e^+$.

Figure: Bump at $\Theta \simeq 145^\circ$ in the angular correlation. Smooth curve shows the theoretical angular $e^- e^+$ pair correlations. Points shows the experimental result.
Motivations

- We re-investigated $^7Li(p, e^-e^+)^8Be$ experiment.
- We used a different e^-e^+-pair spectrometer (with 6 telescopes).
- Experimental result \rightarrow there is a bump at $\Theta \simeq 145^\circ$.

Figure: Bump at $\Theta \simeq 145^\circ$ in the angular correlation. Smooth curve shows the theoretical angular pair correlation. Blue points show the "PRL result". Red points show the "present result".
Theoretical interpretations of $^7Li(p, e^- e^+) ^8Be$

- This result got an great international interest.
- The experimental result doesn’t explained by nuclear reactions.

- The experimental result explained by new particle
 ($m_0c^2 = 16.7$ MeV), with $J^\pi = 1^+$.

- There is an other other interpretation: we observed an particle
 with $J^\pi = 0^-$.
 (U. Ellwanger, S. Moretti; arXiv: 1609.01669v2.)
Theoretical interpretations of $^7\text{Li}(p, e^- e^+)^8\text{Be}$

Which theoretical model gives the right features?

Possible explanation of the electron positron anomaly at 17 MeV in ^8Be transitions through a light pseudoscalar

Ulrich Ellwangera,b and Stefano Morettib

Ádám Nagy

Searching for two γ-decay of $X(17)$
Motivation of $X_{17} \rightarrow \gamma\gamma$ experiments

- Landau-Young theorem:
 Considering a particle with spin 1 and mass > 0. Two γ-decay is forbidden.

- We have X_{17}:
 - If $J^\pi = 1^+$ → double γ-decay of X_{17} is forbidden.
 - If $J^\pi = 0^-$ → double γ-decay of X_{17} is allowed.
The $^3H(p, \gamma \gamma)^4He$ experiment in Debrecen

- Experiment at Tandetron Accelerator of the Institute for Nuclear Research.
- 14 $LaBr_3$ detectors in one detector-ball. (12 detectors are 3" \times 3" and 2 detectors are 6.5" \times 3.5".)
- Energy resolution of $LaBr_3$ detectors at $E \simeq 17$ MeV \rightarrow 0.5%.

Figure: Experimental setup for searching $X17 \rightarrow \gamma \gamma$. Moreover, the figure shows the e^-e^+-spectrometer, which was used for measuring the angular e^-e^+ pair correlations.
The $^3H(p,\gamma\gamma)^4He$ experiment in Debrecen

Figure: Experimental setup for searching $X \rightarrow \gamma\gamma$. (A photo about the $\gamma\gamma$ coincidence spectrometer.)
The $^3H(p, \gamma \gamma)^4He$ experiment in Debrecen

Calibration measurement

Aim:
- Checking the $\gamma \gamma$-spectrometer.
- The $\gamma \gamma$–spectrometer records the coincidence events.

Features of the experiment:
- We used a ^{11}B target.
- We used a proton beam, at $E_p = 685$ keV.
The $^3H(p, \gamma\gamma)^4He$ experiment in Debrecen

Calibration measurement

- The energy of excited state is $E_X = 16.6$ MeV.
- Decay of this state \rightarrow Emitting two gamma-ray with $E_{\gamma 1} = 12.7$ MeV, $E_{\gamma 2} = 4.43$ MeV.
- We measure cascade transmission.
- If the experimental setup is well calibrated for recording coincidence events. \rightarrow A peak at $E = 15.6$ MeV in the energy sum spectrum.

Figure: Level scheme of ^{12}C.

\[
\begin{align*}
2^- & \quad E_X = 16.6 \text{ MeV} \\
& \quad E_{\gamma 1} = 12.17 \text{ MeV} \\
& \quad E_{\gamma 2} = 4.43 \text{ MeV} \\
0^+ & \quad \text{ground state} \\
& \quad E_{\gamma 3} = 16.6 \text{ MeV}
\end{align*}
\]
The $^3H(p, \gamma\gamma)^4He$ experiment in Debrecen

Calibration measurement

Figure: Energy sum spectrum of γ-ray, which are in coincidence. There is an 1 MeV difference between $E_X = 16.6$ MeV and $E = 15.6$ MeV. ↔ We detected the second escape peak.
The $^3H(p, \gamma\gamma)^4He$ experiment in Debrecen

$X_{17} \rightarrow \gamma\gamma$ measurement

Aim:
- Search for coincidence events which are supporting the $X_{17} \rightarrow \gamma\gamma$.

Features of the experiment:
- created the second excited state of 4He
- used reaction: $^3H(p, \gamma)^4He$, at $E_p = 1.000$ MeV
- (p, n) channel is open at $E = 1.084$ MeV.
- The target was tritiated titanium foil on a 4 mm thick Mo disk. The thickness of the target was 3 mg/cm^2.
- we must use cold target \rightarrow we applied liquid nitrogen.
The $^3H(p, \gamma\gamma)^4He$ experiment in Debrecen

X17 $\rightarrow \gamma\gamma$ measurement

Data analysis:

- A general condition for energy variables and trigger time variables.
- If we detected a real coincidence event \leftrightarrow time coincidence and multiplicity $= 2$.
- Energy symmetry for detected γ-energies:

 $$0.1 < \frac{E_1 - E_2}{E_1 + E_2} < 0.1$$

- Correction by subtracting
 - the random events,
 - the cosmic events.
The $^3H(p, \gamma \gamma)^4He$ experiment in Debrecen

$X_{17} \rightarrow \gamma \gamma$ measurement

Data analysis:

Figure: Energy sum spectrum of cosmic ray. The histogram consists of those events which are in coincidence.
The $^3H(p, \gamma \gamma)^4He$ experiment in Debrecen

$X_{17} \rightarrow \gamma \gamma$ measurement

Data analysis: Result

Figure: Energy sum ($E_{\gamma_1} + E_{\gamma_2}$) spectrum which shows coincidence events in $0^\circ - 180^\circ$ interval. (tiny peak around 18 MeV, which comes from the 2γ decay of 21.1 MeV state)
The $^3\text{He}(n,\gamma\gamma)^4\text{He}$ experiment in Munchen

Features of the experiment:

- We performed an experiment to investigate the $X \rightarrow \gamma\gamma$, respected Research Neutron Source Heinz Maier-Leibnitz in Munchen.
- We excited the following states of ^4He
 - $E_X = 20.21$ MeV, $\Gamma = 0.50$ MeV;
 - $E_X = 21.01$ MeV, $\Gamma = 0.84$ MeV.
- We used the $^3\text{He}(n,\gamma)^4\text{He}$ at $E_n = 1$ meV.
- Target: a gas target with the pressure is $P = 2$ bar.
- Advantages of $^3\text{He}(n,\gamma)^4\text{He}$ reaction:
 - High cross section of the neutron capture
 - $\sigma(n,\gamma)$ is low $\rightarrow \sigma(n,\gamma)$ and $\sigma(n,\gamma\gamma)$ are comparable.
The $^3\text{He}(n,\gamma\gamma)^4\text{He}$ experiment in Munchen

Photos about the experimental setup:

Figure: γ-spectrometer which was used in the experiment. The setup consists of 12 LaBr_3 detectors. The relative angle is 30° between the detectors.

Figure: ^3He gas target. Pressure is $P = 2$ bar.
The $^3\text{He}(n, \gamma\gamma)^4\text{He}$ experiment in Munchen

Results of the experiment:

Figure: This histogram shows the detected energy spectrum of single gamma events.

Figure: Energy sum spectrum of detected γ-energies. The histogram consists of coincidence events after random event and cosmic subtraction.
The 8Be anomaly could be reproduced with an independent spectrometer.

The effect can not be explained within nuclear physics.

The anomaly can be successfully described by a new particle called X_{17}.

The $\gamma\gamma$-decay of X_{17} was studied, but could not be cleanly observed. We are planning further studies.
Thank you for your attention