

FOOT: FragmentatiOn Of Target Experiment

- Hadrontherapy, Radio Protection
 - Main concepts
- **FOOT**
 - **D** Main goals
 - **Detector**
 - **D** Performances
- *FUTURE PERSPECTIVE*

Roberto Spighi (INFN Bologna), on behalf of the FOOT Collaboration

Hadrontherapy

Radioprotection in space

Target fragmentation

- dσ/dE and dσ/dω with 5% precision of the fragment production X sections in inverse kinematics
- p, C, O beams
- □ Hadrontherapy energies (200-400 *MeV/u*)

Projectile fragmentation

same but in direct kinematics

Radiobiology request: to have a more precise TPS Treatment Planning System

detailed knowledge of the fragmentation processes to optimize the spacecraft shielding (long term mission)

- dσ/dE and dσ/dω with 5% precision of the fragment production X sections in direct and inverse kinematics
- **p**, He, Li, C, O beams (the most common in space)
- Radioprotection energies (around 700 MeV/u)

FOOT approved by the INFN on September 2017 (CSN3)

92 members (60% staff):

- **10 INFN Sections**
- **5** Iaboratories: Frascati, CNAO, Trento, GSI, IPHC (Strasbourg)
- **12** Italian Universities
- 2 foreign Universities: Aachen, Nagoya
- Centro Fermi

Physics program:

- Hadrontherapy:
 - Nuclear fragmentation @ 200 MeV/u
- **Radioprotection in Space:**
 - Nuclear fragmentation @ 700 MeV/u

Damage on DNA

Tumor is a cellular alteration \rightarrow not controlled proliferation \rightarrow stop the proliferation \rightarrow damage on DNA

Higher damage

but, necessary to know the Nuclear fragmentation cross sections

nanometric scale

Double strand break → irreparable damage

Trigger and ToF start

250 μm–1 mm thick plastic scintillator (depending on E beam) 50 mm radius

- ~ 400 optical fibers \rightarrow 4 boundles to 4 PMTs
- Test beam in september in Trento

R. Spighi: FOOT experiment

Beam momentum/direction & fragmentation in SC

Drift chamber Gas: Ar/Co₂ (80/20%) Test beam in september in Trento

9

Tracking region

VTX: 4 layers of Si pixel (20 x 20 μm) **ITR:** 2 layers of Si pixel (20 x 20 μm)

2 layers of 20 bars

Silicon PhotoMultiplier (SiPM)

ΔE-Tof

Pitch 50 µm Voltage breakdown 53 V **Inorganic scintillator**

Z_{Bi} = 83 $P_{BGO} = 7.13 \ g/cm^3$ Weight = 1.027 kg Total weight 330 Kg

ΔE-Tof test beam @CNAO

Calorimeter: test beam @HIT

Test beam results

Emulsion test beam @LNS and Trento

Conservative Resolutions

□ $\Delta p/p$ $\rightarrow 4\%$ □ $\Delta E_{kin}/E_{kin} \rightarrow 1.5\%$ □ Δtof $\rightarrow 70-140 \text{ ps}$ □ $\Delta (dE)/dE \rightarrow 3-10\%$

Tof resolution (C) better 40 ps

30

40

Released Energy (MeV)

50

60

70

80

20

10

20

0

R. Spighi: FOOT experiment

	¹ H	⁴ He	⁷ Li	⁹ Be	¹¹ B	¹² C	¹⁴ N	¹⁶ O
	1	2	3	4	5	6	7	8
	1.01±0.09	2.01±0.06	3.03±0.08	4.05±0.09	5.06±0.10	6.09±0.12	7.11±0.14	8.15±0.15
Z Resolution :	9%	3%						2.0%

R. Spighi: FOOT experiment

wrong charge assignment < 1%

Fluka simul ¹⁶O (200 MeV/u) \rightarrow C₂H₄

REDUNDANT Detector \rightarrow different ways to determine A

FOOT Performances: Number of mass reconstruction

Possibility to disentangle isotopes

FOOT Performances: Isotopes separation (example of C)

¹⁶O (200 MeV/u) \rightarrow C₂H₄

Conservative Resolutions

Data simulated by Fluka

16

Resolutions from Test Beam $\Delta p/p \rightarrow 4\%$ $\Delta E_{kin}/E_{kin} \rightarrow 1.0\%$ $\Delta tof \rightarrow 50 - 100 \text{ ps}$ $\Delta (dE)/dE \rightarrow 3-10\%$ $1^{2}C$

R. Spighi: FOOT experiment

Emulsion layer

C or C₂H₄

Problems with higher energy: example of ¹²**C**

Fragments with larger energy \rightarrow higher probability to fragment in CALO

Res: ~3%

Events

 ^{12}C

Future perspective

Test Beam / Data Taking

- Test beam during 2018-2019 at CNAO, Trento, Catania to finalize the detector
- GSI: FOOT approved for the IBER-2017 ESA program
 - Last week 11/2018: 16 h beam (He or C)
 - test of EMC
 - Electronic setup: BM, SC, prototype of MSD, SCN
 - GSI: 12/2019 Data taking with almost complete apparatus (~ first data taking)
- 2020-21 Data taking with the complete apparatus

Publications

- SCN detector (NIM): in publication
- General Apparatus Paper: in preparation
- dσ/dE for light fragments (p, d, T, He) at 4 angles (34°, 52°, 60°. 90°): in preparation
 - Data taking at CNAO: C beam from 115-352 MeV/u on H, C, O targets
 - Setup: SCNs for Tof & charge and CAL (LYSO 8 cm) for Energy

Conclusion

- □ Approved on September 2017
- **U** Wide physics panorama
 - □ Hadrontherapy
 - Target fragmentation
 - **D** Projectile fragmentation
 - **Radioprotection in space**
- **Detector Status:**
 - **G** Simulation phase is well advanced
 - Setup almost established
 - □ Many tests on beam already made
 - Performance as expected
- **Gamma** Future perspective
 - **Check Contract Scheduled Test Beam on 2018-2019**
 - **Data taking in 2020-1**
 - **3** papers in publication/preparation

22

R. Spighi: FOOT experiment

Backup slides

Hadrontherapy in the world

Continuous expansion in the last 50 years

Facilities in Clinical Operation and No. of Patients Treated (1955-2014)

Facility (2014):

- operative
 - 44 proton/7 heavy ion centers
- Under construction
 - 25 proton/4 heavy ion centers

Treated patients (2014):

- **120000**
 - **107000** with p (in USA 54000)
 - 13000 with 12C (in Japan 11000)

From 2010: 10000 patients per year

In Italy on 18/3/2017 hadrontherapy entered in LEA (Livelli Essenziali di Assistenza) allowing the treatment to 10 tumour pathologies R. Spighi: FOOT experiment

CATANA Proton Therapy beam line

Proton therapy Center - Trento

- Proton beam (till 60 MeV)
- Active since 2002
- Eye tumour: 363 patients (98% survived)

CNAO Pavia Centro Nazionale Terapia Oncologica

- proton beam till 250 MeV
- Carbon beam till 400 MeV
- Active since 2011
- □ First 5 years → 828 patients (70-90% success)
- □ Till now 1200 patients

- □ Active since 2015
- Proton beam (60-230 MeV)
- Full body treatment
- Experimental halls

A Reconstruction and fit

TOF (β) - TRACKER (p)TOF (β) - CALO (E_{kin})TRACKER (p) - CALO (E_{kin}) $A_1 = \frac{m}{U} = \frac{p}{U \beta \gamma}$ $A_2 = \frac{m}{U} = \frac{E_{kin}}{U(\gamma - 1)}$ $A_3 = \frac{m}{U} = \frac{p^2 - E_{kin}^2}{2E_{kin}}$

- Standard χ² Fit
 - Taking into account the correlation between A₁, A₂ and A₃

$$f = \left(\frac{(tof_{reco} - t)}{\sigma tof_{reco}}\right)^2 + \left(\frac{(p_{reco} - p)}{\sigma p_{reco}}\right)^2 + \left(\frac{(E_{kin,reco} - E_{kin})}{\sigma E_{kin,reco}}\right)^2 + (A_1 - A A_2 - A A_3 - A) \begin{pmatrix} C_{00} & C_{01} & C_{02} \\ C_{10} & C_{11} & C_{12} \\ C_{20} & C_{21} & C_{22} \end{pmatrix} \begin{pmatrix} A_1 - A A_2 - A A_3 - A A_3 \\ A_3 - A \end{pmatrix}$$

$$C = (A \cdot A^{T})^{-1} \qquad A = \begin{pmatrix} \frac{\partial A_{1}}{\partial t} dt & \frac{\partial A_{1}}{\partial p} dp & 0 \\ \frac{\partial A_{2}}{\partial t} dt & 0 & \frac{\partial A_{2}}{\partial E_{kin}} dE_{kin} \\ 0 & \frac{\partial A_{3}}{\partial p} dp & \frac{\partial A_{3}}{\partial E_{kin}} dE_{kin} \end{pmatrix}$$

Augmented LagrangianFit (ALM)

$$\tilde{\mathcal{L}}(\vec{x}; \boldsymbol{\lambda}, \mu) \equiv f(\vec{x}) - \sum_{a} \lambda_{a} c_{a}(\vec{x}) + \frac{1}{2\mu} \sum_{a} c_{a}^{2}(\vec{x}).$$

A reconstruction efficiency

Reconstruction efficiency ~ **70-80 % depending on the fragment**

R. Spighi: FOOT experiment

FOOT Performances: Number of mass reconstruction

\Box Fit Methods: **STANDARD** χ^2 and **ALM**

¹⁶O (200 MeV/u) \rightarrow C₂H₄

Data simulated by Fluka

Resolution for heavy fragments ~ 3-4%

brief experimental panorama on proton cross section

30

brief experimental panorama on p \rightarrow ¹²C differential cross section

$$R.B.E = \left(\frac{D_{X-ray}}{D_H}\right)_{Same \ effect}$$

Relative Biological Effectiveness (RBE)

quantify the strength of different radiation types

RBE depends on

- LET
- Dose
- Depth in the body
- Beam energy
- Vivo/vitro
- □ Tissue type ...
- Nuclear interaction

not considered

proton RBE = 1.1

High RBE → high effect wrt radiation

Nuclear interaction

Hadrontherapy energies:

 $p \rightarrow 200 \text{ MeV}$ $^{12}C \rightarrow 400 \text{ MeV/u}$

Most probable nuclear process: Fragmentation peripheral interaction between projectile (p, ¹²C,...) and target (H, C, O, ...)

Protons ≠ photons * 1.1 due to Nuclear interaction

No Standard Treatment Planning for hadrontherapy

ΔE-Tof test beam @CNAO

Tof resolution (C) better 40 ps

Calorimeter: test beam @HIT

Test beam results

MSD: test @ Trento (proton)

Agreement simulation data in few %

Test beam and simulation results

Tracking Kalman Filter (simulation)

Emulsion chamber test beam @LNS (p, D, He, C) and Trento (p at 50, 80, 200 MeV)

35

p resolution at level of 4%

Fragments charge determined by volume of points after refreshing

ECC: charge separation

R. Spighi: FOOT experiment

p•β by Multiple Coulomb Scatt

1/(pβ)(GeV/c)⁻¹

Target Fragmentation cross sections

 $d\sigma$

0.01

Kinetic Energy (GeV/u)

Agreement between the two methods

0.01

R. Spighi: FOOT experiment

FOOT: Emulsion chamber setup

600