Searching for two γ -decay of X(17)

European Nuclear Physics Conference September 2nd-7th, 2018, Bologna, Italy

Ádám Nagy University of Debrecen; Institute for Nuclear Research, Hungarian Academy of Sciences

- Searching for dark matter is hot topics of physics.
- Many experiment performed to search for dark particles.
- Many theoretical models predict particles in the 10 MeV – 1 GeV range.
- Searching for light particles in nuclear transitions.

Figure: Many experiments search for dark matter candidates.

- ⁷Li(p, e⁻e⁺)⁸Be reaction was used for creating excited state of ⁸Be.
- Examined two excited state. The e⁻e⁺-pair correlation was measured:
 - $E_X = 17.5 \text{ MeV} \rightarrow \text{no}$ bump.
 - $E_X = 18.15 \text{ MeV} \rightarrow \text{bump}.$

Figure: Bump at $\Theta \simeq 145^{\circ}$ in the angular correlation. Smooth curve shows the theoretical angular e^-e^+ pair correlations. Points shows the experimental result.

The detected bump can be a signature of X17 → e⁻e⁺.
 (A. J. Krasznahorkay et al.;

Phys. Rev. Lett. 116, 042501, (2016).)

Figure: Bump at $\Theta \simeq 145^{\circ}$ in the angular correlation. Smooth curve shows the theoretical angular e^-e^+ pair correlations. Points shows the experimental result.

- We re-investigated ${}^{7}Li(p, e^{-}e^{+})^{8}Be$ experiment.
- We used a different e⁻e⁺-pair spectrometer (with 6 telescopes).
- Experimental result ightarrow there is a bump at $\Theta \simeq 145^{\circ}$.

Figure: Bump at $\Theta \simeq 145^{\circ}$ in the angular correlation. Smooth curve shows the theoretical angular pair correlation. Blue points show the "PRL result". Red points show the "present result ".

Theoretical interpretations of $^{7}Li(p, e^{-}e^{+})^{8}Be$

- This result got an great international interest.
- The experimental result doesn't explained by nuclear reactions. (X. Zhang, G. A. Miller; Phys. Lett. B773, 159, (2017).)
- The experimental result explained by new particle $(m_0 c^2 = 16.7 \text{ MeV})$, with $J^{\pi} = 1^+$. (J. L. Feng et al.; Phys. Rev. Lett. 117, 071803, (2016).)
- There is an other other interpretation: we observed an particle with J^π = 0⁻.
 (U. Ellwanger, S. Moretti; arXiv: 1609.01669v2.)

Theoretical interpretations of $^{7}Li(p, e^{-}e^{+})^{8}Be$

PRL 117, 071803 (2016)

PHYSICAL REVIEW LETTERS

week ending 12 AUGUST 2016

Protophobic Fifth-Force Interpretation of the Observed Anomaly in ⁸Be Nuclear Transitions

Jonathan L. Feng,¹ Bartosz Fornal,¹ Iftah Galon,¹ Susan Gardner,^{1,2} Jordan Smolinsky,¹ Tim M. P. Tait,¹ and Philip Tanedo¹ ¹Department of Physics and Astronomy, University of California, Irvine, California 92697-4575, USA ²Department of Physics and Astronomy, University of Kentucky, Lexington, Kentucky 40506-0055, USA (Received 3 May 2016; published 11 August 2016)

Published for SISSA by 🖄 Springer

RECEIVED: September 23, 2016 REVISED: October 24, 2016 ACCEPTED: October 28, 2016 PUBLISHED: November 8, 2016

Which theoretical model gives the right features?

Possible explanation of the electron positron anomaly at 17 MeV in 8Be transitions through a light pseudoscalar

Ulrich Ellwanger^{a,b} and Stefano Moretti^b

• Landau-Young theorem:

Considering a particle with spin 1 and mass > 0. \rightarrow Two $\gamma\text{-decay}$ is forbidden.

- We have X17:
 - If $J^{\pi} = 1^+ \rightarrow$ double γ -decay of X17 is forbidden.
 - If $J^{\pi} = 0^{-} \rightarrow$ double γ -decay of X17 is allowed.

- Experiment at Tandetron Accelerator of the Institute for Nuclear Research.
- 14 LaBr₃ detectors in one detector-ball. (12 detectors are 3" × 3" and 2 detectors are 6.5" × 3.5")
- Energy resolution of $LaBr_3$ detectors at $E\simeq 17~{
 m MeV}
 ightarrow 0.5\%.$

Figure: Experimental setup for searching $X17 \rightarrow \gamma\gamma$. Moreover, the figure shows the e^-e^+ -spectrometer, which was used for measuring the angular e^-e^+ pair correlations.

Figure: Experimental setup for searching $X \rightarrow \gamma \gamma$. (A photo about the $\gamma \gamma$ - coincidence spectrometer.)

Calibration measurement

Aim:

- Checking the $\gamma\gamma$ -spectrometer.
- The $\gamma\gamma$ -spectrometer records the coincidence events.

Features of the experiment:

- We used a ¹¹B target.
- We used a proton beam, at $E_p = 685$ keV.

Calibration measurement

- The energy of excited state is $E_X = 16.6$ MeV.
- Decay of this state \rightarrow Emitting two gamma-ray with $E_{\gamma 1} = 12.7$ MeV, $E_{\gamma 2} = 4.43$ MeV.
- We measure cascade transmission.
- If the experimental setup is well calibrated for recording coincidence events. $\rightarrow A$ peak at E = 15.6 MeV in the energy sum spectrum.

$$2^{-} E_{X} = 16.6 \text{ MeV}$$

$$E_{\gamma 1} = 12.17 \text{ MeV}$$

$$2^{+} E_{X} = 4.43 \text{ MeV}$$

$$E_{\gamma 2} = 4.43 \text{ MeV}$$

$$0^{+} \text{ ground state}$$

Figure: Level scheme of ${}^{12}C$.

Calibration measurement

Figure: Energy sum spectrum of γ -ray, which are in coincidence. There is an 1 MeV difference between $E_X = 16.6$ MeV and E = 15.6 MeV. \leftrightarrow We detected the second escape peak.

$X17 \rightarrow \gamma\gamma$ measurement

Aim:

• Search for coincidence events which are supporting the $X17 \rightarrow \gamma \gamma.$

Features of the experiment:

- created the second excited state of ${}^{4}He$
- used reaction: ${}^{3}H(p,\gamma){}^{4}He$, at $E_{p}=1.000$ MeV
- (p, n) channel is open at E = 1.084 MeV.
- The target was tritiated titanium foil on a 4 mm thick Mo disk. The thickness of the target was 3 mg/cm^2 .
- ullet we must use cold target o we applied liquid nitrogen.

$X17 \rightarrow \gamma\gamma$ measurement

Data analysis:

- A general condition for energy variables and trigger time variables.
- If we detected a real coincidence event ↔ time coincidence and multiplicity= 2.
- Energy symmetry for detected γ -energies:

$$0.1 < \frac{E_1 - E_2}{E_1 + E_2} < 0.1$$

- Correction by subtracting
 - the random events,
 - the cosmic events.

$X17 \rightarrow \gamma\gamma$ measurement

Data analysis:

Figure: Energy sum spectrum of cosmic ray. The histogram consists of those events which are in coincidence.

 $X17 \rightarrow \gamma\gamma$ measurement

Data analysis: Result

Figure: Energy sum $(E_{\gamma 1} + E_{\gamma 2})$ spectrum which shows coincidence events in 0° - 180° interval. (tiny peak around 18 MeV, which comes from the 2γ decay of 21.1 MeV state)

Features of the experiment:

- We performed an experiment to investigate the $X\to\gamma\gamma,$ respected Research Neutron Source Heinz Maier-Leibnitz in Munchen.
- We excited the following states of ${}^{4}He$

•
$$E_X = 20.21$$
 MeV, $\Gamma = 0.50$ MeV;

- $E_X = 21.01$ MeV, $\Gamma = 0.84$ MeV.
- We used the ${}^{3}He(n,\gamma){}^{4}He$ at $E_{n}=1$ meV.
- Target: a gas target with the pressure is P = 2 bar.
- Advantages of ${}^{3}He(n,\gamma){}^{4}He$ reaction:
 - hight cross section of the neutron capture
 - $\sigma(n,\gamma)$ is low $ightarrow \sigma(n,\gamma)$ and $\sigma(n,\gamma\gamma)$ are comparable.

The ${}^{3}He(n,\gamma\gamma){}^{4}He$ experiment in Munchen

Photos about the experimental setup:

Figure: γ -spectrometer which was used in the experiment. The setup consists of 12 LaBr₃ detectors. The relative angle is 30° between the detectors.

Figure: ³*He* gas target. Pressure is P = 2 bar.

The ${}^{3}He(n,\gamma\gamma){}^{4}He$ experiment in Munchen

Results of the experiment:

Figure: This histogram shows the detected energy spectrum of single gamma events.

Figure: Energy sum spectrum of detected γ -energies. The histogram consists of coincidence events after random event and cosmic subtraction $z \rightarrow \langle \sigma \rangle \rightarrow \langle z \rangle \rightarrow \langle z \rangle \rightarrow \langle z \rangle$

- The ⁸Be anomaly could be reproduced with an independent spectrometer.
- The effect can not be explained within nuclear physics.
- The anomaly can be successfully described by a new particle called X17.
- The $\gamma\gamma$ -decay of X17 was studied, but could not be cleanly observed. We are planning further studies.

Thank you for your attention

Ádám Nagy Searching for two γ -decay of X(17)