ALICE

The Upgrade of the ALICE Inner Tracking System at the CERN LHC

Outline

- Present and future of ALICE
- 2 Inner Tracking System upgrade
- 3 Features of the new tracker: detectors, modules and staves
- 4 Expected physics performance

ALICE – Run 2 (2015-2018)

- ➤ ALICE is an experiment at the Large Hadron Collider (LHC) at CERN, Geneva.
- ➤ ALICE was specifically designed to study the **nuclear** matter at high densities and temperatures: Quark Gluon Plasma (QGP).
- Present setup (LHC Run 2):
 - Central Barrel ($|\eta| < 1$):
 - vertexing, tracking, particle identification.
 - Muon spectrometer: $2.5 < \eta < 4.0$.
 - Detectors for timing and centrality determination

ITS (Inner Tracking System)

TPC (Time-Projection Chamber)

TOF (Time of Flight)

TRD (Transition Radiation Detector)

ALICE - Run 2 (2015-2018)

ALICE

ALICE – Run 3 (2021-2023)

➤ Physics goals

- High-precision measurements of rare signals with main focus on the low p_T region.
- High-precision measurements of QGP properties.
- Target luminosity (Pb-Pb $\sqrt{s_{NN}}$ = 5.5 TeV): **10** nb⁻¹.
- Heavy-flavour and quarkonia at very low $p_{\rm T}$.
- Improve vertexing and tracking capabilities.

➤ Upgrade strategy (2019-2020 during LS2)

- New high-resolution, low-material thickness ITS
- Upgrade of the TPC with Gas Electron Multipliers (GEM)
- Upgrade of the readout electronics of TRD, TOF, PHOS, and Muon spectrometer.
- Upgrade of the forward trigger detectors and trigger system for high-rate operations
- Upgrade of the Online and Offline Systems:
 HLT, DAQ, trigger system, software

ITS Upgrade: design objectives

► Limits

- SDD max readout speed: 1 kHz
- Material budget: $1.1\% X_0$
- **Spatial resolution** for secondary vertex reconstrunction (e.g. Λ_c $c\tau \approx$ 60 μ m)
- **▶ Design objectives**: present vs new ITS
 - Readout rate: 1 kHz \rightarrow up to 400 kHz (pp), 50 kHz (Pb-Pb)
 - Improve impact parameter resolution by a factor \sim 5 in z and \sim 3 in $r\varphi$ at $p_{\rm T}=500~MeV/c$
 - \circ Material budget: 1.1% $X_0 \rightarrow 0.3\% X_0$ (inner layers)
 - Pixel size: $50x425 \mu m^2 \rightarrow \sim 30x30 \mu m^2$
 - \circ Closer to the vertex (first layer radius): 39 mm \rightarrow 22 mm
 - Improve tracking efficiency and p_{T} resolution at low p_{T} :
 - Increase granularity: 6 layers → 7 layers

New ITS layout

Space Frame

- ➤ 7 layers of Monolithic Active Pixel Sensors (MAPS)
 - 3 Inner Layers (Inner Barrel)
 - 2 Middle + 2 Outer layers (Outer Barrel)
- **▶** | η | coverage: | η | < 1.22
- ightharpoonup r coverage: 22 400 mm

Outer Barrel (IB)

ALPIDE chip

Pixel size	\sim 27х29 μm^2	
Matrix size	512x1024 pixels	

►TowerJazz 0.18 µm CMOS imaging process

- High resistivity $(1 \div 6 \ k\Omega \cdot cm)$ p-type epitaxial layer $(25 \ \mu m)$ on p-type substrate.
- Small n-well diode (2 μm diameter), ~100 times smaller than pixel \rightarrow small capacitance (~fF)
- Reverse bias voltage to substrate: $-6V < V_{\rm BB} < 0V$
- Deep PWELL shields NWELL of PMOS transistor (full CMOS circuitry within active area)
- Fast ($\sim 2\mu s$) data driven encoder for pixel matrix readout
- Pixel signal amplified and digitized at a pixel level → low power consumption (< 40 mW/cm²)
- Data sent towards periphery to the Data Transmission Unit (Serializer + PLL + LVDS driver)

ALPIDE chip

- 400 Mb/s (OB), 1.2 Gb/s (IB) data output
- Triggered or continuous acquisition
- 50 μm (IB), 100 μm
 (OB) thick

Pixel size	\sim 27х29 μm^2
Matrix size	512x1024 pixels

►TowerJazz 0.18 µm CMOS imaging process

- High resistivity (1 \div 6 $k\Omega \cdot cm$) p-type epitaxial layer (25 μm) on p-type substrate.
- Small n-well diode (2 μm diameter), ~100 times smaller than pixel \rightarrow small capacitance (~fF)
- Reverse bias voltage to substrate: $-6V < V_{\rm BB} < 0V$
- Deep PWELL shields NWELL of PMOS transistor (full CMOS circuitry within active area)
- Fast ($\sim 2\mu s$) data driven encoder for pixel matrix readout
- Pixel signal amplified and digitized at a pixel level → low power consumption (< 40 mW/cm²)
- Data sent towards periphery to the Data Transmission Unit (Serializer + PLL + LVDS driver)

Inner barrel – first 3 layers

➤Inner barrel Hybrid Integrated Circuit (HIC)

- 9 ALPIDE chips
- 1 Flex circuit for data, clock, control signal transmission and chip powering
- Chip Flex connection with wire bonds
- Good performance after 1 year operation (aging test)

Inner barrel – first 3 layers

►Inner barrel Hybrid Integrated Circuit (HIC)

- 9 ALPIDE chips
- 1 Flex circuit for data, clock, control signal transmission and chip powering
- Chip Flex connection with wire bonds
- Good performance after 1 year operation (aging test)

►Inner barrel stave

- One HIC is glued on the space frame incorporating a cold plate for chip cooling (water cooling)
- Three cylindrical layers
- 48 Staves in total

Third half-layer from the beam pipe

Outer Barrel – HIC assembly

- 14 (7x2) ALPIDE chips
- 1 Flex circuit for data, clock, control signal transmission and chip powering
- Master-slave architecture
- Chip Flex connection with glue + wire bonds (line connections, ~70 pads per chip)

- Bari
- Pusan/Inha
- Wuhan
- Strasbourg
- Liverpool

Outer Barrel – Half-Stave/Stave assembly

►Outer barrel Half-Stave (HS)

- OL-HS: 7 HICs, ML-HS: 4 HICs.
- HICs are aligned and glued onto a Cold Plate with 10-20 μm precision
- 98 (OL), 56 (ML) ALPIDE chips on HSs
- $\sim 5.1 \times 10^7 \, 30 \times 30 \, \mu m^2$ pixels on 1 OL-HS

- LBNL, Berkeley
- INFN, Torino
- LNF, Frascati
- STFC, Daresbury
- Nikhef, Amsterdam

Outer Barrel – Half-Stave/Stave assembly

➤ Outer barrel Stave (90 OL + 54 ML)

- 2 HSs aligned and glued onto a carbon fiber Space Frame (support structure) with about 100 μm precision
- Soldering of Power-Bus to cross-cables for chip powering
- Flipping of the Power Bus

- ► LBNL, Berkeley
- ➤ INFN, Torino
- ► LNF, Frascati
- ➤ STFC, Daresbury
- Nikhef, Amsterdam

Outer Barrel - Half-Stave/Stave assembly

➤ Outer barrel Stave (90 OL + 54 ML)

- 2 HSs aligned and glued onto a carbon fiber Space Frame (support structure) with about 100 μm precision
- Soldering of Power-Bus to cross-cables for chip powering
- Flipping of the Power Bus
- Electrical test

Example for HS-3-Upper in Torino

- Average noise is uniform for chips on the same and different HICs
- Same conclusion for the average threshold
- ► LBNL, Berkeley
- ► INFN, Torino
- ► LNF, Frascati
- ➤ STFC, Daresbury
- Nikhef, Amsterdam

Heavy-flavour: B mesons

Not measured with present setup!

- \triangleright Access to beauty at low p_T will be achieved via:
 - Inclusive channels: displaced J/ψ and D mesons, muons/electrons from B semi-leptonic decays
 - Exclusive channels
 - B → D⁰ + X (BR $\approx 60\%$) → reconstruction down to $p_{\rm T} = 0$
 - $-B^{\pm} \rightarrow J/\psi(\rightarrow ee) + K^{\pm}$ (BR $\approx 0.1\%$) \rightarrow reconstruction down to $p_T = 0$
 - B⁺ \rightarrow \overline{D}^0 + π^+ (BR ≈ 0.48%) with \overline{D}^0 \rightarrow K⁺ π^- (BR ≈ 3.88%) \rightarrow full kinematic reconstruction down to p_T = 2 − 3 GeV/c

Conclusions

- 7 layers of the new ITS will be equipped with monolithic pixels (~ 30x30 μm² each)
- ➤ ALPIDE showed an efficiency > 99 % even after 10X lifetime Non-Ionizing Energy Loss (NIEL) dose
- ➤ Inner Barrel
 - 3 half-layers assembled
- ➤ Outer Barrel
 - Mechanical tools developed and fully working for 5 sites
 - Stave production is proceeding within the schedule (end: April 2019)
 - Stave tests are showing a good performance of the HICs
- ➤ All activities are registered in a database with results and, functional and physical statuses of the components
- ► Heavy-quark baryons and mesons $(\Lambda_c, \Lambda_b, B)$ will become measurable with the new setup

Backup slides

Pixel-chip requirements

Parameter	Inner Barrel	Outer Barrel	ALPIDE
Silicon thickness	50 μm	$100~\mu m$	₽
Spatial resolution	5 μm	10 μm	\sim 5 μm
Chip dimension	15 x 30 mm ²		
Power density	$< 300 \ mW/cm^2$	$< 100 \ mW/cm^2$	$< 40 \ mW/cm^2$
Event-time resolution	< 30 μs		~ 2 μs
Detection efficiency	> 99 %		
Fake-hit rate ^a	$< 10^{-6}$ /event/pixel		$<<<10^{-6}$ /event/pixel
NIEL radiation tolerance ^b	$1.7 \times 10^{13} \ 1 MeV \ n_{eq}/cm^2$	$10^{12}~1 MeV~n_{eq}/cm^2$	
TID radiation tolerance ^b	2.7 Mrad	100 krad	Tested at 350 krad

^a number revised w.r.t TDR

^b with a safety factor of 10 (load integrated over the approved program = 6 years of operation), number revised w.r.t TDR

From prototype to final ALPIDE

May 2014 pALPIDE-1

- Full-scale prototype (512x1024 pixels)
- 4 sectors with different pixel geometries/characteristics
- No final interface

May 2015 pALPIDE-2

- 4 sectors with different pixel geometries/characteristics
- Final interface: allows integration into ITS modules
- No high-speed output link (1.2 Gbit/sec replaced by 40 Mbit/s)

Oct 2015 pALPIDE-3

- 8 sectors with different pixel geometries/characteristics
- Final interface including 1.2 Gbit/s high-speed output

Aug 2016

- Final chip version. Full matrix with same pixel type (pALPIDE-3 sector 5)
- High-speed serial output: 400Mb/s (OB) 600Mb/s or 1.2Gb/s (IB)
- Pixel pitch: $\sim 29 \times 27 \ \mu m^2$
- Ultra-low power consumption (<40 mW/cm2)
- Triggered or continuous acquisition

Block diagram of the ALPIDE pixel cell

ALPIDE test beam results

- ➤ NIEL and TID effects on efficiency and fakehit rate @Cern PS
 - Fake-hit rate < 10⁻¹⁰/pixel/event after masking 10 pixels
 - Efficiency close to 100% on a wide range of thresholds

- ➤ NIEL and TID effects on resolution and cluster size @Cern PS
 - Good resolution also after irradiation: $\sim 5 6 \mu m$ (for MIPs)
 - Average cluster size:
 - $\sim 1-3$ pixels (using centre-of gravity)

Performance fully satisfies the constraints on the pixel chip even after TID and NIEL irradiation!

90 Outer layer

54 Middle layer STAVES

48 Inner layer STAVES

STAVES

Inner and Outer Barrel Staves

3 Inner Layers (Inner Barrel) 2 Middle + 2 Outer layers

(Outer Barrel)

Inner Barrel Stave (no Half-Staves)

OB Module & FPC: data, clock and control lines

- Two independent rows of 7 chips:
 1 master and 6 slave per row
- Data (@400 Mb/s) are sent out only from the master (master-slave internal communication)
- 40 MHz clock arrives at the master and it is regenerated and sent to the slaves
- Control line is bidirectional and serves to:
 - provide write and read access to internal registers, commands, configuration and memories
 - distribute trigger commands or other broadcast synchronous signals
- \rightarrow Data, Control and Clock lines are routed on the FPC (Cu lines 18 μm thick) that is wire-bonded to chip pads

IB Module & FPC: data, clock and control lines

- One rows of 9 chips: all masters
- Data (@1.2 Gb/s) are sent out from each master
- 40 MHz clock arrives at all the masters
- Control line is bidirectional and all masters share it.
- Data, Control and Clock lines are routed on the FPC (Al lines 25 μm thick) that is wire-bonded to chip pads

Fluency: $\sim 10^{13} \ 1 MeV \ n_{eq}/cm^2$

Readout electronics

Rad levels

TID: <10 krad

Fluency: $< 10^{12} \ 1 MeV \ n_{eq}/cm^2$

PID with pixel cluster shapes

μ vs. p

- Pions, protons and deuterons are not distinguishable
- A cut of 2σ is sufficient to tag nuclei

- Present ITS: PID is performed via dE/dx in the four outermost layers (SDD + SSD)
- New ITS: digital readout adopted

 Tagging of heavily ionizing particles (e.g.
 ³He and ⁴He) thanks to the analysis of the cluster sizes/shapes associated to their track:
 - \square Study performed assuming 20x20 μm^2 pixels with an effective thickness of 18 μm
 - ☐ PID algorithm: arithmetic mean of the cluster size values associated to the track
 - □PID algorithm calibration: distribution of the mean cluster size values for each hadron specie in a given momentum interval → fit with a Gaussian function $(\mu, \sigma) \rightarrow \mu$ vs. momentum curve fitted with 2nd-degree polynomial function.

Hypernuclei: ${}_{\Lambda}^{3}H$, ${}_{\Lambda}^{4}H$, ${}_{\Lambda}^{4}He$ via mesonic weak

decays

- Nuclei that contain at least a strange baryon (hyperon) in additions to protons and neutrons: the hyperon-nucleon interaction plays a role in understanding the structure of neutron stars.
- Present detector: only allows the detection of ${}^3_{\Lambda}H$ and ${}^3_{\Lambda}\overline{H}$ with poor significance. The detection of heavier (anti)-hypernuclei is precluded with the present statistics
- New ITS detector
 - ☐ Very large statistics of minimum-bias Pb-Pb events will be collected after LS2
 - □ Improved tracking resolution will allow a better **separation** of the reconstructed signal decays from the combinatorial background → significance improvement

Heavy-flavour baryon: $\Lambda_c \to p K^-\pi^+$

- ho $c au \approx 60 \mu m BR \approx 5\%$: challenging! High tracking precision needed to separate the secondary vertex.
- ➤ Present detector:
 - Not observed in Pb-Pb because of the very large combinatorial background
- ➤ New detector:
 - In Pb-Pb most-central collisions: S/B improves by a factor 400 (2 < $p_{\rm T}$ < 4 GeV/c), significance improves by a factor 5-10 ($p_{\rm T}$ > 2 GeV/c)
 - Reconstruction of the Λ_c down to $p_{\rm T}=2~{\rm GeV}/c$

