

THE NUCLEAR CHARGE RADIUS OF RADIOACTIVE ISOTOPES BY MUONIC X-RAYS MEASUREMENTS

PAUL SCHERRER INSTITUT

FED

Alexander Albert Skawran, PSI For the muX Collaboration

"TRADITIONAL" MUONIC ATOM SPECTROSCOPY

Simple target setup for unlimited target amount

 E_{1s} (Z=82) ~19 MeV (point nucleus) 10.6 MeV (finite size)

Kessler et al., PRC 11, 1719 (1975)

NUCLEAR CHARGE RADII

- Muonic atom energy spectrum is highly sensitive to nuclear charge distribution due to larger overlap
- Charge radius is extracted by QED calculations and model for nuclear charge distribution
- Precise radius extractions are possible
- Example: For ²⁰⁸Pb was achieved a RMS radius of 5.5031(11) fm with 2x10⁻⁴ relative precision (Bergem et al., Physical Review C 37.6 (1988): 2821)

NUCLEAR CHARGE RADIUS OF 226RA

- A planned atom parity violation experiment requires the radium charge radius with 0.2% accuracy
- E1 transition between 6²D_{3/2} and 7²S_{1/2} is forbidden
- Due to weak interaction a small admixture of E1 in E2 is possible
- Using precise calculations the admixture can be used to extract weak charge

RADIUM TARGET

- So far only a few radioactive isotopes measured with muonic atom spectroscopy
- In the paper they describe the target weight as "modest weight of 1 g"
- The radium-226 target is allowed to have only several µg due to radioactivity safety regulations
- To stop enough muons O(100 mg) of radium are required
- New target set up required to increase event rate

 Gas cell is filled with 100 bar
 hydrogen and
 0.25%
 deuterium
 admixture

Muon collides with H₂ molecules in gas cell

 Gas cell is filled with 100 bar
 hydrogen and
 0.25%
 deuterium
 admixture

Muon in gas cell is captured by a proton of a H_2 molecule. Muonic hydrogen μp is produced.

PAUL SCHERRER INSTITUT

Muonic hydrogen collides with D_{2} . The muon is transferred to

a deuteron. The transfer results in μd with a kinetic energy boost of several eV.

The gas is almost transparent to the μ d atom due to the Ramsauer-Townsend effect. μ d can move to target.

PRESSURE TEST GAS CELL

PAUL SCHERRER INSTITUT

- Gas cell has to resist a pressure of 100 bar
- Tested different setups
- Final set up includes

 a carbon fibre window
 with two support grid
 layers containing
 carbon fibre and
 titanium
- Window withstands a pressure of more than 350 bar, some screw threads could not take the increasing pressure 13

MUON COUNTER

- To estimate the efficiency of the muon transfer to the target and to detect coincidences a thin scintillator is used to detect incoming muons.
- Other scintillators are used

as veto detectors for anti-coincidence with decay electron.

SET UP GOLD TARGET TEST

- During 2017 an array of 11 Ge detectors were used
- It was the first time that an array was used for muonic atom spectroscopy

GOLD SPECTRUM

- Used gold to test muon transfer
- Observed gold spectrum with
 5 µg target
- Used lead for energy calibration
- Observed also muon catalysed fusion

MUON TRANSFER EFFICIENCY

Target	Size	Backing	N_{γ} / N_{μ}	ϵ
50 nm Au	$4.9 \mathrm{~cm^2}$	Cu	$(10.9 \pm 0.3) \times 10^{-5}$	10.0%
10 nm Au	$4.9 \mathrm{~cm}^2$	Cu	$(6.9 \pm 0.2) \times 10^{-5}$	6.3%
$3 \mathrm{nm} \mathrm{Au}$	$4.9 \mathrm{~cm^2}$	Cu	$(3.6 \pm 0.1) \times 10^{-5}$	3.3%
$3 \mathrm{nm} \mathrm{Au}$	$4.9 \mathrm{~cm^2}$	kapton	$(3.2 \pm 0.1) \times 10^{-5}$	2.9%
$3 \mathrm{nm} \mathrm{Au}$	$1 \mathrm{~cm}^2$	Cu	$(1.3 \pm 0.1) \times 10^{-5}$	1.2%

Detected gammas per muon fraction in gold targets (preliminary)

- Detected 2p-1s gammas per incoming muon for various target sizes and amounts
- ➤ Type of backing layer seems to have negligible influence
- > Even a sufficient number of photons is achieved in the 5 μ g target

Decay chain of Radium-226

GAMMA, BETA BACKGROUND OF ²²⁶RA SOURCE

A 5 µg radium-226 target leads to 200 kBq of all daughter

- Highest gamma emitters are lead-214 and bismuth-214
- The corresponding gamma rate is about 400 kHz

Effect of offline analysis on energy resolution

TIME AND ENERGY RESOLUTION RADIOACTIVE TARGETS

 Performed measurements of a high rate 420 kHz yttrium-88 gamma source

- The radium source has a similar activity
- Offline analysis improves time and energy resolution
- DAQ can handle high data rate

FIRST EXPERIENCES WITH CURIUM-248 AND RA-226 TARGETS

Detector setup radium-226 measurement

- During July 2018 the first attempt to observe muonic curium-248 and radium-226 happened
- The production of appropriate targets was unsuccessful

Curium gas cell prepared for sealing

FIRST TRY WITH CURIUM-248

- A 100 µm copper plate is used as a substrate for curium-248. The copper is covered by a 50 nm thin gold film to avoid unwanted oxidation
- Curium-248 was fixed on the gold layer by electrolysis
- ➤ The activity of the *curium-248* probe was 2,448 kBq (~37 µg)
- The probe included an admixture of *curium-246* with an activity of 8,978 kBq (~2 µg)

²⁴⁸Cm and organic compounds on the gold plate

OBSERVED SPECTRUM CURIUM-248

- ➤ The estimated 2p → 1s transitions for Cm-248 are:
 - ► $2p_{1/2} \rightarrow 1s_{1/2} \sim 6500 \text{ keV}$
 - ► $2p_{3/2} \rightarrow 1s_{1/2} \sim 6754 \text{ keV}$
- ► No Cm lines were observed
- Cm was plated on the Au-Cu plate. Hence, a disturbing organic layer could cover the Cm target
- A flame treatment was applied to reduce the thickness of the organic layer. This resulted in no improvement of the gamma spectrum

Carbon covered gold plate

23

FIRST TRY WITH RADIUM-226

- Ra-226 with an activity of 201.8 kBq is solved in acid
- During the first try it is plated on Cu-Au-Plate
- ► The plating destroyed the Au layer
- For a second plating the Ra-226 has to be removed from the Cu-Au-Plate
- During the separation occur many impurities in the solution
- The impurities have to be removed from the solution
- After all separations and the final plating only 1% of the original Ra-226 amount is left in the target
- A measurement in a reasonable time is not possible anymore

SUMMARY & OUTLOOK

- Muonic atom spectroscopy can be used for nuclear charge radius measurement
- Developed and tested a muon transfer method for tiny amount targets
- An improvement and quality assurance of the target production is required
- 2019 Next try to observe muonic radium and curium Xrays

BACKUP SLIDES

RAMSAUER-TOWNSEND EFFECT

$$E\Psi = -\frac{1}{2m}\frac{\partial^2}{\partial x^2}\Psi + V\Psi$$

$$V(x) = \begin{cases} 0 & x < 0 \\ V_0 & 0 < x < a \\ 0 & x > a \end{cases} \quad \Psi(x) = \begin{cases} e^{ikx} + Re^{-ikx} & x < 0 \\ Ae^{iKx} + Be^{-iKx} & 0 < x < a \\ Te^{-ikx} & x > a \end{cases}$$

• •

$$\mathcal{T} = |T|^2 = rac{1}{1 + rac{V_0^2}{4E(E-V_0)} \sin^2 Ka}$$
 $Ka = 2\pi rac{a}{\lambda} = n\pi$

BASELINE CORRECTION

ELET TIME CORRECTION

- Avoid threshold activation due to noise (jitter effect)
- Avoid walk effect due to varying time signal shape
- Assume that rising slope is almost linear at the beginning

 $\Delta t = t_1 - t_0$

 $\Delta t = t_2 - t_1$

 $t_0 = 2t_1 - t_2$

MUON CATALYSED FUSION

.

$$p\mu d \rightarrow (\mu^{3} \text{He})_{nl} + \gamma, \quad Q_{1s} = 5.502 \text{ MeV},$$

 $d\mu d \rightarrow (\mu^{3} \text{He})_{nl} + n, \quad Q_{1s} = 3.277 \text{ MeV},$
 $d\mu t \rightarrow (\mu^{4} \text{He})_{nl} + n, \quad Q_{1s} = 17.598 \text{ MeV}.$

RADIUM APV

Other results:

45.9 · 10⁻¹¹ iea₀ (-Q_w/N) (R. Pal*et al.*, Phys. Rev. A 79, 062505 (2009), Dzuba *et al.*, Phys Rev. A 63, 062101 (2001).)

Need reliable charge radius at <0.2% accuracy for atomic theory</p>

ESTIMATION RADIUM PARAMETER

$$\rho(r) = \frac{\rho_0}{\left(1 + \exp\left(\frac{r-c}{a}\right)\right)} = \frac{\rho_0}{\left(1 + \exp\left(4\log(3)\frac{r-c}{t}\right)\right)}$$
$$r_{RMS} = \frac{\int \rho(r)r^2 dV}{\int \rho(r)dV} \quad t = 2.3 \text{ fm} \approx \text{const}$$

rms = 5.6841 fm I.Angeli/ Atomic Data and Nuclear Data Tables 87 (2004) 185\ [Dash]206